
����������
�������

Citation: Jang, K.W.; Jeong, W.J.;

Kang, Y. Development of a

GPU-Accelerated NDT Localization

Algorithm for GNSS-Denied Urban

Areas. Sensors 2022, 22, 1913.

https://doi.org/10.3390/s22051913

Academic Editors: Shiyang Tang, Yan

Huang, Zhanye Chen and Ping Guo

Received: 19 January 2022

Accepted: 26 February 2022

Published: 1 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Development of a GPU-Accelerated NDT Localization
Algorithm for GNSS-Denied Urban Areas
Keon Woo Jang , Woo Jae Jeong and Yeonsik Kang *

Department of Automotive Engineering, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu,
Seoul 02707, Korea; rjsdn8769@kookmin.ac.kr (K.W.J.); wjddnwo95@kookmin.ac.kr (W.J.J.)
* Correspondence: ykang@kookmin.ac.kr; Tel.: +82-2-910-4671

Abstract: There are numerous global navigation satellite system-denied regions in urban areas,
where the localization of autonomous driving remains a challenge. To address this problem, a high-
resolution light detection and ranging (LiDAR) sensor was recently developed. Various methods have
been proposed to improve the accuracy of localization using precise distance measurements derived
from LiDAR sensors. This study proposes an algorithm to accelerate the computational speed of
LiDAR localization while maintaining the original accuracy of lightweight map-matching algorithms.
To this end, first, a point cloud map was transformed into a normal distribution (ND) map. During
this process, vector-based normal distribution transform, suitable for graphics processing unit (GPU)
parallel processing, was used. In this study, we introduce an algorithm that enabled GPU parallel
processing of an existing ND map-matching process. The performance of the proposed algorithm
was verified using an open dataset and simulations. To verify the practical performance of the
proposed algorithm, the real-time serial and parallel processing performances of the localization
were compared using high-performance and embedded computers, respectively. The distance root-
mean-square error and computational time of the proposed algorithm were compared. The algorithm
increased the computational speed of the embedded computer almost 100-fold while maintaining
high localization precision.

Keywords: autonomous vehicle; NDT; localization; ROS; 3D LiDAR; GPGPU

1. Introduction

Since the mid-1980s, remarkable research efforts and investments have been devoted to
developing autonomous driving technology [1,2]. Automotive companies have dedicated
remarkable efforts to the commercialization of this technology, which requires near-perfect
safety conditions [3–5]. Therefore, precise real-time perception of the surrounding en-
vironment using various sensors, such as a global navigation satellite system (GNSS),
cameras, light detection and ranging (LiDAR) equipment, radio detection and ranging
(RADAR) technology, and the inertial measurement unit (IMU), is essential [6]. Diverse
types of information are required for safe autonomous driving, including the location
of the ego vehicle, road environment, and spatial relationship between the surrounding
objects. The techniques used for extracting such information from the environment are
interdependent. In addition, as most perception methods are performed under the as-
sumption that the pose of the ego vehicle is accurately known, inaccurate pose information
may result in the deterioration of the performance of the autonomous driving system.
Although accurate information regarding the position of a vehicle can be obtained us-
ing GNSS technology [7–10], the localization error recommended by ISO 17572 (within
25 cm) cannot be guaranteed in all driving areas [11,12]. In particular, inaccurate GNSS
location measurement occurs in GNSS-denied areas, such as urban canyons, overpasses,
tunnels, and underpasses, where large objects obscure the sensor receiver [13]. To ad-
dress this, the use of multiple sensors that can recognize the surrounding environment

Sensors 2022, 22, 1913. https://doi.org/10.3390/s22051913 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22051913
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2464-4719
https://orcid.org/0000-0001-9351-5537
https://orcid.org/0000-0003-4667-3748
https://doi.org/10.3390/s22051913
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22051913?type=check_update&version=1


Sensors 2022, 22, 1913 2 of 18

of a vehicle, rather than the singular use of GNSS technology, is essential for seamless
localization [14–16].

Cameras have been widely used as sensors in autonomous vehicles [17–20], and nu-
merous studies have investigated the efficacy of deep learning techniques for processing
a large amount of image data. However, as an image captured by a camera records the
environment in a two-dimensional (2D) aspect, it cannot be used to accurately estimate the
three-dimensional (3D) environment. Cameras are therefore not suitable for establishing
precise localization for autonomous driving. Conversely, LiDAR has attracted attention as
a sensor for autonomous vehicles because of its ability to acquire 3D distance information
from the environment with error rates within a centimeter. Another localization method
based on simultaneous localization and mapping [21–23] has attracted attention because of
its ability to simultaneously estimate the position of a vehicle and create a relevant map.
However, the error accumulation that occurs during the estimation process may lead to
distortion of the generated map [24]. Although this error accumulation can be corrected
using a factor graph-based loop closure [25–27], this closure may lead to an abrupt correc-
tion in the position of the vehicle, which can result in a dangerous change in the route of an
autonomous vehicle in a complex urban environment. In this study, we assumed that a
precise map already existed and could be used for the localization of autonomous vehicles
via a comparison with current LiDAR measurements [28–30].

Recent developments in LiDAR with improved spatial resolution include the 128-channel
3D LiDAR, which can measure more than 400,000 points in a single scan at an update
rate of 10–20 Hz. To use such high-resolution LiDAR measurements for localization,
a large point cloud must be rapidly processed to ensure precise control of the autonomous
vehicle [31]. The normal distribution transform (NDT), a technique that represents a point
cloud with a normal distribution, can enable a more compact spatial representation of
a point cloud [32]. Therefore, this study used a vector-based normal distribution (ND)
map [33]. Although the ND map for localization was represented compactly, the LiDAR
still produced numerous measurements, which had to be rapidly and efficiently processed
to enable real-time localization. To effectively accelerate the computational speed, this
study utilized graphics processing unit (GPU) parallel processing.

