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Abstract

Background: This study aimed to explore and identify key genes and signaling pathways that contribute to the
progression of cervical cancer to improve prognosis.

Methods: Three gene expression profiles (GSE63514, GSE64217 and GSE138080) were screened and downloaded
from the Gene Expression Omnibus database (GEQ). Differentially expressed genes (DEGs) were screened using the
GEO2R and Venn diagram tools. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses were performed. Gene set enrichment analysis (GSEA) was performed to analyze the
three gene expression profiles. Moreover, a protein—protein interaction (PPI) network of the DEGs was constructed,
and functional enrichment analysis was performed. On this basis, hub genes from critical PPl subnetworks were
explored with Cytoscape software. The expression of these genes in tumors was verified, and survival analysis of
potential prognostic genes from critical subnetworks was conducted. Functional annotation, multiple gene
comparison and dimensionality reduction in candidate genes indicated the clinical significance of potential targets.

Results: A total of 476 DEGs were screened: 253 upregulated genes and 223 downregulated genes. DEGs were
enriched in 22 biological processes, 16 cellular components and 9 molecular functions in precancerous lesions and
cervical cancer. DEGs were mainly enriched in 10 KEGG pathways. Through intersection analysis and data mining, 3
key KEGG pathways and related core genes were revealed by GSEA. Moreover, a PPl network of 476 DEGs was
constructed, hub genes from 12 critical subnetworks were explored, and a total of 14 potential molecular targets
were obtained.

Conclusions: These findings promote the understanding of the molecular mechanism of and clinically related
molecular targets for cervical cancer.

Keywords: Bioinformatics analysis, Cervical intraepithelial neoplasia, Cervical cancer, Differentially expressed genes,
Functional enrichments

Background cervix. From normal to CIN (N-CIN) and ultimately to
Human papillomavirus (HPV) infection is a primary cause = cancer (CIN-CC), cervical cancer is a continuous and
of cervical cancer and led to 311,365 deaths in 2018 [1].  evolving process [2, 3]. In addition to HPV vaccination,
Cervical intraepithelial neoplasia (CIN) is a potentially early diagnosis and treatment can reduce the mortality
premalignant transformation of squamous cells of the rate of cervical cancer. In recent years, the prognosis of

cervical cancer has been a concern. The identification of
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development of bioinformatics, more studies have focused
on the signaling and metabolic pathways of cervical can-
cer, data mining and validation of related biomolecular
targets. The aim of this study was to explore and identify
the key genes and signaling pathways contributing to the
progression of cervical cancer to improve prognosis. An
integrated bioinformatics analysis was performed to select
differentially expressed genes (DEGs) and hub genes and
to investigate their protein—protein interaction (PPI) net-
works, related prognostic signatures, functional annota-
tions and potential prognostic value. This study may offer
better insight into potential molecular mechanisms to ex-
plore preventive and therapeutic strategies.

Methods

Data processing

CIN is an important process in the development of cer-
vical cancer. The gene expression profiles related to CIN
progression were retrieved and downloaded from the
Gene Expression Omnibus (GEO) database of the Na-
tional Center for Biotechnology Information (NCBI).
The retrieval formula was as follows: (“cervical intrae-
pithelial neoplasia” [MeSH Terms] OR cervical intrae-
pithelial neoplasia [All Fields]) AND “Homo sapiens”
[porgn] AND (“Expression profiling by array” [Filter]
AND (“0001/01/01” [PDAT]: “2020/11/27” [PDAT])).
Three expression profile microarray datasets (GSE63514,
GSE64217 and GSE138080) were selected and down-
loaded from the GEO database for analysis.

