
Artificial Intelligence

Deep Learning-Based System for Disease Screening and
Pathologic Region Detection From Optical Coherence
Tomography Images

Xiaoming Chen1,2,*, Ying Xue3,*, XiaoyanWu3, Yi Zhong2,4, Huiying Rao3,
Heng Luo2,4,5, and ZuquanWeng2,4

1 College of Mathematics and Computer Science, Fuzhou University, Fujian province, China
2 The Centre for Big Data Research in Burns and Trauma, College of Mathematics and Computer Science, Fuzhou University, Fujian
province, China
3 Department of Ophthalmology, Fujian Provincial Hospital, Fuzhou, China
4 College of Biological Science and Engineering, Fuzhou University, Fujian province, China
5 MetaNovas Biotech Inc., Foster City, CA, USA

Correspondence: Heng Luo,
MetaNovas Biotech Inc., Foster City,
CA, USA. e-mail:
hengluo88@gmail.com
Zuquan Weng, College of Biological
Science and Engineering, Fuzhou
University, Fujian province, China.
e-mail wengzq@fzu.edu.cn

Received: June 22, 2022
Accepted: November 29, 2022
Published: January 30, 2023

Keywords: deep learning; optical
coherence tomography; image
classification; object detection;
ensemble learning

Citation: Chen X, Xue Y, Wu X, Zhong
Y, Rao H, Luo H, Weng Z. Deep
learning-based system for disease
screening and pathologic region
detection from optical coherence
tomography images. Transl Vis Sci
Technol. 2023;12(1):29,
https://doi.org/10.1167/tvst.12.1.29

Purpose: This study was designed to apply deep learning models in retinal disease
screening and lesion detection based on optical coherence tomography (OCT) images.

Methods:We collected 37,138 OCT images from 775 patients and labelled by ophthal-
mologists. Multiple deep learning models including ResNet50 and YOLOv3 were devel-
oped to identify the types and locations of diseases or lesions based on the images.

Results: The model were evaluated using patient-based independent holdout set. For
binary classification of OCT images with or without lesions, the performance accuracy
was 98.5%, sensitivity was 98.7%, specificity was 98.4%, and the F1 score was 97.7%. For
multiclass multilabel disease classification, the models was able to detect vitreomac-
ular traction syndrome and age-related macular degeneration both with an accuracy
of more than 99%, sensitivity of more than 98%, specificity of more than 98%, and an
F1 score of more than 97%. For lesion location detection, the recalls for different lesion
types ranged from 87.0% (epiretinal membrane) to 98.2% (macular pucker).

Conclusions:Deep learning-basedmodels have potentials to aid retinal disease screen-
ing, classification and diagnosis with excellent performance, which may serve as useful
references for ophthalmologists.

Translational Relevance: The deep learning-based models are capable of identify-
ing and predicting different eye diseases and lesions from OCT images and may have
potential clinical application to assist the ophthalmologists for fast and accuracy retinal
disease screening.

Introduction

As of 2019, more than 2.2 billion people’s lives
were impacted by vision impairment, and one-half of
these vision problems could be prevented or cured with
proper treatment.1 Retinal diseases without treatments
may lead to vision loss and a quality decrease in the

patients’ lives, because the retina is an important part
of the visual system.2

Optical coherence tomography (OCT)3 is a useful
technology that can help ophthalmologists to assess the
retinal health conditions of patient.4–6 OCT generates
series of cross-sectional two-dimensional images (B-
scans), which can be used to examine structural details
and pathological changes on different retinal layers.7
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Despite the usefulness, retinal lesions on each B-scan
must be manually identified, which requires special-
ized expertise and time. Additionally, the diagno-
sis results are subject to individual ophthalmologist’s
experiences and may not be unanimous. In contrast,
an automated disease screening system may have the
potential to provide fast, consistent, and accurate
results for diagnosis. Therefore, in this study, we aimed
to develop an artificial intelligence system based on
OCT images to aid the ophthalmologists for retinal
disease screening.