The main contributions of this paper can be briefly summarized as follows:

• The proposal of a real-time localization algorithm applying GPU parallel processing
to a vector-based normal distribution transform;

• Verification of the algorithm using both the nuScenes dataset (Motional, Boston,
Massachusetts, United States) and the CarMaker simulation (IPG Automotive GmbH,
Karlsruhe, Baden-Württemberg, Germany) to confirm that the algorithm could operate
in a real urban environment and that continuous real-time localization was possible.

The rest of this paper is organized as follows. In Section 2, a method for converting a
3D point cloud map into a vector-based ND map and an efficient map-matching algorithm
using GPU parallel processing for localization are described. The performance of the
proposed algorithm is verified using an open dataset and simulation. The details of the
verification method are described in Section 3. The performance results of the algorithm
are discussed in Section 4, and the conclusion of this study is presented in Section 5.

2. Methods

Figure 1 demonstrates a flowchart of the proposed algorithm. The red area in the
figure shows the ND map generation process, which utilized measurements from three
sensors (LiDAR, GNSS, and IMU) to create the map, based on universal transverse mercator
(UTM) coordinates. The 3D point cloud mapping was performed based on the features of
the LiDAR measurement, with the precision increased via calibration using the IMU/GNSS
measurements. Subsequently, the point cloud map was converted into an ND map and used
for the real-time localization process. Following the point cloud preprocessing, the pose
of the ego vehicle was computed by comparing the ND map and the preprocessed point
cloud. In addition, the GPU parallel processing was conducted during the map-matching



Sensors 2022, 22, 1913 3 of 18

process. Figure 1 demonstrates the GPU-accelerated NDT localization algorithm flow. The
resultant pose of the vehicle was entered into a prediction filter to reduce the computational
time by predicting the next pose.

Figure 1. Flowchart of GPU-accelerated NDT localization algorithm.

2.1. Map Generation
2.1.1. Global 3D Point Cloud Map

In this section, we describe the 3D point cloud map generation process. Although the
3D point cloud map generation is not the core focus of this study, it is a preliminary step
that is required to create a lightweight map for localization. As the precise 3D point cloud
map generation process has been extensively described in various papers, we will only
briefly discuss this process.

The process was developed on the basis of the LiDAR-based SLAM algorithm, i.e., LIO-
SAM, proposed by Tixiao Shan [34]. However, unlike LOAM, scan matching is conducted
using LiDAR features comprising planes and edges [35,36] and IMU tracking. The accumu-
lated errors caused by odometry tracking were eliminated by loop closure, and factor graph
searching efficiency was improved using GNSS data. In this study, the 3D point cloud map
generation algorithm was produced by modifying the LIO-SAM algorithm according to
the research environment. Figure 2 demonstrates the 3D point cloud map of the urban area
implemented in the simulation.

Figure 2. Bird’s-eye views of the urban area implemented in the CarMaker simulation. (a) CarMaker
simulation viewer. (b) 3D point cloud map.



Sensors 2022, 22, 1913 4 of 18

To verify the 3D point cloud map generation, lane information from a high-definition
road map provided by the National Geographic Information Institute, which had a max-
imum error of 0.25 m, was utilized [37]. The LiDAR sensor returned 3D coordinates (x,
y, z) and reflection (intensity) data; lane information was extracted from the intensity
measurements. The coordinate system of the point cloud map was converted into UTM
coordinates to allow for a comparison between the common lane information in the two
maps. Figure 3 demonstrates the comparison of the intensity measurements of the point
cloud map and the lane information from the high-definition road map.

Figure 3. Comparison of road lane information. (a) 3D point cloud map. (b) High-definition
road map.

2.1.2. Vector-Based Normal Distribution Transform

The generated 3D point cloud map extensively described the 3D information of
the urban area. Generally, an autonomous driving algorithm requires a three-degree-
of-freedom vehicle pose comprising x, y, and yaw, which can be obtained using a 2D
map. Therefore, in this study, a 2D ND map was created from the 3D point cloud map.
The location and shapes of buildings in an urban area are constant, and the location of
autonomous vehicles can be uniquely identified by utilizing the shapes of these buildings
using LiDAR measurements. However, some buildings in urban areas have complex 3D
shapes. Therefore, multiple layers should be included in the map to represent the 3D
shape of buildings, with each layer representing the shape of the cross-sections projected
in the 2D plane, thereby enabling multiple layers to capture the 3D shape of a building in
a 2D map. Figure 4 shows the vector-based NDT of three representative layers of a set of
urban buildings.

After creating the 2D point cloud map, the vectors corresponding to the walls of
the buildings were extracted using the random sampling consensus (RANSAC) process.
During the RANSAC process, the average vertical distance between each vector and the
proximate points of the point cloud were represented using an uncertainty parameter (σ),
which can be calculated as follows:

σ =
1
n

n

∑
k=1

Distance (~v, Pk) (1)

where ~v is a vector obtained using the RANSAC process and Pk represents summed over
positions of the point cloud near the vector. If the vector component was not properly
extracted with RANSAC because of noise in the point cloud, the vector was directly



Sensors 2022, 22, 1913 5 of 18

designated. The vector and uncertainty information were used to calculate the covariance
matrix, which represents the point cloud through NDT, using Equation (2) as follows:

Σ = UΛUT =

[
λ1v2

x + λ2n2
x λ1vxvy + λ2nxny

λ1vxvy + λ2nxny λ1v2
y + λ2n2

y

]
(2)

where U is a matrix consisting of eigenvectors defined by ~v and its perpendicular vector,~n,
as follows:

U =
[
~v ~n

]
=

[
vx nx
vy ny

]
(3)

where Λ is a matrix comprising two eigenvalues, i.e., λ1 and λ2. Eigenvalue λ1 was set as
half the length of ~v, and λ2 was set as σ.

