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Abstract

The mucosa-associated lymphoid tissue protein-1 (MALT1, also known as paracaspase) is a protease whose activity is
essential for the activation of lymphocytes and the growth of cells derived from human diffuse large B-cell lymphomas of
the activated B-cell subtype (ABC DLBCL). Crystallographic approaches have shown that MALT1 can form dimers via its
protease domain, but why dimerization is relevant for the biological activity of MALT1 remains largely unknown. Using a
molecular modeling approach, we predicted Glu 549 (E549) to be localized within the MALT1 dimer interface and thus
potentially relevant. Experimental mutation of this residue into alanine (E549A) led to a complete impairment of MALT1
proteolytic activity. This correlated with an impaired capacity of the mutant to form dimers of the protease domain in vitro,
and a reduced capacity to promote NF-kB activation and transcription of the growth-promoting cytokine interleukin-2 in
antigen receptor-stimulated lymphocytes. Moreover, this mutant could not rescue the growth of ABC DLBCL cell lines upon
MALT1 silencing. Interestingly, the MALT1 mutant E549A was unable to undergo monoubiquitination, which we identified
previously as a critical step in MALT1 activation. Collectively, these findings suggest a model in which E549 at the
dimerization interface is required for the formation of the enzymatically active, monoubiquitinated form of MALT1.
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Introduction

The protease MALT1 (also known as paracaspase) plays a

central role in the antigen receptor-mediated activation of

lymphocytes and the pathogenesis of human diffuse large B-cell

lymphoma (DLBCL) of the activated B-cell (ABC) subtype [1,2].

In resting naı̈ve lymphocytes, MALT1 is present in its catalytically

inactive form, constitutively associated with the adaptor protein

BCL10 [3,4]. Upon antigen receptor triggering, MALT1 and

BCL10 form a complex with the scaffold protein CARMA1 (also

known as CARD11) [5,6] that promotes the activation of the

transcription factor nuclear factor kappa B (NF-kB). NF-kB drives

the expression of genes that promote the proliferation and survival

of the activated lymphocytes [7]. In resting lymphocytes, NF-kB

complexes are present mainly as p50-RelA and p50-cRel

heterodimers [8]. These are kept inactive by inhibitor of kappa

B (IkB) proteins, which retain NF-kB heterodimers in the

cytoplasm [9], but also by the NF-kB family member RelB, which

acts as an NF-kB inhibitor in lymphocytes by binding RelA and c-

Rel and preventing their DNA binding [10–13]. MALT1

promotes NF-kB activation by both its scaffold and its enzymatic

function [1,2]. As a scaffold, MALT1 promotes the recruitment of

the ubiquitin ligase TRAF6 and the subsequent ubiquitination-

dependent recruitment and activation of the IkB kinase (IKK)

complex, which phosphorylates and thereby initiates the degra-

dation of the NF-kB inhibitor IkBa [14–18]. As an enzyme with

protease activity, MALT1 also promotes NF-kB activation by

cleaving the inhibitor RelB, which is subsequently degraded by the

proteasome [10]. In addition, MALT1 promotes lymphocyte

activation by cleaving A20 and CYLD, deubiquitinating enzymes

that have inhibitory roles in the NF-kB and JNK pathway,

respectively [19,20], and by cleavage of BCL10, which promotes

lymphocyte adhesion [21]. Unlike caspases, MALT1 preferentially

cleaves its substrate after an arginine residue [1,2,22]. Conse-

quently, inhibition of MALT1 with the arginine-based peptide

inhibitor z-VRPR-fmk leads to a significant reduction in antigen-

receptor mediated lymphocyte activation [21].

Recently, the protease activity of MALT1 has received

particular attention as a drug target for the treatment of ABC

DLBCL, a particularly aggressive form of human B-cell lympho-

ma that is dependent on the oncogenic activation of the

CARMA1-BCL10-MALT1 pathway [23–25] and on the protease

activity of MALT1 [26–29]. Indeed, inhibition of the protease

activity of MALT1 with a peptide inhibitor or small molecule

drugs efficiently inhibits the growth of cells derived from ABC

DLBCL in vitro and in xenograft models [26–29]. Constitutive
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MALT1 activity may also be a driving force for the growth of B-

cell lymphomas of the mucosa-associated lymphoid tissue (MALT

lymphomas), which frequently have a chromosomal translocation

that leads to the formation of an oncogenic fusion protein of

MALT1 with the apoptosis inhibitor c-IAP2 [30]. The resulting c-

IAP2-MALT1 fusion protein specifically cleaves the Ser/Thr

kinase NIK and thereby promotes the oncogenic activation of the

alternative NF-kB pathway [31].