GSE63514 [4] is an expression profile based on the
GPL570 platform (Affymetrix Human Genome U133
Plus 2.0 Array) and contains samples of normal cervical
epithelium, CIN and cervical squamous epithelial cancer.
GSE64217 is an expression profile based on the
GPL10558 platform (Illumina HumanHT-12V4.0 ex-
pression beadchip), and GSE64217 was provided by the
Indian Institute of Technology Kharagpur, School of
Medical Science and Technology, Multimodal Imaging
and Computing for Theranostics. It contains samples of
normal cervical mucosa, CIN and cervical squamous cell
carcinoma (CESC). GSE138080 [5] is an expression pro-
file based on the GPL4133 platform (Agilent-014850
Whole Human Genome Microarray 4x44K G4112F) and
contains samples of normal cervical squamous epithe-
lium, CIN and CESC. Samples of the three microarray
expression profiling datasets were classified and analyzed
according to the progression of cervical cancer. The
workflow of this study is indicated in Fig. 1.

Analysis of microarray datasets

According to the progression of cervical cancer, in the
subsequent analysis, samples of each dataset were di-
vided into three groups: N-CIN, CIN-CC, and N-CC.
The GEO2R tool was used to analyze the three
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Fig. 1 Flowchart of the integrated analysis

expression datasets [6, 7]. Normalization and log2 con-
version were carried out for each dataset to filter out the
DEGs of the three datasets, and the DEGs are displayed
as volcano plots. The filtering conditions were as follows:
|log2-fold change|>1 and adjusted P-value (adj. P)<
0.05. Then, the Venn diagram tool (http://
bioinformatics.psb.ugent.be/webtools/Venn/) was used
to compare and analyze the results of the intersection
analysis. Based on the intersection of datasets, the final
DEGs were obtained. In this study, we selected DEGs ac-
cording to the intersection of at least two expression
profile datasets to avoid the disadvantages of a single
dataset and then integrated the results for further bio-
logical function analysis.

Functions and pathways of DEGs

DAVID Bioinformatics Resources 6.8 was utilized to distin-
guish and enrich the biological attributes, such as biological
processes, cellular components, molecular functions and
pathways, of important DEGs [8] (https://david.ncifcrf.gov/).
Moreover, Kyoto Encyclopedia of Genes and Genomes
(KEGQ) pathway [9] and Gene Ontology (GO) enrichment
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analyses were used to identify the significant pathways. P <
0.05 was set as the cutoff criterion for significant enrichment.

Enrichment analysis of key pathways and core genes
Gene set enrichment analysis (GSEA) was used to deter-
mine the key pathways and core genes during the develop-
ment of cervical cancer [10, 11]. Enrichment analyses
were conducted to determine whether a series of a priori-
defined biological processes were enriched. The enriched
pathways were arranged in the order of their normalized
enrichment scores, and those with P<0.01 were chosen
for further analysis. The results of the GSEA of different
expression profile datasets were intersected to obtain the
common significant KEGG pathways, and core gene sets
were analyzed.

Construction of the PPI network

The STRING database is an online search tool used to
analyze known proteins and predict PPI networks, in-
cluding direct and indirect interactions between proteins
and their functional correlations [12] (https://string-db.
org/). Molecular interactions and PPI networks can pro-
mote the exploration of molecular targets, signaling and
metabolic pathways, and network functions involved in
the progression of cervical lesions. Therefore, the STRI
NG database was used to construct the PPI network.

Critical subnetworks and hub genes

Hub genes play an important role in biological pro-
cesses. Based on the PPI network, hub genes were
screened according to network topology. Cytoscape soft-
ware (version 3.8.2, cytoHubba and MCODE plug-ins)
was used to discover the key targets or subnetworks of
complex networks [13-15]. The critical subnetworks
and hub genes during the development of cervical can-
cer were analyzed.