Λ =

[
λ1 0
0 λ2

]
=

[
L/2 0

0 σ

]
(4)

Figure 4. Vector-based NDT process of representing urban buildings. (a–c) Representative building
layers. (d) ND map of the building.

Figure 5 demonstrates elements of the ND map used in Equations (1)–(4). The blue
arrow in Figure 5a represents the vector that was extracted using RANSAC, and the black
points on both sides of the arrow represent the point cloud near the vector. Figure 5b
shows an approximation of the point cloud, as measured from the building wall by the ND
map. The covariance matrix, i.e., Σ, and the center point of ~v, Vc were stored together in
the vector-based ND map file. The 3D point cloud map with an original size of 2 GB was
reduced to an ND map with a size of 2 MB using the vector-based NDT process.



Sensors 2022, 22, 1913 6 of 18

Figure 5. (a) Elements used for the generation of the vector-based ND map. (b) Part of vector-based
ND map and point cloud map

2.2. Map Matching Using GPU Parallel Processing

This study developed a real-time localization algorithm by comparing an ND map with
LiDAR measurements. To do so, the LiDAR measurements required several preprocessing
steps. First, the points in the cloud up to a height of 4 m from the road’s surface were
removed to eliminate unnecessary measurements. This preprocessing method rapidly
removed measurements originating from the ground and dynamic objects. Subsequently,
a 3D point cloud containing only the building information was projected onto a 2D x–y
plane. In addition, the real-time LiDAR measurements were not downsampled, thus
enhancing the accuracy of the localization result.

The preprocessed 2D point cloud was transferred to the UTM coordinate system using
the vehicle pose (position and heading angle). The 2D homogeneous matrix that was used
for the transformation of the coordinate is shown in Equation (5).

Pose =

 xt
yt
θr

, Mt =

 cos θr − sin θr xt
sin θr cos θr yt

0 0 1

 (5)

The transformed point cloud, i.e., MtPk, was used to determine the nearest vector,
vj, in the ND map. Subsequently, the score was calculated using Equation (6), where Cj
represents the center point of vj and Σj represents the covariance matrix of vj.

Score(Mt, Pk, j) = exp

−
(

MtPk − Cj
)TΣ−1

j
(

MtPk − Cj
)

2

 (6)

After the score was calculated, the Cost for each Mt was calculated by summing over
the scores, as shown in Equation (7). The negative sign was applied to modify the sum of
scores as a minimization problem.

Cost(Mt) = −
n

∑
k=1

Score (Mt, Pk, j) (7)

Thereafter, Newton’s method for optimization was applied to the Cost to repeatedly
correct the pose toward the minimum value of the Cost. The calculation of the change in
the pose, i.e., ∆Pose, used a Hessian/gradient matrix, as expressed in Equation (8) below.

∆Pose =

 ∆xt
∆yt
∆θr

 = −H−1g, H =


∂2C
∂x2

∂2C
∂x∂y

∂2C
∂x∂θ

∂2C
∂y∂x

∂2C
∂y2

∂2C
∂y∂θ

∂2C
∂θ∂x

∂2C
∂θ∂y

∂2C
∂θ2

, g =


∂C
∂x
∂C
∂y
∂C
∂θ

 (8)



Sensors 2022, 22, 1913 7 of 18

Figure 6 demonstrates a flowchart of the map-matching process between the ND map
and the point cloud. The map-matching process was performed for all points in the cloud
and was repeated until an appropriate pose was obtained. The computation time of the
overall map-matching process increased with an increase in the number of point clouds.
To reduce the overall computation time, this study used GPU parallel processing for the
map-matching process.

Figure 6. Flowchart of the map-matching process.

For GPU parallel processing, a large amount of the point cloud was moved from the
central processing unit (CPU; Host) memory to the GPU (Device) memory, after which the
operations on each point were performed parallelly in the GPU thread. This ensured that
an operation that needed to be repeated N times on the CPU could be executed at once on
the N threads of the GPU. As the size of data to be computed increased, the efficiency of the
GPU parallel processing increased compared with that of the CPU serial processing [38].
However, not all operations were suitable for parallel processing. Therefore, to take
advantage of parallel processing, the algorithm should comprise numerous simple iterative
operations rather than a small number of complex branching operations. The localization
algorithm proposed in this study was suitable for GPU parallel processing as the same
operations, Equations (5)–(8), were repeated for all points Pk in the point cloud. However,
when a large number of individually calculated values from all point clouds had to be
added to obtain a single value, bottlenecks were observed in the map-matching process.