Size exclusion chromatography and protein crystallography,

performed in the presence or absence of the irreversible peptide

inhibitor z-VRPR-fmk, show that binding to this substrate analog

promotes the formation of MALT1 dimers that adopt the active

conformation [32,33]. In solution, MALT1 dimerization is favored

by binding to its inhibitor [33]. When crystallized in the absence of

the inhibitor, MALT1 already forms a dimer in which the active

site Cys 464 (C464) adopts an inactive conformation, unable to

form the catalytically active dyad with His 415 (H415) [32]. In this

inactive conformation, the protease domain interacts via hydro-

phobic residues with the adjacent C-terminal immunoglobulin

domain (Ig3). Formation of the active dimeric conformation seems

to be controlled by a conformational change that alters the

interaction of the protease domain with the Ig3 domain [32].

Nevertheless, the exact mechanisms by which the dimerization

and activation of MALT1 are controlled in vivo remain poorly

understood. We recently demonstrated that MALT1 is activated

by monoubiquitination on a Lys residue (K644) that is situated in a

structurally undefined loop within the C-terminal Ig3 domain

[34]. Monoubiquitination of MALT1 is thought to favor or

stabilize the active MALT1 dimer, since C-terminal fusion of a

monoubiquitin moiety to MALT1 generates a constitutively active

form of MALT1 that is preferentially dimeric [34]. These data,

together with the crystallographic data, support the idea that

MALT1 is active as a dimer, but it remains unknown how

dimerization controls the catalytic and biological activity of

MALT1.

Here, we show that a Glu residue (E549) localized within the

dimerization interface of the MALT1 protease domain was critical

for the in vitro dimerization of the MALT1 protease domain.

Mutation of E549 into alanine (E549A) led to complete loss of the

enzymatic activity of MALT1, and to a consequent loss of the

growth-promoting function of MALT1 in lymphocytes and

lymphoma cells. Moreover, the mutant was unable to undergo

monoubiquitination, and its activity could not be restored by

artificial monoubiquitination-induced dimerization. Collectively,

these findings support the idea that E549 within the dimerization

interface of MALT1 plays a critical role in the regulation of the

enzymatic and biological activity of MALT1.

Results

The MALT1 protease domain has sequence similarity with

caspases [4] that have been shown to form catalytically active

dimers [35]. To assess whether MALT1 is able to form dimers, we

initially modeled the three-dimensional structure of the MALT1

protease domain based on the published structures of caspase-9, -3

and -8. The validity of the resulting model of a caspase-like

domain of MALT1 was recently confirmed by published

crystallographic structures of MALT1 [32,33]. Except for the N-

terminal beta strand, all secondary structural elements were

predicted correctly. The Root Mean Square Deviation (RMSD) of

all Ca atoms between our model and the structure of the inhibitor-

bound MALT1 (3UOA.pdb, [33]) is 4.3 Å (without N-terminus

and longest loops), while the RMSD of the central beta strands

and the alpha helices in the dimerization interface is below 2 Å

(Fig. S1), which confirms the general good quality of our

predictions. In the model of the MALT1 dimer, we noticed that

the potential dimerization interface of the MALT1 protease

domain lacked the hydrophobic residues that were previously

described to stabilize the caspase-8 dimer [36]. Instead, by visual

inspection of the model, we noticed the presence of charged

residues, Glu 549 (E549) and Arg 551 (R551), which could

potentially form a salt bridge stabilizing the dimer (Fig. S2). These

residues are invariant across species [33], and we hypothesized

that mutation of these into uncharged alanine residues (E549A

and R551A, respectively) might affect MALT1 dimerization and

activity.

To test this hypothesis, we expressed different MALT1

constructs (Fig. 1A) in HEK293T cells and assessed the

precipitated proteins for their catalytic activity in vitro in the

presence of the kosmotropic salt ammonium citrate, which is

known to activate initiator caspases by favoring their dimerization

[37,38]. As previously reported, wildtype MALT1 was highly

active in ammonium citrate buffer [19,22,34], but this activity was

completely lost in the E549A mutant (Fig. 1B). The R551A

mutant, on the other hand, had only a partial effect on MALT1

activity (Fig. S3), therefore we focused on the E549A mutant for

further analysis. Using a bacterial expression system, we then

generated purified recombinant constructs containing only the

wildtype or E549A mutant MALT1 protease domain (Casp-like

constructs), or the protease domain together with the C-terminal

extension (DNT constructs) (Fig. 1A). Analysis of these constructs

by size exclusion chromatography, under conditions of physiolog-

ical salt concentrations, showed that wildtype MALT1 had some

tendency to spontaneously form dimers in solution, consistent with

previous reports [32,39] (Fig. 1C). Dimerization of the constructs

containing only the protease domain was affected in the E549A

mutant (Fig. 1C), but not in the active site mutant C464A (data

not shown). Impairment of dimerization was no longer apparent

when a construct containing the protease domain and the C-

terminal extension of MALT1 was used (Fig. 1D), suggesting that

the C-terminal region stabilizes the dimer conformation.

Nevertheless, the E549A mutation resulted in the complete loss

of MALT1 catalytic activity towards its substrates BCL10, RelB or

CYLD when co-expressed in HEK293T cells (Fig. 1, E and F).