Expression and prognostic value of hub genes

As cervical cancer is a complex disease, its etiopathogen-
esis involves compound gene expression and multiple in-
teractions. GEPIA2 (http://gepia2.cancer-pku.cn/) was
used to analyze the expression of multiple hub genes
and the prognostic value of the selected hub genes in
CESC [16]. GEPIA2 can be used to perform principal
component analysis (PCA) of genes and presents results
as 2D plots. To evaluate the potential clinical value of
hub genes more comprehensively, PCA dimensionality
reduction was performed. Multiple gene comparison in
different cancer species also provided a reference for the
prognostic evaluation of different genes in cervical le-
sions. Moreover, the functional enrichment of prognos-
tic genes was demonstrated.
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Results

Identification of DEGs

Volcano plots (Fig. 2) showed the correlation of all
DEGs from the three expression profiling microarrays.
After comprehensive analysis and screening with the
Venn diagram tool (Fig. 3), 63 upregulated genes were
identified in the N-CIN group, and CDKN2A [17, 18]
was shared among the three datasets. Among the 56
downregulated genes, EMPI, CRISP2, ALOX12, DMKN,
ZBED2, PPPIR3C, CDA and CRCT1 were shared among
the three datasets. There were 83 upregulated genes and
7 downregulated genes in the CIN-CC group. Further-
more, 155 upregulated genes in the N-CC group, includ-
ing TCAM1P, MCM2, HS6ST2, AIM2, CDKN2A, RFC4,
PLOD2, APOCI and CENPF [19], were shared among
the three datasets. Among the 208 downregulated genes,
51 were shared among the three datasets: TMPRSSI11B,
BBOX1, ZSCAN18, ENDOU, KLKS8, ANKRD35, A2ML1,
CRYAB, MAL, VSIG10L, ECM1, SPINKS, TM7SF2, SPIN
K7, PRSS27, RBP7, PRSS3, ACPP, HPGD, CWH43,
RHCG, SCEL, TPS53I3, SPRR2C, CRABP2, HCG22,
DMKN, PRSS2, CLIC3, SPNS2, LCE3D, FUT3, RDH12,
CRNN, CEACAM?7, LYNX1, MYZAP, KRTDAP, NDRG4,
SLC5A1, GPX3, PPP1R3C, SLURPI1, SLC24A3, THSD4,
PSCA, CDA, FAM3D, CFD, HOPX, and CRCT1. Finally,
after deletion of duplicate genes, a total of 476 DEGs
were screened (|log2-fold change|>1 and adj. P < 0.05):
253 genes with upregulated expression and 223 genes
with downregulated expression.

GO and KEGG pathway enrichment analyses

A total of 476 DEGs were uploaded to DAVID for GO/
KEGG analyses. The terms of each GO category are pro-
vided in Additional file 1: Table S1, Table S2 and Table
S3. Most DEGs were enriched in the biological processes
keratinization, epidermis development, DNA replication,
mitotic division, cell cycle, proteolysis, regulation of cell
proliferation, cell cycle, and related activity of enzymes;
the cellular components extracellular space, cornified
envelope, extracellular exosome, and extracellular re-
gion; and the molecular functions serine-type endopep-
tidase activity, serine-type peptidase activity, structural
molecule activity, cysteine-type and endopeptidase in-
hibitor activity. The results of KEGG pathway enrich-
ment are shown in Table 1.

GSEA enrichment of expression datasets

Expression datasets (GSE63514, GSE64217 and
GSE138080) were subjected to GSEA (version 4.1.0).
Then, key pathways and core related genes were ob-
tained. The results showed 5 common KEGG pathways
in the N-CIN group (p <0.01), namely, DNA mismatch
repair (PCNA [20], EXOI [21], POLD1, MSH6, and
LIGI), the cell cycle (MCM3, MCMS5 [22], CDCe,
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Fig. 2 Correlations of all DEGs from three different expression profiling microarrays. A ~ C: GSE63514, D ~ F: GSE64217, G ~ I: GSE138080