In recent years, deep learning technology has
substantial development and applications in the field
of medical imaging. Deep learning8 uses multilayer
neural networks including convolutional layers to
gain high accuracy and powerful learning perfor-
mance in image classification.9 Many neural networks
were developed to assess the histopathological images
of breast cancer,10 malignant mesothelioma,11 and
coronary artery fibrous plaque detection.12 For OCT
images, deep learning models have also been studied,
especially in the field of macular vision function.
For example, Lee et al.13 combined OCT images and
electronic medical records to predict the occurrence
of macular lesions in OCT images. Hwang et al.14
constructed a deep learning model to predict outcomes
and suggest further treatments for age-related macular
degeneration (AMD), a specific type of disease of the
macula. In addition to image classification, deep learn-
ing models were also developed for contour detection
and layer segmentation of OCT images. For example,
Orlando et al.15 used a segmentation model to identify
photoreceptor alteration in macular diseases. Recently,
researchers developedmodels that can both classify the
diseases and highlight the lesion areas on the images.
For example, Fang et al.16 designed the Lesion-Aware
network, a neural network with attention modules to
classify and highlight macular lesions. Although recent
developments turned the spotlight on the automatic
diagnosis of various eye conditions with improved
performance, the majority of studies only focused on
disease classification without highlighting the lesion
regions fromOCT images, whichmay not provide suffi-
cient information for diagnosis. In contrast, the inter-
pretability of deep learning model is also important
for ophthalmologists to exam and affirm the predic-
tion results. Although some studies used class activa-
tion map (CAM)-based technology17 to visualize the
model attention, this method does not classify or label
different lesion types if they coexist on the same image.
To help with clinical diagnosis, a better way to interpret
the prediction results via highlighting the lesion regions
along with type classification is preferred.

To solve these problems, in this study, we harvested
OCT images and labelled them using 10 different lesion

types belonging to two disease categories. An intelli-
gent system was developed to classify retinal diseases
and detect the lesion types and regions. For better
prediction performance, we used transfer learning and
ensemble learning techniques to develop deep learning
models. Transfer learning18 applies knowledge learned
in relevant tasks in novel domains with better perfor-
mance and fewer required data points. One important
benefit of using transfer learning is to enable the model
development based on a limited number of samples.
Ensemble learning19 combines multiple classifiers to
achieve better performance than a single classifier, by
integrating prediction results from individualmodels to
vote for a final prediction. Because an individual model
may be biased and have its own learning limitation,
the combination of models can decrease the chance
of errors and improve the generalization ability and
accuracy of the final prediction.20 Furthermore, we
also developed an object detection model based on
YOLOv321 to predict the lesion types and locations.
We believe this study provides a comprehensive assess-
ment of prediction and detection for eye diseases using
different models based on OCT images.

Materials and Methods

This study was approved by the Ethics Commit-
tee of the Fujian Provincial Hospital, Fuzhou, Fujian,
China (K2019-05-035).

Data Source

The overall workflow of this study is shown
in Figure 1. We obtained 37,620 OCT B-scan images
from Fujian Provincial Hospital between September
2017 and April 2019. There were 482 images (1.3%)
with unclear retinal structures owing to poor quality
that were excluded, which decreased the sample size
to 37,138 images (775 patients). All OCT images were
harvested using the SPECTRALIS system (Heidelberg
Engineering, Heidelberg, Germany) and exported in a
PNG format with 768 × 496 resolution.

Image Labeling and Training

Patient identification information on the OCT
images was removed before the image labeling process.
Then all OCT scans were diagnosed by two certi-
fied ophthalmologists in an internally developed web
application. If there was any disagreement on the
image label between the two, the image was sent to a
senior ophthalmologist to finalize the diagnosis. When
an OCT B-scan image contained retinal pathological
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Figure 1. The flowchart of OCT image filtering, processing and separation for model development and test.

lesions, the ophthalmologists labelled both the type and
location of the lesion on this B-scan with a rectangle
box. Note that an OCT image may contain multiple
types of retinal lesions (multiple labels) or no lesion at
all (healthy control). We labelled 10 lesion types corre-
sponding to two disease categories: (1) vitreomacu-
lar traction syndrome,22 including lesions of cystoid
macular edema, epiretinal membrane, full-thickness
retinal eminence, macular pucker, and retinal thick-
ness increased by detachment; and (2) AMD,23 includ-
ing lesions of atrophy of outer retina, choroid and
retinal neovascularization, hemorrhage and exudation,
pigment epithelial detachment, and retinal thickness
increased by edema.