However, this mutation did not affect the capacity of MALT1 to

bind to BCL10 (Fig. S4). Thus, mutation of E549, which is part of

the dimerization interface, compromises the capacity of the

isolated MALT1 protease domain to form dimers and results in

loss of catalytic activity of full length MALT1 in vitro and in living

cells.

To test the biological relevance of E549-dependent MALT1

activity, we next expressed increasing amounts of wildtype

MALT1, the catalytically inactive mutant C464A or the E549A

mutant together with BCL10 in HEK293T cells, and analyzed the

capacity of these MALT1 constructs to promote NF-kB activation

(Fig. 2A). In HEK293T cells, MALT1 overexpression promotes

NF-kB activation mainly by its scaffold function, and only partially

via its proteolytic activity [21]. Compared to wildtype MALT1,

the mutant E549A had a partially impaired capacity to promote

NF-kB activation in HEK293T cells (Fig. 2A), similar to a

catalytically inactive mutant of MALT1 in which the conserved

cysteine residue C464 of the catalytic site has been mutated into

alanine (MALT1 C464A) [21]. No inhibitory effect on NF-kB

activation, and only a minimal effect on BCL10 cleavage were

observed for the R551A mutant (Fig. 2A). In T cells, the MALT1

protease activity controls the T-cell receptor mediated NF-kB

activation by inducing the cleavage and subsequent degradation of

RelB, which acts as an inhibitor of NF-kB1 in these cells [10–

Role of E549 in MALT1 Activation
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Figure 1. Mutation of E549 affects dimerization of the isolated protease domain and the catalytic activity of MALT1. (A) Schematic
representation of the constructs used in this study. (B) The activity of the indicated Strep-tagged MALT1 wildtype (WT) and E549A mutant constructs,
precipitated from transfected HEK293T cells, was determined in vitro in presence of 1 M ammonium citrate using the MALT1 substrate LVSR-amc.
Protein levels in lysates and precipitations were controlled by immunoblot. PD: pull-down. Left margin, molecular size marker in kilodalton (kDa). (C,
D) Recombinant wildtype or E549A-mutant MALT1 proteins corresponding to the isolated protease domain (aa 333–566, MALT1(Casp-like)) (C) or to
the protease domain and the C-terminal extension (aa 333–824, MALT1(DNT)) (D) were analyzed by size exclusion chromatography in presence of
PBS and 10% glycerol, presented as the absorbance at 280 nm (A280) in ‘milli-arbitrary units’ (mAU). Downward arrowheads indicate positions of the
molecular weight standards aldolase (158 kDa), bovine serum albumin (67 kDa) and ovalbumin (43 kDa). (E, F) Strep-tagged MALT1 or its E549A
mutant were co-expressed with VSV-tagged BCL10, FLAG-tagged RelB or FLAG-tagged CYLD in HEK293T cells, as indicated, and protein cleavage was
assessed by immunoblot analysis of lysates. Tubulin served as a loading control throughout. Data are representative of two (B, D, E and F) or three
independent (C) experiments.
doi:10.1371/journal.pone.0072051.g001
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13,40]. We analyzed the effect of the E549A mutant on antigen

receptor-induced activation of the NF-kB pathway in Jurkat T

cells, using a combination of phorbolester (PMA) and ionomycin,

which mimic strong T-cell activation by activation of PKC family

kinases and release of calcium from the ER, respectively. Unlike

the wildtype form of MALT1, the E549A mutant was unable to

promote PMA/ionomycin-induced activation of an NF-kB

reporter gene (Fig. 2B). The activation of T-cells leads to the

NF-kB-dependent production of the growth-promoting cytokine

interleukin-2 (IL-2), which can be monitored at the transcriptional

level using a dual IL-2 luciferase reporter assay. Transduction of

Jurkat T-cells with wildtype MALT1, but not with the E549A

mutant, led to a clear increase in IL-2 gene transcription induced

by stimulation with PMA and ionomycin (Fig. 2C). Similar results

were obtained when the cells were stimulated via the antigen

receptor, using antigen presenting Raji B cells loaded with the

bacterial superantigen staphylococcal enterotoxin E (SEE)

(Fig. 2D). Thus, mutation of E549 within the dimerization

interface of MALT1 renders the MALT1 enzyme biologically

inactive.

MALT1 has been reported to be constitutively active in ABC

DLBCL as a consequence of oncogenic mutations in the B-cell

receptor-associated CD79 chain or the CARMA1 protein

[24,25,41], which act upstream of MALT1 in the signaling

pathway leading from B-cell receptor triggering to NF-kB

activation. The growth and survival of cells derived from ABC

DLBCL is impaired upon silencing of MALT1 expression [23] or

upon treatment of the cells with a MALT1 inhibitor [26,27].

Moreover, impaired cellular survival has been reported for ABC

DLBCL cell lines in which endogenous MALT1 is replaced by

catalytically inactive MALT1 mutants [26,34]. Therefore, we

assessed the effect of the catalytically inactive mutant E549A on

the survival of these cell lines under conditions of silencing of

endogenous MALT1. In contrast to wildtype MALT1, both the

C464A and the E549A mutant were unable to restore the growth

of the ABC DLBCL cell lines, suggesting that E549-dependent

formation of catalytically active MALT1 is essential for its

oncogenic function (Fig. 3).