MCMe6 [23], CHEK2, PKMYTI1, CDC7, RBL1, WEEI,
CCNA2 [24], and TTK), DNA replication (PCNA,
POLD1, DNA2, MCM3, MCMS5, PRIM?2, POLE2, MCMe,
LIGI, RNAEH2A, and PRIMI), cysteine and methionine
metabolism (LDHC), and nucleoside exception repair
(PCNA, POLDI1, POLE2, and LIGI). In addition, there
were 6 common KEGG pathways in the CIN-CC group
(p <0.01), namely, the adipocytokine signaling pathway,
small cell lung cancer (ITGA6 [25], PIAS3, and LAMC?2
[26]), pathways in cancer, the Toll-like receptor signaling
pathway, graft versus host disease, and the TGF-beta sig-
naling pathway [27]. There were 9 common KEGG path-
ways in the N-CC group (p < 0.01), namely, the cell cycle
(PCNA, CDC25B, MCM3, MCMS, CDC6 [28], GSK3B,
MCMe6, CHEK2, PKMYTI, CDC20 [29], PTTGI,
SMAD3, CCNB1 [30], RBL1, CDC7 [23], WEE1, CDK2
[31], CCNA2, and TTK), nucleotide excision repair, the
Toll-like receptor signaling pathway, prion diseases,

spliceosome, DNA replication, proteasome, colorectal
cancer, and pancreatic cancer. Moreover, GSEA showed
that DNA mismatch repair (N-CIN), small cell lung can-
cer (CIN-CC), and the cell cycle (N-CC) were the most
significantly enriched pathways (2<0.01, FDR <0.05),
and snapshots of the enrichment analysis are shown in
Figs. 4, 5 and 6.

PPI network construction and hub genes of cervical
lesions

A total of 476 DEGs were uploaded to the STRING
database to construct the PPI network (minimum re-
quired interaction score: highest confidence 0.900, k-
means clustering: number of clusters 3). The PPI net-
work is shown in Fig. 7. There were 415 nodes and 931
edges in the network (PPI enrichment P < 1.0E-16). The
functional enrichment analysis in the PPI network in-
cluded 387 GO terms, 5 KEGG pathways, 64 Reactome
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pathways, and 111 protein domains. Significantly
enriched functions of the network are shown in Fig. 8.
According to these results, most of the proteins were
distributed among the following aspects: polymorphism,
glycoprotein, signal, disease, disabled bond, and secreted.
These genes express proteins and then interact function-
ally in the PPI network, revealing their role in the pro-
gression of cervical cancer.

On the basis of the PPI network, the critical subnet-
works were extracted with Cytoscape software. The

Table 1 KEGG pathway enrichment analysis of DEGs (DAVID)

Term

Count P-value

hsa04110: Cell cycle 14 7.05E-07
hsa03030: DNA replication 7 5.88E-05
hsa05323: Rheumatoid arthritis 8 0.001555896
hsa04115: p53 signaling pathway 7 0.001840686
hsa05219: Bladder cancer 5 0.007981073
hsa04610: Complement and coagulation cascades 6 0.01080063
hsa05146: Amoebiasis 7 0.017024795
hsa04060: Cytokine-cytokine receptor interaction 11 0.019861501
hsa04114: Oocyte meiosis 7 0.020898334
hsa00590: Arachidonic acid metabolism 5 0.030571729

critical subnetworks and hub genes of the cervical le-
sions are shown in Fig. 9. The results showed that the
hub genes constituted the key network of cervical car-
cinogenesis, and the genes were scored with the cyto-
Hubba plug-in. Among the results of different
algorithms, the common hub genes with high scoring
were as follows: NUSAPI, TOP2A, KIF2C, NDCS80,
ASPM, KIF20A, CDK1, KIF11, BIRC5, MCM2, and
CHEKI. Then, the MCODE plug-in was also used to
analyze the PPI network, and 12 regions (subnetworks)
closely related to the PPI network were found and sepa-
rated. These regions might represent the molecular com-
plex, and the results from the MCODE analysis included
these high scoring hub genes and supported the results
of the regional analysis (Table 2). These genes mainly af-
fected cell division, the cell cycle, keratinocyte differenti-
ation [32], DNA replication, mismatch repair, nucleoside
exception repair, cytokine—cytokine receptor interaction,
the chemokine signaling pathway and arachidonic acid
metabolism during the progression of cervical cancer.