To create an independent test set for model evalu-
ation, we randomly held out all images from 10%
patients, which resulted in 3126 images from 77 patients

(41.2% of these images were labeled with lesions). The
rest images from the remaining 90% patients were
randomly divided into training and validation sets
using a 4:1 ratio. The training and validation sets were
used to train and fine tune themodels, and the indepen-
dent test set was used to evaluate the model perfor-
mance. Because the individual patients in the indepen-
dent test set were different from those in the training or
validation set, there was no information leakage when
assessing the model performance on the independent
test set.

Development of the Intelligent System

In this study, we developed an intelligent system that
included three deep learning modules (Fig. 2). The first
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Figure 2. The overall framework of our deep learning-based system. It contains threemodules: the ensemble binary classificationmodule
visualized by Grad-CAM, the disease classification module, and the pathology detection module.

part is an ensemble deep learning module of binary
classifiers to identify OCT images as normal (healthy)
versus abnormal (disease). The binary classifiers are
five convolutional neural network–based deep learn-
ing models, namely, AlexNet,24 DenseNet,25 Incep-
tionV3,26 ResNet50,27 and VGG16.28 These deep
learning classifiers include deep convolutional layers,
pooling layers29 (feature dimensionality reducer), and
other functional parts such as dropout30 and batch
normalization31 to extract and process complicated
features from the image. Each of the classifiers was
initiated with pretrained weights trained on ImageNet
and then trained on our own data as a process of
transfer learning, which enabled us to train the models
on our dataset of a limited size. Ensemble learning
was used to integrate all results from five models to
vote for a final prediction to improve the generaliza-
tion ability and prediction accuracy.20 To visualize and
explain these models, Grad-CAM32 was used to gener-
ate CAMs for the test images, which highlighted the

regions from the inputs that were important for the
models to make predictions.

Because the binary classification module does not
tell which disease or where lesion locates on an image,
we further developed a multiclass multilabel disease
classificationmodule and a pathological location detec-
tionmodule. All OCT images identified as abnormal by
the ensemble binary classification model were analyzed
by the disease classification module to identify if
they belong to any of the two disease categories,
namely, vitreomacular traction syndrome and AMD.
The disease classification module was developed based
on ResNet50 model and trained using transfer learn-
ing like before. Furthermore, two YOLOv3 models21
were developed for pathological location detection to
identify the lesion types for vitreomacular traction
syndrome and AMD, respectively. YOLOv3 consists
of an image feature extraction module, DarkNet53,
to extract feature maps and a detection module to
locate the target object on the image. In this study, we
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adopted the pretrained weights of DarkNet53 trained
from ImageNet and trained the detection module with
COCO dataset and adapt it on our own data. One
image may contain more than one disease or pathol-
ogy type, and the disease classification and pathologi-
cal location detection modules were both designed for
multiclass multilabel prediction (labels not exclusive).
After the final prediction, all results generated by three
different modules were combined for comprehensive
image diagnoses.

We trained our deep learning models based on
PyTorch platform and a server with two Intel Xeon
Gold 6140 2.30GHz CPUs and four GeForce RTX
2080 Ti graphic cards. The learning rate was set to
0.001, the momentum was set to 0.9 and the batch size
was set to 16. We applied early stopping to supervise
model training and avoid overfitting.

Performance Evaluation

The prediction performance of the classifiers was
evaluated using several different metrics including
accuracy, sensitivity, specificity, F1 score and the
area under the receiver operating characteristic curve.
Additionally, the confusion matrices were provided as
references. The pathological location detection module
was assessed using recall and precision.

Results

The statistics of the patient demographics and labels
of diseases and lesion types were listed in Table 1. Of all
37,138 OCT images from 775 patients, 13,106 images
(35.3%) from 370 patients (47.7%) were labelled with

Table 1. Statistics of the OCT Image Data

Type Development Dataset Independent Test Set Total

Patient information
Patients 698 77 775
Female (%) 401 (57.4) 40 (51.9) 441 (56.9)
Images 34,012 3126 37,138
Labels 38,505 3272 41,777