We have previously reported that MALT1 is modified by

monoubiquitination in activated T cells, and that a construct

mimicking C-terminal monoubiquitination of MALT1 (MALT1-

Ub) is hyperactive, most likely as a consequence of its constitutive

dimerization [34]. In contrast to recombinant unmodified

MALT1, which becomes active upon addition of a kosmotropic

salt in vitro, monoubiquitinated MALT1 is highly active, even in

the absence of kosmotropic salt [34]. However, it has remained

unknown how exactly monoubiquitination affects MALT1 activ-

ity. One possibility is that monoubiquitination is a prerequisite and

thus an initiating trigger for subsequent dimerization. Alternative-

ly, monoubiquitination may be the consequence of a dimerization

that is initially induced via CBM complex formation or substrate

binding. To gain insight into this question, we first assessed

whether the E549A mutant was still able to undergo mono-

ubiquitination. MALT1 monoubiquitination can be induced by

co-expression of MALT1 with BCL10; it is further increased by

the use of a catalytically inactive mutant of MALT1 (C464A) or by

the pretreatment with the MALT1 inhibitor z-VRPR-fmk [34].

When tested under such experimental conditions, the E549A

mutation was unable to undergo monoubiquitination (Fig. 4, A
and B).

Next, we tested the catalytic activity and dimerization capacity

of wildtype and E549A MALT1(DNT) constructs with or without

C-terminally fused ubiquitin. First, we measured the activity of the

corresponding recombinant purified proteins in vitro. The wildtype

form of MALT1(DNT) was active already in PBS (Fig. 4C), and

its activity could be further increased in the presence of 0.5 M

ammonium citrate (Fig. 4D), as previously described [34]. In

contrast, the corresponding E549A mutant showed no detectable

activity, even in the presence of ammonium citrate (Fig. 4, C and
D). C-terminal fusion of a ubiquitin moiety rendered the resulting

wildtype MALT1(DNT)-Ub construct hyperactive, as previously

described [34]. In contrast, C-terminal ubiquitination had only a

minimal impact on the activity of the corresponding E549A-

mutated MALT1(DNT)-Ub construct, which remained extremely

low (Fig. 4, C and D). We also tested the activity of these

constructs using a previously-described MALT1 activity reporter

construct [34]. The construct is composed of enhanced yellow

fluorescent protein (eYFP), followed by enhanced cyan fluorescent

protein (eCFP), with an intervening short linker sequence

containing a cleavage site (Leu-Val-Ser-Arg) previously identified

in the MALT1 substrate RelB [10]. Cleavage of this reporter

construct can be detected by immunoblot using an anti-GFP

antibody that cross-reacts with both eCFP and eYFP. The

wildtype form of the MALT1(DNT)-Ub construct efficiently

cleaved this reporter, but mutation of E549 within the

MALT1(DNT)-Ub construct led to a complete loss of proteolytic

activity (Fig. 4E). However, when analyzed by size exclusion

chromatography, both the wildtype and E549A-mutated forms of

the MALT1(DNT)-Ub construct eluted preferentially as dimers

(Fig. 4F). Collectively, these data suggest that an E549-dependent

conformational change is a prerequisite for MALT1 monoubiqui-

tination, which most likely serves to stabilize the active dimer

conformation (Fig. 5).

Discussion

In the present study, we have provided several lines of evidence

that support a model in which E549 within the dimerization

interface of MALT1 is required to promote the formation of a

monoubiquitinated, catalytically active MALT1 conformation

(Fig. 5). First, we showed that mutation of E549 affected

dimerization of the isolated MALT1 protease domain in vitro,

and inhibited the protease activity of MALT1. Second, we

demonstrated that this mutant is impaired in its capacity to

promote NF-kB activation and the transcription of the NF-kB

target gene IL-2 in activated T cells. Third, we provided evidence

for a role of E549 in promoting the MALT1-dependent growth of

cells derived from ABC DLBCL, which are addicted to this

signaling pathway. Finally, we showed that the E549A mutant was

unable to undergo monoubiquitination, and that artificial C-

terminal monoubiquitination was unable to overcome its activity

defect.

How exactly does E549 affect the catalytic activity of MALT1?