Expression and prognostic value of hub genes

GEPIA2 analysis showed that these hub genes were
highly expressed in CESC tissues but weakly expressed
in normal tissues (Fig. 10). Furthermore, to obtain more
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comprehensive prognostic information, hub genes from
12 subnetworks (Table 2) were subjected to survival ana-
lysis. Overall survival analysis by GEPIA2 indicated that
the high expression of MCM2, TOP2A, BLM, RMI2 [33],
EXOI, RFC4, PSCA, KNTCI, CDC45 and GINS2 [34] in
cervical lesions was correlated with an improved prognosis
(Fig. 11). However, the high expression of CXCL8 [35],
TNFAIP6, CXCLS and CDA in cervical cancer tissues was
associated with a poor patient prognosis (Fig. 12).

The tissue-specific expression of the hub genes in dif-
ferent cancer types is shown in Fig. 13 as an interactive
heat map. A heat map was used to analyze the expres-
sion of the target genes in different tumor samples.
Compared with other genes, MCM?2, TOP2A, CDC45,
KNTCI, RFC4 and RMI2 were highly expressed in CESC
tumor tissues and might be better indicators of progno-
sis. PPI modeling (STRING) and enrichment analysis
were performed on 14 target genes (Fig. 14). Gene func-
tions according to the summaries of the Gene database
(NCBI) are shown in Table 3. These findings might pro-
vide target genes for the prognosis and treatment of cer-
vical cancer.

Discussion

Cervical cancer is one of the most common cancers
among women worldwide. After persistent infection with
high-risk HPV, the progression of inflammation to CIN
to cancer often takes a long time. CIN is an important
precancerous lesion of cervical cancer. At present, the
prevention of cervical cancer depends mainly on HPV
vaccines and HPV screening. Therefore, we need to not
only prevent and monitor the development from normal
cervical tissue or cells to CIN but also treat and block
the development from CIN to cancer. Based on the ana-
lysis of multiple datasets, this study deepened our under-
standing of the molecular mechanism of cervical
carcinogenesis and identified key prognostic genes. Po-
tential biomarkers and target genes can be used to diag-
nose progressive disease before it leads to cancer.

In the present study, three expression profile datasets
(GSE63514, GSE63217 and GSE138080) were downloaded
from the GEO database. According to the develop-
ment of cervical cancer, the samples were divided
into three groups: N-CIN, CIN-CC and N-CC. Inter-
section analysis of these groups made the screening

-
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and validation of DEGs more reliable. A total of 476
DEGs were screened: 253 upregulated genes and 223
downregulated genes. These genes also regulate a
number of biological pathways in the progression of
cervical lesions, such as the cell cycle, DNA replica-
tion, rheumatoid arthritis, the p53 signaling pathway,
bladder cancer, complement and coagulation cascades,
amoebiasis, cytokine-cytokine receptor interaction, oo-
cyte meiosis, and arachidonic acid metabolism. These
pathways need to be further studied.

Furthermore, GSEA suggested that the DNA mis-
match repair pathway plays an important role in the
N-CIN process. Most importantly, the small cell lung
cancer pathway might play an important role in the
CIN-CC process. The cell cycle pathway might play
an important role in the N-CC process. These results
provide a better understanding of the molecular path-
ways associated with the development of the disease
from normal cervical epithelium to CIN to cervical
cancer. In the N-CIN stage, the enriched molecular
pathways were DNA replication, nucleoside exception
repair, DNA mismatch repair and specific amino acid
metabolism (cysteine and methionine). With the de-
velopment of cervical epithelial neoplasia, the
enriched molecular pathways in the CIN-CC stage
were small cell lung cancer, the adipocytokine signal-
ing pathway, pathways in cancer, the Toll-like recep-
tor signaling pathway, graft versus host disease and
the TGF-beta signaling pathway, which play important
roles in the occurrence and development of cancer.
In the whole process of cervical lesions, we may need
to pay close attention to pathways such as the cell
cycle, DNA replication, DNA repair and pathways in
cancer. Our results indicate the importance of these
pathways in the occurrence and development of cer-
vical cancer. We need to pay attention to the roles of
these pathways in cervical carcinogenesis and further
study their interactions.