Label information
Vitreomacular traction syndrome

Macular pucker (%) 6434 (16.8) 546 (15.2) 6980 (16.7)
Retinal thickness increased by detachment (%) 1262 (3.3) 22 (0.6) 1284 (3.1)
Epiretinal membrane (%) 498 (1.3) 23 (0.6) 521 (1.2)
Full-thickness retinal eminence (%) 495 (1.3) 74 (2.1) 569 (1.4)
Cystoid macular edema (%) 426 (1.1) 88 (2.5) 514 (1.2)

AMD
Hemorrhage and exudation (%) 3283 (8.6) 154 (4.3) 3437 (8.2)
Retinal thickness increased by edema (%) 2067 (5.4) 74 (2.1) 2141 (5.1)
Choroid and retinal neovascularization (%) 1261 (3.3) 33 (1.0) 1294 (3.1)
Pigment epithelial detachment (%) 500 (1.3) 102 (2.8) 602 (1.4)
Atrophy of outer retina (%) 354 (0.9) 49 (1.4) 403 (1.0)
Normal (%) 21,925 (57.4) 2107 (58.8) 24,032 (57.5)

Table 2. Performance of the Deep Learning Binary Classifiers on the Independent Test Set

Model No. of Layers Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%) AUC (%)

AlexNet 8 95.6 95.8 95.6 93.5 96.1
VGG16 16 95.9 97.7 95.0 93.9 96.1
InceptionV3 42 94.2 95.6 93.6 91.5 94.8
ResNet50 50 94.2 94.0 94.3 91.3 94.8
DenseNet 62 94.9 97.7 93.5 92.6 95.7
Ensemble model 98.5 98.7 98.4 97.7 98.1

ACU, area under the receiver operating characteristic curve.
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Figure 3. Performance evaluation of the binary classification module. (A) Confusion matrix of the ensemble binary classification module.
(B) Receiver operating characteristic curve of individual classifiers and the ensemble classifier for binary classification.

Figure 4. Example heatmap visualization of OCT images by Grad-CAM. (A) An example of the correct classification and highlight of the
labeled pigment epithelial detachment pathology (PED) in an OCT image. (B) An example showing incorrect classification and prediction
for an OCT image with the macular pucker pathology.
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Figure 5. The confusion matrix of the disease classification
module.

lesions and the rest were normal. The most common
type of lesion, macular pucker, was found 6980 times
(16.7%), and the least common type of lesion, atrophy
of outer retina, was seen 403 times (1.0%).

The performance of the binary classification
module on the independent test set (3126 OCT images
from 77 patients) is shown in Table 2, which separated
disease images from healthy controls. The ensem-
ble model of five models achieved an area under
the receiver operating characteristic curve of 98.1%,
accuracy of 98.5%, sensitivity of 98.7%, specificity of
98.4%, and F1 score of 97.7%, which is better than any
individual model alone for all metrics. The confusion
matrix of the ensemble model and the receiver operat-
ing characteristic curves of all models were presented
in Figure 3. The confusion matrix indicated a total
of 47 incorrect cases of 34 false positives and 13 false
negatives were found among the 3126 predictions. The
13 false negatives included 8 examples of macular
pucker, 2 examples of hemorrhage and exudation, 1
example of cystoid macular edema and 1 example
of pigment epithelial detachment, and 1 example of
retinal thickness increased by edema.

To interpret how the deep learning model make
predictions, Grad-CAM was used to provide visual
explanations for the neural network models. It gener-

Figure6. The confusionmatrix of thepathologydetectionmodule.

ated heatmap to overlay on the OCT image and
highlight spots where the model paid attention. Two
examples of correct and incorrect predictions are
shown in Figure 4. In Figure 4A, the model assigned
higher weights in the correct lesion region on the
OCT image, whereas in Figure 4B the model made
false negative-predictions and Grad-CAM highlighted
regions that were supposed to be healthy and normal.

The confusion matrix and performance metrics for
the disease classification module on the independent
test set are shown in Figure 5 and Table 3, which identi-
fied if the abnormal sample belongs to the disease
category of vitreomacular traction syndrome or AMD.
The prediction performance for vitreomacular traction
syndrome was accuracy of 99.3%, sensitivity of 98.4%,
specificity of 99.5%, and an F1 score of 98.4%; the
detection for AMD obtained an accuracy of 99.5%,
sensitivity of 98.3%, specificity of 98.3%, and F1 score
of 97.9%. The combined accuracy of the binary classi-
fication along with disease classification modules is
98.7%.