2.2.1. GPU Parallel Reduction

In this study, the bottlenecks of the map-matching process were resolved using parallel
reduction [39]. Figure 7 shows the computational flow of a cost calculation in which the
parallel reduction was applied. To utilize CPU serial processing for the cost calculation,
the addition of the score value to the cost value was repeated consecutively. In contrast,
the parallel reduction performed a tree-type addition to obtain the final overall sum by
repeating the individual additions of two pieces of data (Figure 7). The parallel reduction
process reduced the number of operations conducted from N to log2 N. Algorithm 1
represents the pseudocode of the parallel cost calculation. Different GPU threads were
used to simultaneously compute the score between each point and the nearest vector. Next,
threads that were separated by a specific index were added together. These computations
were conducted for only half of the total threads, and the number of threads subjected to
these computations was continuously reduced by half to ensure that the operation was



Sensors 2022, 22, 1913 8 of 18

conducted only on the first thread. Following the parallel reduction, the sum of all the
scores was computed.

When the parallel reduction was performed, the score data were repeatedly loaded.
However, storage of the score data in the global memory resulted in unnecessary repetition
of the data transfer delay between the thread and the global memory during operation [40].
Therefore, the score data were transferred from the global memory to the shared memory
in advance to minimize the delay caused by data loading.

Figure 7. Operational flow of the parallel cost calculation.

Algorithm 1: Parallel Cost Calculation
Input : Preprocessed points p, closest vector ~vp to each point
Output : Cost calculated from all p and ~vp
begin

Allocate device memory space for p and ~vp, Cost;
Copy p and ~vp from host to device global memory;
do in parallel

Put every p and ~vp from global memory to each thread, then compute
Score between p and ~vp based on (6);

end
do in parallel

Put Score from global memory to shared memory and get thread index Ti;
for step=length(Score)/2; step<1; step=step/2 do

if Ti<step then
Score[Ti]+=Score[Ti+step];

end
Synchronize all threads;

end
end
Copy Score from device global memory to host;
Extract Cost from first Score and return Cost;

end

Before conducting the cost calculation, map searching was conducted to determine the
closest vector to each point. A parallel reduction was applied to the comparison operation
during this process. In contrast to the cost calculation, a parallel reduction was conducted
separately for each point. As shown in Figure 8a, different points are loaded in each GPU
block, and the distances from these points to all vectors are calculated. Subsequently,
parallel reduction was individually conducted for each block, as shown in Figure 8b.



Sensors 2022, 22, 1913 9 of 18

Thereafter, the nearest vector for each block was calculated using the map-searching results.
Algorithm 2 represents the pseudocode of the parallel map searching.

Figure 8. (a) Depiction of using GPU thread and block. (b) Operational flow of the parallel map searching.

Algorithm 2: Parallel Map Searching
Input : Preprocessed points p, vector~v of ND map
Output : Closest vector ~vp to each point in p
begin

Allocate device memory space for p and~v, ~vp;
Copy p and~v from host to device global memory;
do in parallel

Put p from global memory to each block;
Put~v from global memory to each thread of block;
Compute Distance between p and center point of~v at every thread;

end
do in parallel

Allocate shared memory space for t_Distance in every block;
Bi=Block index;
Li=Local thread index in every block;
Gi=Global thread index;
t_Distance[Li]=Distance[Gi];
for step=length(t_Distance)/2; step<1; step=step/2 do

if Li<step then
t_Distance[Li]=Min value between t_Distance[Li] and
t_Distance[Li+step] ;

end
Synchronize all threads;

end
At first thread in every block, ~vp[Bi]=~v of t_Distance[0];

end
Copy ~vp from device global memory to host and return ~vp;

end

3. Experiments

In this study, the proposed algorithm was developed on the basis of a C/C++ robot
operating system in Ubuntu 18.04 (Canonical Ltd., London, UK). The computation was
accelerated using the GPU parallel processing abilities of the CUDA platform (NVIDIA



Sensors 2022, 22, 1913 10 of 18

Corporation, Santa Clara, CA, USA). Table 1 shows the detailed specifications of the
computing system used for verification.

Table 1. Specifications of the computing system used for conducting the verification.

Laptop NVIDIA Jetson Xavier AGX

CPU Intel Core i7-9750H 8-core ARM v8.2 64-bit CPU

RAM 16 GB 32 GB

GPU NVIDIA GeForce RTX2070 512-core Volta GPU

OS Ubuntu 18.04 + ROS Melodic

CUDA Ver.11.2

The proposed vector-based normal distribution, i.e., VNDT, was compared with other
localization methods—specifically, iterative closest point, i.e., ICP, and grid-based normal
distribution transform, i.e., GNDT, [32,41]. In this study, we used corresponding algorithms
that were implemented on the Point Cloud Library [42]. The tuning parameters common
to all algorithms were the maximum number of iterations and the iteration tolerance.
The maximum number of iterations was set to 50, and the iteration tolerances were set
to 0.1 cm and 0.01◦. Detailed descriptions of the tuning parameters for these algorithms
are available in [43,44]. In addition, the grid size and vector length are important tuning
parameters for NDT algorithms. In this study, these parameters were set to 2 m.

3.1. Open Datasets

To verify the performance of the algorithm with real sensor data, including noise,
the nuScenes dataset was used [45]. The nuScenes dataset is a public dataset for au-
tonomous driving developed by an autonomous vehicle company, Motional. Scenes
containing complex driving environments in Boston and Singapore were selected from the
dataset. The reasons for choosing each scene are as follows.

• scene-0061: The scene data were recorded from Singapore’s One North. The driving
route at an intersection was under construction. Using the scene data, the accuracy
of localization in a congested situation (e.g., passersby standing before traffic signals,
construction machine on the road) was verified.

• scene-0103: The scene data were recorded from Boston Seaport. The driving route
started at the Congress Street Bridge with no buildings nearby. Using the scene data,
the initialization of localization was verified with distant building information.