Notably, the PPI network related to cervical lesions was
composed of functional proteins that interacted with each
other to participate in biological signal transmission, gene
expression regulation, energy and material metabolism,
cell cycle regulation and cell division. Eleven genes were
identified as hub genes from 12 critical subnetworks of
cervical cancer. Critical subnetworks might strongly con-
tribute to the occurrence and development of cervical
cancer and have high diagnostic value. Further analysis
showed that NUSAPI [36], TOP2A, KIF2C [37], NDC80
[23], ASPM [21, 38], KIF20A [39], CDK1 [19, 38], KIF11
[40, 41], BIRCS [42], MCM2 and CHEK1 [40, 41, 43] were
high scoring hub genes and showed significantly upregu-
lated expression in cervical cancer tissues compared with
normal tissues (P<0.01). By analyzing the prognostic
values of the hub genes from the 12 subnetworks, a total
of 14 potential molecular targets (MCM2 [23, 35, 44—46],
TOP2A [19, 35, 40], BLM, RMI2, EXOI, RFC4, PSCA,
KNTCI, CDC45, GINS2, CXCL8, TNFAIP6, CXCL5, and
CDA) were obtained and annotated.

These 23 key regulatory genes were enriched in differ-
ent pathways, such as the cell cycle and mismatch repair,
and play important roles in the occurrence and develop-
ment of diseases. Our DAVID analysis showed that
CDK1, CHEKI1, MCM2 and CDC45 were involved in the
cell cycle pathway. We found that the cell cycle pathway
was very important to the progression of cervical cancer,
which is worthy of further research. Mine KL et al. [47]
proved that the cell cycle may be the main driving factor
of cervical cancer. Van Dam et al. [48] showed that de-
regulation of the cell cycle is a major component of cer-
vical cancer biology. Y Luo et al. [49] showed that CDK1
might play an important role in regulating the genetic
network related to the occurrence, development and me-
tastasis of cervical cancer. Relevant studies also showed
that the progression of cervical cancer can be affected by
regulating the cell cycle, which highlights the biological
significance of the cell cycle in cervical cancer [50-53].
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In addition, Liang Zhao et al. [43] revealed that the im-
balance of CHEK1 and CDKN2A further promoted the
proliferation of cancer cells by affecting the response of
cell cycle checkpoints to DNA damage. Therefore, fur-
ther research on the cell cycle and its related genes is of
great significance. Moreover, we found that CDKI and
CHEK]1 were involved in the p53 signaling pathway. The
p53 signaling pathway is involved in the proliferation
and apoptosis of cervical cancer cells and has high prog-
nostic value.

The DNA replication pathway was also very import-
ant in the progression of cervical cancer in this study.
Mitali Das et al. [54] showed that MCM2-7 was sig-
nificantly enriched in DNA replication, and high
MCM2-7 expression promoted the malignant

proliferation of cervical cancer cells. MCM2 was stud-
ied in a variety of human malignant tumors and was
related to the histopathological grade of many [55—
58]. Zheng ] et al. [59] showed the diagnostic value
of MCM2 immunocytochemical staining in cervical
lesions and its relationship with HPV infection. The
expression of RFC4 may also be associated with
tumor progression and poor patient survival and is
considered to be one of the main driving factors of
the cervical cancer cell cycle network [47]. Dan Liu
et al. [60] showed that RFC4 was related to DNA rep-
lication and cell proliferation in cervical cancer. The
abnormal expression of RFC4 might be related to the
progression of cervical cancer [61]. Similarly, our re-
sults indicated that MCM2 and RFC4 play an
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important role in the DNA replication pathway. In
particular, CXCL8 and CXCL5 were important regula-
tory genes in our study. They are involved in rheuma-
toid arthritis and the cytokine—cytokine receptor
interaction pathway in cervical carcinogenesis. CXCL8
was also associated with amoebiasis and the bladder
cancer pathway. Ruiling Yan et al. [62] studied the
clinical and prognostic value of CXCL8 in patients
with cervical cancer. The abnormal expression of
CXCLS5 contributes to the tumorigenicity of cervical
cancer [63]. Our results also showed that RFC4 and
EXOI are involved in DNA mismatch repair and are
very important to cervical lesions.