Two YOLOv3 models were developed to detect
the pathology types and locations for vitreomacular
traction syndrome and AMD. The confusion matrix
and performance metrics of the pathology detection
on the independent test set were shown in Figure 6

Table 3. Performance of the Disease Classification Module on the Independent Test Set

Vitreomacular Traction Syndrome AMD Findings

Evaluation
Metrics

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

F1-Score
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

F1-Score
(%)

Overall
Accuracy

Performance 99.3 98.4 99.5 98.4 99.5 98.3 99.7 97.9 98.7
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Table 4. Performance of the Pathology Detection Module on the Independent Test Set Evaluated by the
Pathology Level and Patient Level

Pathology Based Patient Based

Pathology
No. of
Labels

Percent/Total
Labels (%)

Recall
(%)

Precision
(%)

No. of
Individuals

Percent/Total
Individuals (%)

Recall
(%)

Vitreomacular traction syndrome
Macular pucker 546 46.9 98.2 98.2 33 42.9 100
Cystoid macular edema 88 8.6 97.7 93.5 7 9.1 100
Full-thickness retinal eminence 74 6.4 95.9 92.2 10 13.0 100
Epiretinal membrane 23 2.0 87.0 67.0 2 2.6 100
Retinal thickness increased by

detachment
22 1.9 90.9 74.1 5 6.5 100

AMD
Retinal thickness increased by

hemorrhage and exudation
154 13.2 97.4 94.3 8 10.4 100

Pigment epithelial detachment 102 8.8 97.1 95.2 10 13.0 100
Retinal thickness increased by

edema
74 6.4 94.6 90.9 2 2.6 100

Atrophy of outer retina 49 4.2 93.9 85.2 4 5.2 100
Choroid and retinal

neovascularization
33 2.8 97.0 80.0 5 6.5 100

and Table 4. High recall values were found for all types
of pathology detections, ranging from 87.0% (epireti-
nal membrane) to 98.2% (macular pucker).

Discussion
Factors such as aging and unhealthy lifestyles

can increase the risks of visual impairment, which
may ultimately cause permanent vision loss and
impact life quality.33 As a result, early detection,
interference, and prevention are critical. However,
owing to insufficient numbers and uneven alloca-
tions of medical resources and ophthalmologists, many
patients with retinal diseases cannot received timely
diagnoses and treatments.34 In recent years, the devel-
opment of deep learning and artificial intelligence may
provide a promising solution. Studies have shown that
artificial intelligence systems have achieved excellent
results in image classification and segmentation.35–37
However, owing to the limited number of high-quality
labelled OCT image data and concerns over prediction
accuracy, artificial intelligence–based diagnosis has not
yet been widely used in the real-world clinical environ-
ment.

In this study, we collected 37,138 OCT images
and labelled them one by one with two disease
categories and 10 types of retinal pathologies. Three

submodules—the ensemble binary classification
module, the disease classification module, and the
pathology detection module—were developed to
identify images of diseases, classify the disease types,
and highlight the types and regions of pathologies.
Because most of our training samples are healthy
controls (64.7% images), we developed this three-
module system instead of a one-step model to mitigate
the impact from the negatives and leverage the advan-
tage of ensemble classification.

In the first binary classification module, the ensem-
ble learning model was used to combine the results
from five individual models. Although requiring more
time for training and a more complicated model archi-
tecture, the ensemble model outperformed all individ-
ual models. It is worth mentioning that the individ-
ual models with fewer layers exhibited a better perfor-
mance than those with more layers. This finding is
expected, because models with greater complexity are
more likely to overfit on a smaller dataset.38,39 To
mitigate this problem, transfer learning and ensem-
ble learning were leveraged to decrease the influ-
ence of overfitting, bring beneficial effects, and obtain
better performance than individual models, as shown
in previous research.40–42 Additionally, the model
attention at the lesion regions was visualized and
highlighted, which provided important references for
the ophthalmologists. The second disease classification
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module classified OCT images into two retinal disease
categories, namely, vitreomacular traction syndrome
and AMD. Although this strategy is a further expan-
sion of prediction details, the model still maintained
high accuracy and relatively balanced false positives
and false negatives. The last pathology detection
module additionally extended the prediction categories
into 10 types of pathologies. Although it was the
most detailed analysis and prediction, owing to the
uneven distributions of pathology types, the perfor-
mance decreased compared with previous modules
and varied across different pathologies. However, its
accuracy was still at a good level, ranging from 87.0%
to 98.2%, which may still have clinical implications.
Our model contained three modules as a multistage
deep learning system, as prediction at each stage could
provide specialized analytical information about the
OCT images. To test if the multistage deep learning
system is better than a single combined model, we
developed a single ResNet50 model for direct disease
classification without the previous binary classifica-
tion module. The results were shown in Supplementary
Table 1 and Supplementary Figure 1, which were worse
compared to Table 3 and Figure 5, respectively. We also
developed a single YOLOv3 model for direct location
detection of 10 retinal pathologies without the previ-
ous classification modules. The performance decreased
as shown in Supplementary Table 2 compared with
Table 4. We believe in our multistage system, each
module was optimized its own specialized task, the
influence of data imbalance was decreased at each step,
and the overall performance was better.