• scene-1094: The scene data were recorded from Singapore’s Queenstown. Since the
vehicle was driven on a rainy road at night, the LiDAR measurement was unstable.
Using the scene data, the accuracy of localization was verified using the unstable
LiDAR measurement.

Each scene included ego pose data that had been precisely calibrated using a point
cloud map provided by Motional. In this study, the ND map was produced by stacking
point cloud data according to the corresponding ego pose. The driving time for acquiring
each scene’s data was 20 s, and the data from each sensor (LiDAR, GPS, IMU, etc.) and
the calibrated ego pose were stored at a constant rate of 2 Hz. The driving distances for
each scene were 91 m (scene-0061), 118 m (scene-0103), and 126 m (scene-1094). Figure 9
demonstrates the driving route of each scene.



Sensors 2022, 22, 1913 11 of 18

Figure 9. Driving routes (i.e., red arrow) of the selected nuScenes scenes. (a) scene-0061, (b) scene-
0103, and (c) scene-1094.

3.2. Simulation

The CarMaker simulation program (IPG Automotive GmbH) was used to verify the
computational efficiency with long-term driving. To conduct the localization at the same
coordinates as the real urban area, the CarMaker simulation was developed according to the
high-definition road map information provided by the National Geographic Information
Institute of Korea. It was also possible to implement the simulated buildings with a shape
and density very similar to reality by referring to photos of urban areas. Figure 10 shows a
comparison of the real and simulated urban areas.

Simulated driving was conducted using a simulation vehicle equipped with LiDAR,
GNSS, and IMU sensors in CarMaker. To enhance the realism of the simulation, the ve-
hicle was developed according to the specifications of the KIA Niro. Table 2 lists the
detailed specifications.

Figure 10. Comparison of the urban area implementation in CarMaker. (a) Real urban view. (b) Car-
Maker simulation viewer.

Table 2. Specified parameters of the simulation vehicle.

Designation Parameter Designation Parameter

Overall Length 4735 mm Wheelbase 2700 mm
Overall Width 1805 mm Front Tread 1562 mm
Overall Height 1570 mm Rear Tread 1572 mm

Curb Weight 1755 kg



Sensors 2022, 22, 1913 12 of 18

Table 3 lists the detailed specifications of the simulation LiDAR sensor, which was
implemented by referring to Ouster’s OS1-64 model.

Table 3. Specified parameters of the simulation LiDAR.

Designation Parameter Designation Parameter

Vertical Resolution 64 channels Scan Range 100 m
Horizontal Resolution 1024 Rotation Rate 10 Hz

Vertical Angular Resolution 0.35◦ Points per Second 655,360
Vertical Field of View −22.5◦∼22.5◦ Data Field X, Y, Z, Intensity

Considering that there was no error in the GNSS within the simulation, a radial
uniform distribution error of 2 m was introduced. The noise in the GNSS reading was
used as the initial pose in the localization algorithm, and the original GNSS was used only
to represent the ground truth for evaluating the performance of the algorithm. Figure 11
shows the position of the sensors attached to the simulation vehicle. The LiDAR sensor
was placed at the center of the front seat of the vehicle and was installed 15 cm above the
vehicle roof to reduce the shadow area. The GNSS sensor was attached to the center of the
roof above the rear wheel axle, and the IMU sensor, which was used to track the vehicle
odometry, was placed at the vehicle’s center of gravity.

The length of the verification route was 4300 m, and the total driving time was 7 min.
During the simulation, the vehicle moved at a speed of 60 km/h using the CarMaker
auto-driving system. Since localization was conducted on all LiDAR inputs (10 Hz),
the root-mean-square error (RMSE) was calculated with more than 4000 resultant data
points. Figure 12 shows the verification route in CarMaker.

Figure 11. Position of the sensors attached to the simulation vehicle.

Figure 12. Verification route (i.e., red arrow) of CarMaker.

4. Results and Discussion
4.1. Open Datasets

The top row of Figure 13 shows the localization results from the nuScenes dataset.
Compared with the reference ego pose, VNDT demonstrated the highest precision among



Sensors 2022, 22, 1913 13 of 18

the localization algorithms. In contrast, ICP had a constant bias, and GNDT was adversely
affected by noise. The bottom row of Figure 13 shows the matching results of the LiDAR
measurement and ND map in nuScenes. The red ellipses in the figure represent the ND
information, and the black points represent the LiDAR measurements. The bird’s-eye
perspective indicates that the point cloud had been properly matched to each ellipse.
Notably, the point cloud was properly matched to the ND map even when the shapes of
the buildings were complex and dense.

The RMSE and the maximum localization error were calculated (Table 4). The RMSE
in both the longitudinal and lateral directions was within 2 cm, and the heading was within
0.1◦. The longitudinal and lateral errors were within 25 cm; this meant that the performance
of the algorithms did not exceed the localization error value recommended by ISO 17572.

Table 5 lists the average computation time for each localization algorithm. The pro-
posed algorithm (VNDT using GPU) achieved a real-time performance suitable for use with
10–20 Hz LiDAR and increased the computational speed of the embedded computer almost
100-fold. The computation time of the GPU parallel processing functions proposed in
Section 2.2.1 was analyzed in a CarMaker simulation for verification because the nuScenes
dataset included only 30 data points in one scene.

Figure 13. Comparison between the localization results and the reference (top) and LiDAR map-
matching results (bottom) in nuScenes. (a) scene-0061, (b) scene-0103, and (c) scene-1094.



Sensors 2022, 22, 1913 14 of 18

Table 4. Accuracy comparison of the localization methods in nuScenes.