Our initial working hypothesis, based on a modeling approach

predicting similar dimeric structures of the protease domains of

caspases and MALT1, suggested that E549 and R551 are both

located within the conserved b6 strand of the protease domain,

which is the major determinant for the dimerization of caspases

[42]. Our model further suggested that these residues might have a

crucial role in stabilizing the protease-protease interface via

electrostatic interactions. However, unlike the E549A mutant,

the R551A mutant retained considerable enzymatic activity,

arguing against a sole role for these two residues in stabilizing

the protease dimer via an E549-R551 surface interaction. Indeed,

additional interactions between I550 and S552 of opposing b6

strands, and interactions between the a5 and a59 helices of the two

protease subunits of MALT1 are thought to contribute to the

stabilization of its dimeric conformation [33]. Our biochemical

Role of E549 in MALT1 Activation
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Figure 2. The residue E549 is required for the biological activity of MALT1 in T cells. (A) Strep-tagged MALT1 wildtype, its C464A or E549A
mutant were co-expressed with FLAG-tagged BCL10 and an NF-kB reporter construct in HEK293T cells, and NF-kB induction was assessed by dual
luciferase assay. The open and filled arrowheads indicate the positions of endogenous and transfected proteins, respectively. The position of the
cleaved BCL10 (Cl) proteins is indicated. Statistical significance is indicated by stars. *#0.05, **#0.01, ***#0.005 (two-tailed Student’s t-test). (B) Jurkat
cells stably expressing an NF-kB luciferase reporter construct were transfected with indicated Strep-tagged MALT1 constructs, and luciferase reporter
activity was measured upon T-cell stimulation by PMA and ionomycin (PMA+iono) for 16 h. (C) Jurkat cells stably expressing the SV40 large T antigen
(JTag cells) were co-transfected with indicated Strep-tagged MALT1 constructs and an IL-2 reporter plasmid, and luciferase reporter activity was
measured upon T-cell stimulation by PMA and ionomycin (PMA+iono) for 16 h. (D) Jurkat cells were co-transfected with indicated Strep-tagged
MALT1 constructs and an IL-2 reporter plasmid, and luciferase reporter activity was measured upon T-cell stimulation with Raji B cells in the presence
(+) or absence (2) of the superantigen staphylococcus enterotoxin E (SEE) for 16 h. Data are representative of three (A–C) or two (D) independent
experiments.
doi:10.1371/journal.pone.0072051.g002
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data support the idea that E549 contributes to MALT1 activation

not simply by strengthening the dimer surface interactions, but

also by promoting a dimer conformation that can be mono-

ubiquitinated, which dramatically increases MALT1 activity [34].

This idea is compatible with previously published crystallographic

structures of MALT1 that were obtained in the absence and

presence of a peptide inhibitor acting as a substrate analog [32]

(Fig. S5, A and B). In the absence of the MALT1 inhibitor (PDB

code: 3V55 [32]), E549 forms a hydrogen bond with R551 of the

same subunit, but not with R5519 of the opposing subunit (Fig.
S5A). The crystal structures of MALT1 with the bound inhibitor

(PDB code: 3V4O [32] and 3UOA [33]) suggest a major change

in the hydrogen bonds formed by E549, and a crucial role for

E549 in the stabilization of the active conformation of MALT1. In

the substrate bound form, E549 forms a salt bridge with R465 that

affects the position of the active site residue C464 [32], which is

most likely stabilizing the active site conformation (Fig. S5B). The

other changes provoked by substrate binding involve changes in

the conformation of the R551 side chain that allow the formation

of hydrogen bonds between R551 and E549 of opposing MALT1

monomers that further stabilize the dimeric structure [32] (Fig.
S5, B and C). Thus, E549 may control the conformation of the

active form of the dimeric protease domain both by its implication

in a conformational change that renders the catalytic site active,

and by strengthening the interactions between the subunits of the

dimer (Fig. S5C and Fig. 5). Both of these mechanisms are

impaired in our E549A mutant. The R551A mutant had a much

weaker activity defect than the E549A mutant, which can be

explained by R551 being involved in the stabilization of the

conformation of the dimer but not in the formation of the active

site. This hypothesis is consistent with findings of others, which

have reported that an R551V mutant was still able to cleave the

MALT1 substrate BCL10 [32]. In contrast, a R551E mutant

introducing an additional negative charge in the dimerization

interface that might affect the position of E549, had a profound

impact on the activity of MALT1 [32]. The position changes of

the active site residues and the R465, R551 and E549 residues are

part of a cascade of conformational alterations that lead to a

positional rearrangement of the the C-terminal Ig-like domain

[32]. The E549A mutation hinders one of the first steps in this

cascade and might consequently hamper the monoubiquitination

process, for example by affecting the accessibility of the

ubiquitination site K644 [34] or the interaction of the responsible

(unknown) ubiquitin ligase with MALT1.

Figure 3. MALT1 E549 is required for survival of ABC DLBCL cell lines. The indicated ABC DLBCL cell lines were transduced with an inducible
MALT1-specific shRNA and subsequently infected with constructs co-expressing GFP with Strep-MALT1, Strep-MALT1(E549A) or Strep-MALT1(C464A).
Upon doxycycline-induced, shRNA-mediated silencing of endogenous MALT1, the cell viability of double infected GFP+ cells was monitored by flow
cytometry over several days (lower panels). Efficient shRNA-mediated MALT1 silencing (M) was controlled by immunoblot (upper panels). As a
negative control, we used a previously described SC4 shRNA (Co) [52]. Results are representative of three independent experiments.
doi:10.1371/journal.pone.0072051.g003