However, due to the complexity of cervical cancer,
its molecular mechanism needs to be further studied,
and key regulatory genes and pathways will be con-
tinuously understood. We can track the influence of
some key regulatory genes in cervical cancer through
related research. For example, Beiwei Yu et al. [64]
showed that TOP2A and CENPF are synergic master
regulators that are activated in cancer. Jinhui Liu
et al. [33] showed that RMI2 was a novel key gene
in CESC. Huan Chen et al. [65] showed that the
KNTCI gene may be related to the pathophysiology
of cervical cancer and may be one of the markers

Fig. 9 Discovering high scoring hub genes in cervical cancer development (cytoHubba). Topological analysis: (A) MCC, (B) DMNC, (C€) MNC, (D)
Degree, (E) EPC, (F) Bottleneck, (G) Eccentricity, (H) Closeness, (I) Radiality, J) Betweenness, (K) Stress, and (I) Clustering Coefficient
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Table 2 Discovering regions closely related to the PPI network (MCODE)

Cluster Score Nodes Edges Genes

(Density*#Nodes)

1 21478 24 247 TOP2A, KIF15, PRC1, SPAGS, KIF11, BIRCS, KIF23, MELK, DLGAPS, KIF2C, NUF2, MKI67, CENPE, NDC80, NEK2,
AURKA, ASPM, CENPF, KIF20A, CDK1, TTK, CEP55, NUSAPI, KIF4A

2 16625 17 133 RPTN, SPRR1B, SPRR2E, SPRR2D, LCE3D, DSC2, SPRR2B, DSG1, PI3, TGM1, CSTA, IVL, LOR, FLG, SPRR3,
SPRR1A, PPL

3 9.1M 10 41 CHEKT, MCM4, CDC45, MCM10, PRIM1, CDC7, CDT1, CDK2, POLE2, MCM8

4 8 8 28 CRISP3, PRSS3, HP, LRG1, CSTB, TCN1, TNFAIP6, CDA

5 6 6 15 SGOL2, CENPN, CASC5, CENPK, CDCA5, KNTCT

6 6 6 15 KRT78, KRT2, KRT13, KRT1, KRT16, KRT4

7 6 6 15 CXCR2, CXCR4, CXCLY, CXCL5, CXCL8, CXCL10

8 6 6 15 LY6G6C, CEACAMY, PSCA, CEACAMS, LYPD3, LY6D

9 4 4 6 RFC4, EXO1, TIPIN, RFC3

10 4 4 6 PRSS3P2, SERPINB3, FABPS5, ST00A7

1 3429 8 12 DNA2, WDHDI, GINS2, DTL, RMI2, CDC6, BLM, MCM2

12 3 3 3 ALOX12B, ALOX12, ALOX15B

for the early diagnosis of cervical precancerous le-
sions. The abnormal expression of GINS2 can inhibit
cell proliferation and tumorigenicity, as well as cell
migration and invasion [66]. KIF20A expression is
related to the overall survival rate of patients with
early CESC and its progression [67]. At present, re-
search on these key regulatory genes and related
molecular pathways is lacking. The interactions of

cervical cancer still need attention, research and
verification.