Localization Error
Longitudinal Lateral Heading

ICP GNDT VNDT ICP GNDT VNDT ICP GNDT VNDT

scene-0061 RMSE 5.57 cm 2.78 cm 1.40 cm 7.17 cm 3.16 cm 1.81 cm 0.03◦ 0.08◦ 0.02◦

MAX. dev. 12.26 cm 9.16 cm 4.13 cm 14.92 cm 11.92 cm 4.31 cm 0.09◦ 0.31◦ 0.06◦

scene-0103 RMSE 3.76 cm 3.27 cm 1.92 cm 9.01 cm 2.58 cm 1.54 cm 0.02◦ 0.03◦ 0.02◦

MAX. dev. 6.95 cm 12.92 cm 4.9 cm 5.04 cm 10.75 cm 3.39 cm 0.10◦ 0.13◦ 0.05◦

scene-1094 RMSE 6.05 cm 20.8 cm 1.59 cm 4.76 cm 17.23 cm 1.44 cm 0.05◦ 0.10◦ 0.02◦

MAX. dev. 17.44 cm 140.93 cm 4.58 cm 11.31 cm 136.31 cm 6.76 cm 0.12◦ 0.82◦ 0.08◦

Table 5. Computation time comparison of localization methods in nuScenes.

ICP GNDT VNDT(CPU) VNDT(GPU)

scene-0061 Xavier 401.98 ms 457.10 ms 4934.22 ms 51.82 ms
Laptop 134.76 ms 145.79 ms 1263.21 ms 28.35 ms

scene-0103 Xavier 1036.08 ms 946.25 ms 5723.73 ms 60.12 ms
Laptop 340.51 ms 305.23 ms 1387.25 ms 34.91 ms

scene-1094 Xavier 726.92 ms 612.30 ms 4573.10 ms 47.63 ms
Laptop 219.88 ms 191.57 ms 1300.39 ms 28.95 ms

4.2. Simulation

Figure 14 shows the localization result from the CarMaker simulation. The ICP and
GNDT algorithms failed to localize the vehicle in an area where small buildings were
densely located. Therefore, it is not possible to analyze the precision and calculation time
of the ICP and GNDT algorithms. Table 6 lists the accuracy of the VNDT algorithm.

Table 6. Accuracy of the proposed localization method in CarMaker.

Localization Error
Longitudinal Lateral Heading

RMSE 2.21 cm 2.92 cm 0.12◦

MAX. dev. 6.84 cm 7.38 cm 0.31◦

Table 7 compares the computation time between the CPU and GPU-based VNDT
algorithms. Figure 15 shows a comparison of the average computation time of the GPU
parallel processing functions (i.e., transform point cloud, map searching, and cost calcula-
tion). The computation time of each function includes the length of the data transfer delay
between the CPU and GPU memory.

Table 7. Computation time comparison of localization methods in CarMaker.

VNDT(CPU) VNDT(GPU)

Xavier 4125.16 ms 43.81 ms
Laptop 1271.98 ms 26.11 ms

Figure 16 shows the computation time for each function in the driving time. The figure
indicates that the computation time using CPU serial processing increased with an increase
in the size of the point cloud after preprocessing. In contrast, the amount of data had no
remarkable effect on the computational speed of the GPU parallel processing.



Sensors 2022, 22, 1913 15 of 18

Figure 14. Localization result from the CarMaker simulation.

Figure 15. The average computation time for each function in the CarMaker simulation. (a) Transform
point cloud. (b) Map searching. (c) Cost calculation.



Sensors 2022, 22, 1913 16 of 18

Figure 16. Computation time for each function in the CarMaker simulation. (a) Transform point
cloud. (b) Map searching. (c) Cost calculation.

5. Conclusions

In this study, we introduced a GPU-accelerated vector-based NDT localization al-
gorithm that could guarantee precision and real-time performance for 10–20 Hz high-
resolution LiDAR, even in GNSS-denied urban areas. Therefore, a vector-based ND map
suitable for the parallel processing algorithm was used for the reference map. Parallel
processing was applied to the map-matching process to maintain a stable and fast com-
putational speed, regardless of the size of the LiDAR measurement data. In particular,
the parallel reduction was used for map searching and the cost calculation function of the
map-matching process. The performance of the proposed algorithm was evaluated with
the nuScenes open dataset and urban environment in a CarMaker simulation. The perfor-
mance of the proposed algorithm satisfied the accuracy required by ISO 17572. In addition,
the fast computational speed of the algorithm enabled a localization update rate of 10 Hz.
Therefore, the proposed algorithm exhibited enhanced computational speed and highly
reliable performance. In a future study, we plan to study localization in the actual urban
area that was referenced in the simulation. We will propose a robust localization algorithm
for the real environment and analyze the GPU efficiency in detail.



Sensors 2022, 22, 1913 17 of 18

Author Contributions: Conceptualization, K.W.J. and W.J.J.; Data curation, K.W.J.; Formal analy-
sis, K.W.J.; Funding acquisition, Y.K.; Investigation, K.W.J. and Y.K.; Methodology, K.W.J.; Project
administration, Y.K.; Resources, Y.K.; Software, K.W.J.; Validation, K.W.J.; Visualization, K.W.J.;
Writing—original draft, K.W.J.; Writing—review & editing, K.W.J. and Y.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Basic Science Research Program through the National
Research Foundation of Korea, funded by the Ministry of Education, Science and Technology
(2021R1A2C2003254). This research was supported by the Basic Science Research Program through
the National Research Foundation of Korea, funded by the Ministry of Education (5199990814084),
and the Competency Development Program for Industry Specialists of Korean Ministry of Trade,
Industry and Energy, operated by Korea Institute for Advancement of Technology (No. N0002428,
HRD program for Future Car), partly.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Badue, C.; Guidolini, R.; Carneiro, R.V.; Azevedo, P.; Cardoso, V.B.; Forechi, A.; Jesus, L.; Berriel, R.; Paixao, T.M.; Mutz, F.; et al.