Role of E549 in MALT1 Activation
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Figure 4. MALT1 E549 is required for MALT1 monoubiquitination. (A) Strep-tagged MALT1 wildtype or its E549A mutant were co-expressed
with VSV-tagged BCL10 in HEK293T cells, and monoubiquitination of immunoprecipitated MALT1 was assessed by immunoblot. The asterisk (*)
indicates monoubiquitinated MALT1. (B) Strep-tagged MALT1 wildtype or its E549A mutant were expressed in HEK293T cells, treated overnight with
(+) or without (2) 100 mM of the MALT1 inhibitor z-VRPR-fmk, and MALT1 monoubiquitination was assessed by immunoblot. (C, D) The protease
activity of the indicated recombinant purified proteins was determined using the fluorogenic MALT1 substrate LVSR-amc in vitro in PBS (C) or in the

Role of E549 in MALT1 Activation

PLOS ONE | www.plosone.org 7 August 2013 | Volume 8 | Issue 8 | e72051



How does monoubiquitination affect the activation of MALT1?

We have previously shown that addition of a C-terminal

monoubiquitin moiety to MALT1 favors dimerization and

activation of wildtype MALT1 [34]. In the case of the E549A

mutant, such an artificial monoubiquitination did induce dimer-

ization, but was not sufficient for MALT1 activation. Therefore,

we propose a three-step model of MALT1 activation (Fig. 5),

which includes as a first step an initial low affinity dimerization of

MALT1 through induced proximity, as part of the CBM complex

formation [43], and as a second step an E549-dependent

conformational switch upon substrate binding, to allow formation

of active dimers. Most likely, these active dimers need to be

stabilized in a third step by monoubiquitination. In agreement

with such a model, we observed that the E549A mutant was no

longer monoubiquitinated, and that artificial C-terminal mono-

ubiquitination of this mutant forced its dimerization, but was

unable to overcome its activity defect. Thus, an E549-dependent

conformational switch seems to be required for the subsequent

stabilization of catalytically active MALT1 dimers by monoubi-

quitination (Fig. 5).

The data presented here and in our previous study [34] identify

a unique mechanism of MALT1 activation that is clearly distinct

from the activation of caspases, in which autoprocessing of the L2

and L29 loops of the protease domains serves as a key event to

stabilize the active conformation [4,19,21,22]. Moreover, our

findings support the idea that small molecule compounds

specifically targeting the MALT1 dimerization interface could be

useful as immunosuppressant or anti-lymphoma agents.

Materials and Methods

Modeling
Suitable templates for constructing a homology model of the

caspase-like domain of MALT1 were identified using the HHpred

method [44]. The model of the monomeric MALT1 protease

domain was calculated based on the crystal structures of caspase-9,

-3 and -8 (PDB codes 1NW9, 1CP3 and 2C2Z) sharing 19%, 18%

and 18% sequence identity, respectively, with the MALT1

caspase-like domain. The dimeric MALT1 structure was calcu-

lated using the structure of caspase-8 (1F9E) as a template.

Analogically to the mature/active structures of caspases the

structure of MALT1 was modeled as cleaved after the R467

residue. The alignment (Fig. S6) and the modeling were done

using the Modeller 9v5 program [45] and subsequent model

energy minimization (200 steps of steepest descent minimization in

vacuo) with the CHARMM package (version c34b) using the

CHARMM22 all atom force field [46]. The Atomic Non-Local

Environment Assessment (ANOLEA) potential [47] was employed

to assess the quality of each of the structures and the conformation

with the best overall score was chosen. The models were visualized

using the UCSF Chimera software [48].

presence of 0.5 M ammonium citrate (D). Statistical significance is indicated by stars. *#0.05, **#0.01, ***#0.005 (two-tailed Student’s t-test). (E)
Indicated Strep-tagged MALT1 wildtype or E549A constructs were co-expressed with the reporter construct eYFP-LVSR-eCFP in HEK293T cells, and
reporter cleavage was assessed by anti-GFP immunoblot (which detects both eCFP and eYFP). (F) Recombinant wildtype or E549A-mutant MALT1-Ub
fusion proteins corresponding to the protease domain and C-terminal extension (aa 333–824, MALT1(DNT)-Ub) were analyzed by size exclusion
chromatography in presence of PBS and 10% glycerol, and presented as the absorbance at 280 nm (A280) in milliarbitrary units’ (mAU). Downward
arrowheads indicate the positions of the molecular weight standards ovalbumin (43 kDa) and bovine serum albumin (67 kDa). Data are
representative of two (A, C, D and F) or three (B and E) independent experiments.
doi:10.1371/journal.pone.0072051.g004

Figure 5. Hypothetical model of MALT1 activation. Upon antigen receptor activation, MALT1 may dimerize initially by an induced proximity
mechanism that could be driven by assembly of the oligomeric CARMA1-BCL10-MALT1 (CBM) complex [43]. Upon substrate binding, E549
(highlighted in bold) in the dimerization interface most likely transmits a conformational change that strengthens dimerization. In this conformation,
the active site C464 is reoriented via interaction of R465 with E549, and residues I550 and S552 of opposite subunits interact at the dimerization
interface, as suggested by previous crystallographic studies [32,33]. Our data support the idea that only the dimer in which the two subunits are
correctly assembled in this E549-dependent manner can then be stabilized by monoubiquitination. Additional interactions between the a5 and a59
helices of the two protease subunits that are thought to further stabilize the dimer interaction [33] are not shown in the model.
doi:10.1371/journal.pone.0072051.g005
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Antibodies
Antibody against BCL10 (H197) was purchased from Santa