Gene bioinformatics can provide a possible molecu-
lar targeting mechanism for the prevention and treat-
ment of cervical diseases. Functional studies of
candidate genes from public databases may lead to a
better understanding of the development of cervical

cancer. We divided the expression datasets into three
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Fig. 11 The expression of MCM2, TOP2A,
patients with CESC
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CDC45 and GINS2 was significantly related to the overall survival of

lesions to comprehensively investigate the progression
of cervical cancer. Intersection analysis of multiple ex-
pression profiles avoids the limitation of a single data-
set and has repeatability and reliability. However, the
limitation of this study was that the datasets were ob-
tained from three different chip platforms, and as

there were differences in data quality, the results were
easily affected, resulting in bias. Our results may pro-
vide effective targets for the treatment of cervical can-
cer, but the effect on prognosis requires follow-up
data, and further studies are needed to explore these
key genes and important pathways.
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Table 3 Functional analysis of possible prognostic genes for the progression of cervical cancer

Gene  Function

MCM2  Minichromosome maintenance complex component 2. MCM2 is involved in the initiation of eukaryotic genome replication. It may be
involved in the formation of replication forks and in the recruitment of other DNA replication-related proteins, and it regulates the helicase
activity of the complex.

TOP2A  DNA topoisomerase Il a. These findings might provide target genes for the prognosis and treatment of cervical carcinoma. TOP2A controls
and alters the topologic state of DNA during transcription. This nuclear enzyme is involved in processes such as chromosome condensation,
chromatid separation, and the relief of torsional stress that occurs during DNA transcription and replication.

BLM BLM RecQ-like helicase. This Bloom-associated helicase unwinds a variety of DNA substrates including Holliday junctions and is involved in
several pathways contributing to the maintenance of genome stability.

RMI2 RecQ-mediated genome instability 2. RMI2 plays a role in homologous recombination-dependent DNA repair and is essential for genome
stability.

EXO1 Exonuclease 1. EXO1, with 5" to 3" exonuclease activity as well as RNase H activity, interacts with Msh2, which is involved in mismatch repair
and recombination.

RFC4  Replication factor C subunit 4. The elongation of primed DNA templates by DNA polymerase delta and DNA polymerase epsilon requires
the accessory proteins proliferating cell nuclear antigen (PCNA) and replication factor C (RFC).

PSCA  Prostate stem cell antigen. PSCA is highly expressed in the prostate and also expressed in the bladder, placenta, colon, kidney, and stomach.
This gene is upregulated in a large proportion of prostate cancers and is also detected in cancers of the bladder and pancreas.

KNTCT  Kinetochore-associated 1. KNTC1 ensures proper chromosome segregation during cell division.

CDC45  Cell division cycle 45. CDC45, an essential protein required for the initiation of DNA replication, is important for the early steps of DNA
replication in eukaryotes.

GINS2  GINS complex subunit 2. The GINS complex is essential for the initiation of DNA replication.

CXCL8  C-X-C motif chemokine ligand 8. CXC is a major mediator of the inflammatory response. This protein is also secreted by tumor cells and
promotes tumor migration, invasion, angiogenesis and metastasis. This chemokine is also a potent angiogenic factor.

TNFA  TNF alpha-induced protein 6. TNFAIP6 is a member of the hyaluronan-binding protein family. Its hyaluronan-binding domain is involved in

IP6 extracellular matrix stability and cell migration. This protein is important in the protease network associated with inflammation.

CXCL5  C-X-C motif chemokine ligand 5. Chemokines, which recruit and activate leukocytes, promote angiogenesis and remodel connective tissues.
It plays a role in cancer cell proliferation, migration, and invasion.

CDA Cytidine deaminase. CDA is one of several deaminases responsible for maintaining the cellular pyrimidine pool.

Conclusions

In conclusion, a comprehensive bioinformatics analysis
of DEGs and pathways involved in the occurrence and
development of cervical lesions was performed, and we
explored and obtained key regulatory genes and path-
ways contributing to the progression of cervical cancer
to improve prognosis. Moreover, these results may pro-
mote the understanding of molecular mechanisms and
clinically related molecular targets for prognosis in cer-
vical cancer and provide new insight into the occurrence
and development of cervical cancer.
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