Recent studies using deep learning for retinal disease
diagnosis aimed at achieving high accuracy with inter-
pretability. For example, Dong et al.36 collected ocular
fundus images of 10 retinal diseases and grouped
them into three groups for deep learning classifica-
tion; Sunija et al.43 developed a deep learning model
for the classification of choroidal neovascularization,
diabetic macular edema, drusen and normal OCT
images. Cen et al.44 used deep neural networks to
detect 39 fundus diseases and conditions and Lee et
al.45 used deep learning to screen fundus abnormal-
ities including AMD, diabetic retinopathy, epiretinal
membrane, retinal vascular occlusion, and suspected
glaucoma. However, these studies only used Grad-
CAM heatmaps to interpret the model, which may not
be as informative as the pathology detection approach.
Furthermore,Wang et al.46 combined pathological and
thickness features to detect 15 types of pathological
locations from OCT images via deep learning, which
has more types of pathologies compared with our
work. However, our multistage system of classifica-
tion and lesion detection on a limited dataset can still

provide important validation and complement to the
existing research.

There are several limitations to our study. First,
our OCT data were collected from just one hospi-
tal, which may only represent a regional and small
patient population. Additionally, the sample size may
be insufficient and unevenly distributed among differ-
ent retinal pathologies. The system was designed to
recognize some major types of retinal problems to
aid the ophthalmologists on regular tasks. Given the
data and model limitation, the model performance
on new and unseen types of lesions or diseases
should be questioned. It still requires the assistance
of the ophthalmologists to finalize the diagnosis. As
an important future direction, it is very important to
increase the number of patients, sources, and images
to decrease model biases and improve its clinical appli-
cability. Second, the pathological locations within our
samples were labelled with rectangles, while retinal
layer segmentation for pathological detection47 has also
been used and may be more reliable for specific lesion
detection. Although the rectangular labeling requires
less effort, it is a future direction to perform segmenta-
tion of the retinal layers for better and more reliable
detection of particular lesions. Third, our system
has not been tested in real-world clinical diagnosis.
Although the dry experiments indicated great model
performance, the clinical translatability has not been
assessed. We believe this system may aid and provide
helpful references for the ophthalmologists for diagno-
sis. However, the system is not meant to replace
ophthalmologists and expert decisions are needed to
finalize the diagnosis. Fourth, OCT images are only
one dimension of clinical diagnosis, other clinical data
including medical history and other examinations are
also necessary for high-quality diagnosis and treatment
recommendation. It is yet a future direction to integrate
electronic medical records with OCT images for a more
comprehensive diagnosis and recommendation system.

Conclusions

In this work, 37,138 OCT images from 775 patients
were harvested and 10 pathology types corresponding
to two disease types, vitreomacular traction syndrome
andAMD,were labelled by ophthalmologists. An intel-
ligent multistage system was developed for disease
screening and pathology detection from OCT images.
The system contained a binary classification module, a
disease classification module, and a pathology location
detection module to analyze the OCT image with
different levels of granularity, identify the disease and
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pathology types and locate the regions. All three
modules showed good performance when evaluated on
the independent test set. We demonstrated this system
is capable to identify and predict eye diseases from the
OCT images and may have potential clinical applica-
tion to assist the ophthalmologists on decision-making.
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