Cruz Biotechnology, anti-Tubulin (B-5-1-2), anti-RelB (rabbit

polyclonal) and anti-CYLD (D1A10) from Cell Signaling. Anti-

FLAG (M2) and rabbit anti-VSV were from Sigma. Other

antibodies used were anti-Strep-HRP (IBA BioTAGnology), anti-

GFP (ALX 210-199; Enzo LifeSciences) and anti-Ubiquitin

(P4D1; Covance). Affinity-purified MALT1 antibodies and anti-

bodies specific for cleaved BCL10 have been previously reported

[21,49]. Horseradish peroxidase–coupled goat anti-mouse or anti-

rabbit were from Jackson Immunoresearch.

Plasmids
MALT1 point mutants were generated on pCR3-derived

MALT1 expression constructs [21] by quick-change PCR using

PfuUltra high-fidelity DNA polymerase AD (Agilent Technologies)

and all mutations were verified by sequencing. The EYFP-LVSR-

ECFP reporter construct, as well as the eukaryotic (pCR3-based)

and bacterial (pGEX-based) MALT1-Ubiquitin constructs have

been previously reported [34]. For silencing of MALT1 in DLBCL

cell lines, cells were transduced with MALT1-specific shRNA (59-

GTCACAGAATTGAGTGATTTC-39) as published [23].

MALT1 expression constructs resistant to shRNA-mediated

silencing were subcloned into pMSCV-IRES-GFP [50]. The

eYFP–Leu-Val-Ser-Arg–eCFP construct used to measure MALT1

activity and the lentiviral NF-kB reporter construct were

generated as described [34].

Transfection of Cells
Transient transfection of HEK293T cells and lentiviral trans-

duction of Jurkat T cells have been previously described [21]. To

transiently transfect Jurkat T cells by electroporation, 107 cells

were resuspended in 350 ml DPBS (Gibco) supplemented with

CaCl2 and MgCl2 (100 mg/L each), and electroporated at 240 V,

950 mF using the GenePulser Xcell (Biorad) and 4 mm cuvettes

(BTX).

Cell Culture, Cell Stimulation and NF-kB Reporter Assays
HEK293T, Jurkat T cells and JTag cells were cultured in

DMEM or in RPMI 1640 supplemented with 10% FCS and

antibiotics, respectively. Lentivirally transduced Jurkat T cells were

kept under puromycin selection (5 mg/ml) at all times. The ABC

DLBCL cell lines HBL-1, OCI-Ly3 and OCI-Ly10 were cultured

as described [26]. T cells were stimulated with either a mix of

PMA (10 ng/ml; Alexis) and ionomycin (1 mM; Calbiochem) or

with Raji cells presenting the superantigen SEE (streptococcal

enterotoxin E; final concentration: 50 ng/ml). HEK293T cells

were incubated with z-VRPR-fmk (100 mM) for 22 h. NF-kB or

IL-2 dual luciferase reporter assays were performed as previously

described [10].

Lysis, Protein Precipitation and Immunoblotting
Cells were lysed in lysis buffer containing 50 mM HEPES

pH 7.5, 150 mM NaCl, 1% Triton-X-100, protease inhibitors

(Complete; Roche) and phosphatase inhibitors (NaF, Na4P2O7

and Na3VO4). After preclearing the lysates with sepharose beads

for 20 min, StrepTactin sepharose beads (IBA) were added and

samples were incubated for 30 min at 4uC. The samples were then

washed three times with lysis buffer and once with Tris-NaCl

buffer (20 mM Tris pH 7.4, 150 mM NaCl). Where indicated,

some samples were lysed with 1% SDS. After quenching the

samples in a 1:10 ratio with lysis buffer, Strep-MALT1 was

recovered by precipitation with anti-MALT1 antibody coupled to

protein G sepharose. Samples were boiled in reducing SDS sample

buffer and subjected to SDS-PAGE and immunoblot as described

[21].

Protein Purification and Analysis by FPLC
Recombinant GST proteins containing the MALT1 caspase-

like domain only, the caspase-like domain and the C-terminus

(MALT1(DNT)), or the same construct fused to ubiquitin Ub

(MALT1(DNT)-Ub), mutated or not at E549, were generated and

purified as previously described [21]. For gel filtration analysis,

IPTG-induced BL21 bacteria were lysed in a buffer containing

50 mM HEPES, pH 7.9, 300 mM NaCl, 1 mM EDTA, 0.1%

NP-40, 2 mM DTT, protease inhibitors (Complete; Roche) and

5% glycerol. After lysis, glycerol concentration was increased to

10% and GST proteins were immobilized for 2.5 h at 4uC on

glutathione-Sepharose beads (GE Healthcare). After extensive

washing, beads were incubated for 2.5 h at 4uC with PreScission

enzyme (GE Healthcare) in wash buffer containing 5% glycerol.