Self-driving cars: A survey. Expert Syst. Appl. 2021, 165, 113816. [CrossRef]
2. Bimbraw, K. Autonomous cars: Past, present and future a review of the developments in the last century, the present scenario and

the expected future of autonomous vehicle technology. In Proceedings of the 2015 12th International Conference on Informatics
in Control, Automation and Robotics (ICINCO), Colmar, France, 21–23 July 2015; Volume 1, pp. 191–198.

3. Schoettle, B.; Sivak, M. A Survey of Public Opinion about Autonomous and Self-Driving Vehicles in the US, the UK, and Australia;
Technical Report; University of Michigan, Transportation Research Institute: Ann Arbor, MI, USA, 2014.

4. Lee, C.; Ward, C.; Raue, M.; D’Ambrosio, L.; Coughlin, J.F. Age differences in acceptance of self-driving cars: A survey of
perceptions and attitudes. In International Conference on Human Aspects of IT for the Aged Population; Springer: Berlin/Heidelberg,
Germany, 2017; pp. 3–13.

5. Liu, P.; Zhang, Y.; He, Z. The effect of population age on the acceptable safety of self-driving vehicles. Reliab. Eng. Syst. Saf. 2019,
185, 341–347. [CrossRef]

6. Kocić, J.; Jovičić, N.; Drndarević, V. Sensors and sensor fusion in autonomous vehicles. In Proceedings of the 2018 26th
Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; pp. 420–425.

7. Hofmann-Wellenhof, B.; Lichtenegger, H.; Wasle, E. GNSS–Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and More;
Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007.

8. Blomenhofer, H.; Ehret, W.; Leonard, A.; Blomenhofer, E. GNSS/Galileo global and regional integrity performance analysis. In
Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004),
Long Beach, CA, USA, 21–24 September 2004; pp. 2158–2168.

9. Kaplan, E.D.; Hegarty, C. Understanding GPS/GNSS: Principles and Applications; Artech House: Washington, DC, USA, 2017.
10. Yang, Y.; Mao, Y.; Sun, B. Basic performance and future developments of BeiDou global navigation satellite system. Satell. Navig.

2020, 1, 1. [CrossRef]
11. ISO 17572-1:2015—Intelligent Transport Systems (ITS)—Location Referencing for Geographic Databases—Part 1: General

Requirements and Conceptual Model. Available online: https://www.iso.org/standard/63400.html (accessed on 7 February
2022).

12. ISO 17572-2:2018—Intelligent Transport Systems (ITS)—Location Referencing for Geographic Databases—Part 2: Pre-Coded
Location References (Pre-coded Profile). Available online: https://www.iso.org/standard/69468.html (accessed on 7 February
2022).

13. Groves, P.D. Shadow matching: A new GNSS positioning technique for urban canyons. J. Navig. 2011, 64, 417–430. [CrossRef]
14. Kok, M.; Hol, J.D.; Schön, T.B. Using inertial sensors for position and orientation estimation. arXiv 2017, arXiv:1704.06053.
15. Lee, N.; Ahn, S.; Han, D. AMID: Accurate magnetic indoor localization using deep learning. Sensors 2018, 18, 1598. [CrossRef]

[PubMed]
16. Jiménez, A.; Seco, F. Ultrasonic Localization Methods for Accurate Positioning; Instituto de Automatica Industrial: Madrid, Spain,

2005.
17. Fu, Q.; Yu, H.; Wang, X.; Yang, Z.; Zhang, H.; Mian, A. FastORB-SLAM: A fast ORB-SLAM method with Coarse-to-Fine descriptor

independent keypoint matching. arXiv 2020, arXiv:2008.09870.
18. Campos, C.; Elvira, R.; Rodríguez, J.J.G.; Montiel, J.M.; Tardós, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual,

Visual–Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [CrossRef]
19. Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Trans. Robot.

2015, 31, 1147–1163. [CrossRef]
20. Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach.

Intell. 2007, 29, 1052–1067. [CrossRef] [PubMed]

http://doi.org/10.1016/j.eswa.2020.113816
http://dx.doi.org/10.1016/j.ress.2019.01.003
http://dx.doi.org/10.1186/s43020-019-0006-0
https://www.iso.org/standard/63400.html
https://www.iso.org/standard/69468.html
http://dx.doi.org/10.1017/S0373463311000087
http://dx.doi.org/10.3390/s18051598
http://www.ncbi.nlm.nih.gov/pubmed/29772794
http://dx.doi.org/10.1109/TRO.2021.3075644
http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1109/TPAMI.2007.1049
http://www.ncbi.nlm.nih.gov/pubmed/17431302


Sensors 2022, 22, 1913 18 of 18

21. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the 2016 IEEE
International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278.

22. Zhang, J.; Singh, S. LOAM: Lidar Odometry and Mapping in Real-time. In Proceedings of the Robotics: Science and Systems,
Berkeley, CA, USA, 12–16 July 2014; Volume 2, pp. 1–9.

23. Deschaud, J.E. IMLS-SLAM: Scan-to-model matching based on 3D data. In Proceedings of the 2018 IEEE International Conference
on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 2480–2485.

24. Ye, H.; Chen, Y.; Liu, M. Tightly coupled 3d lidar inertial odometry and mapping. In Proceedings of the 2019 International
Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 3144–3150.

25. Leitinger, E.; Meyer, F.; Tufvesson, F.; Witrisal, K. Factor graph based simultaneous localization and mapping using multipath
channel information. In Proceedings of the 2017 IEEE International Conference on Communications Workshops (ICC Workshops),
Paris, France, 21–25 May 2017; pp. 652–658.

26. Dellaert, F. Factor Graphs and GTSAM: A Hands-On Introduction; Technical Report; Georgia Institute of Technology: Atlanta, GA,
USA, 2012.

27. Whelan, T.; Kaess, M.; Fallon, M.; Johannsson, H.; Leonard, J.; McDonald, J. Kintinuous: Spatially Extended Kinectfusion. In
Proceedings of the RSS’12 Workshop on RGB-D: Advanced Reasoning with Depth Cameras, Berkeley, CA, USA, 19 July 2012.
Available online: https://dspace.mit.edu/handle/1721.1/71756 (accessed on 7 January 2022).

28. Wolcott, R.W.; Eustice, R.M. Fast LIDAR localization using multiresolution Gaussian mixture maps. In Proceedings of the 2015
IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 2814–2821.

29. Wang, L.; Zhang, Y.; Wang, J. Map-based localization method for autonomous vehicles using 3D-LIDAR. IFAC-PapersOnLine
2017, 50, 276–281. [CrossRef]

30. Yoneda, K.; Tehrani, H.; Ogawa, T.; Hukuyama, N.; Mita, S. Lidar scan feature for localization with highly precise 3-D map. In
Proceedings of the 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA, 8–11 June 2014; pp. 1345–1350.

31. Cao, V.H.; Chu, K.; Le-Khac, N.A.; Kechadi, M.T.; Laefer, D.; Truong-Hong, L. Toward a new approach for massive LiDAR data
processing. In Proceedings of the 2015 2nd IEEE International Conference on Spatial Data Mining and Geographical Knowledge
Services (ICSDM), Fuzhou, China, 8–10 July 2015; pp. 135–140.

32. Biber, P.; Straßer, W. The normal distributions transform: A new approach to laser scan matching. In Proceedings of the 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), Las Vegas, NV, USA,
27–31 October 2003; Volume 3, pp. 2743–2748.

33. Javanmardi, E.; Javanmardi, M.; Gu, Y.; Kamijo, S. Autonomous vehicle self-localization based on multilayer 2D vector map and
multi-channel LiDAR. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June
2017; pp. 437–442.

34. Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and
mapping. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas,
NV, USA, 24–30 October 2020; pp. 5135–5142.

35. Im, J.H.; Im, S.H.; Jee, G.I. Vertical corner feature based precise vehicle localization using 3D LIDAR in urban area. Sensors 2016,
16, 1268. [CrossRef] [PubMed]

36. Zheng, H.; Wang, R.; Xu, S. Recognizing street lighting poles from mobile LiDAR data. IEEE Trans. Geosci. Remote Sens. 2016,
55, 407–420. [CrossRef]

37. High Definition Road Map of Seoul. Available online: http://map.ngii.go.kr/mn/mainPage.do (accessed on 7 February 2022).
38. Nickolls, J.; Dally, W.J. The GPU computing era. IEEE Micro 2010, 30, 56–69. [CrossRef]
39. Harris, M. Optimizing parallel reduction in CUDA. Nvidia Dev. Technol. 2007, 2, 70.
40. Sanders, J.; Kandrot, E. CUDA by Example: An Introduction to General-Purpose GPU Programming; Addison-Wesley Professional:

Boston, MA, USA, 2010.
41. Magnusson, M. The Three-Dimensional Normal-Distributions Transform: An Efficient Representation for Registration, Surface

Analysis, and Loop Detection. Ph.D. Thesis, Örebro Universitet, Örebro, Sweden, 2009.
42. Rusu, R.B.; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), Shanghai, China, 9–13 May 2011.
43. pcl::IterativeClosestPoint Class Template Reference. Available online: https://pointclouds.org/documentation/classpcl_1_1_

iterative_closest_point.html (accessed on 7 February 2022).
44. pcl::NormalDistributionsTransform Class Template Reference. Available online: https://pointclouds.org/documentation/

classpcl_1_1_normal_distributions_transform.html (accessed on 7 February 2022).
45. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuScenes: A

multimodal dataset for autonomous driving. arXiv 2019, arXiv:1903.11027.

https://dspace.mit.edu/handle/1721.1/71756
http://dx.doi.org/10.1016/j.ifacol.2017.08.046
http://dx.doi.org/10.3390/s16081268
http://www.ncbi.nlm.nih.gov/pubmed/27517936
http://dx.doi.org/10.1109/TGRS.2016.2607521
http://map.ngii.go.kr/mn/mainPage.do
http://dx.doi.org/10.1109/MM.2010.41
https://pointclouds.org/documentation/classpcl_1_1_iterative_closest_point.html
https://pointclouds.org/documentation/classpcl_1_1_iterative_closest_point.html
https://pointclouds.org/documentation/classpcl_1_1_normal_distributions_transform.html
https://pointclouds.org/documentation/classpcl_1_1_normal_distributions_transform.html

	Introduction
	Methods
	Map Generation
	Global 3D Point Cloud Map
	Vector-Based Normal Distribution Transform

	Map Matching Using GPU Parallel Processing
	GPU Parallel Reduction


	Experiments
	Open Datasets
	Simulation

	Results and Discussion
	Open Datasets
	Simulation

	Conclusions
	References