Purified proteins were subjected to gel filtration performed on an

ÄKTA FPLC system at 4uC using a Superdex 200 column (GE

Healthcare) in PBS with 10% glycerol (pH 7.4) with a flow rate of

0.35 ml/min.

In vitro Protease Activity Assay
To measure protease activity in vitro, recombinant or precipi-

tated proteins were incubated with 50 mM of the fluorescent

substrate Ac-LVSR-amc (Peptides International) for 4 h at 30uC,

while detecting the protease activity of MALT1 with a Synergy

microplate reader (BioTek).

Retroviral Transduction and MALT1 shRNA Rescue
For efficient retroviral transductions, cell lines were engineered

to express the murine ecotropic receptor as previously described

[23]. Additionally, these cell lines were engineered to express the

bacterial tetracycline repressor allowing doxycycline-inducible

shRNA expression [23]. For shRNA induction, doxycycline

(20 ng/ml) was used [23,51]. For the MALT1 rescue experiment,

cells were stably transduced with the MALT1 shRNA. The

MALT1 shRNA-positive cells were subsequently transduced to

constitutively express GFP together with Strep-MALT1 wildtype,

Strep-MALT1(E549A), or Strep-MALT1(C464A). In order to

induce knockdown of the endogenous MALT1 and not the

exogenously expressed Strep-MALT1 variants, the shRNA

binding sites in these constructs were mutated at cDNA position

313 from GAATTG to GAGTTA, without changing the encoded

amino acids. The double-transduced cells were monitored for live

GFP+ cells using flow cytometry as previously described [10].

Statistical Analysis
Two-tailed Student’s t-test was used for statistical analysis; P

values #0.05 were considered statistically significant.

Supporting Information

Figure S1 Comparison of the modeled and crystallo-
graphic structure of the MALT1 caspase-like domain.
Superposition of the homology model and the inhibitor bound

crystal structure of MALT1 (3UOA.pdb) [33] with the color-

coded RMSD values calculated over Ca atoms. The colors used

indicate different RMSD values; red: over 4 Å, blue: 2–4 Å, green:

below 2 Å. The crystal structure is shown in transparent white.

(TIF)
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Figure S2 The dimerization interface in the homology
model of MALT1. Model of the MALT1 protease domain,

calculated based on the crystal structures of caspase-9, -3 and -8

(PDB codes 1NW9, 1CP3 and 2C2Z, respectively) and the dimeric

structure of caspase-8 (1F9E). One of the dimer subunits is shown

in beige, the other one in green. Side chains of residues C464,

R465, E549 and R551 are shown in ball and stick representation,

with nitrogen atoms in blue and oxygen atoms in red. Predicted

hydrogen bonds between E549 and R551, and between R465 and

E549, are indicated (dashed lines). The figure was prepared using

Chimera software [48].

(TIF)

Figure S3 Mutation of Arg551 into Ala partially impairs
MALT1 catalytic activity in vitro. The activity of the

indicated Strep-tagged MALT1 wildtype (WT) and R551A

mutant construct, precipitated from transfected HEK293T cells,

was determined in vitro in presence of 1 M ammonium citrate

using the MALT1 substrate LVSR-amc. Protein levels in lysates

and precipitations were controlled by immunoblot. Left margin,

molecular size marker in kilodalton (kDa). Black lines indicate

where lanes have been removed. PD: pull-down.

(TIF)

Figure S4 Mutation of Glu549 into Ala does not affect
binding of MALT1 to BCL10. To assess whether mutation of

Glu549 into alanine (E549A) affects the binding of MALT1 to

BCL10, HEK293T cells were transfected with the indicated

combinations of Flag-tagged BCL10 and Strep-tagged MALT1

wildtype, or E549A expression constructs, and StrepTactin

precipitates and cell lysates were blotted with the indicated

antibodies. PD: pull-down.

(TIF)

Figure S5 The dimerization interface in the crystal
structures of the free and inhibitor-bound forms of
MALT1. (A) Crystal structure of the dimeric MALT1 protease

domain in the absence of the MALT1 inhibitor (PDB code: 3V55)

[32]. Zoom shows dimerization interface and the position of the

catalytic site cysteine residue of one subunit. Side chains of

residues C464, R465, E549 and R551 are shown in ball and stick

representation, with nitrogen atoms in blue and oxygen atoms in

red. Hydrogen bonds between side chains of E549 and R551

residues are represented with dashed lines. The figures were

prepared with Chimera software [48]. (B) Crystal structure of the

dimeric MALT1 protease domain in the presence of the MALT1

inhibitor z-VRPR-fmk (PDB code: 3V4O) [32]. The inhibitor is

shown in dark green. Zoom shows dimerization interface and the

position of the catalytic site cysteine residue of one subunit.

Residues C464, R465, E549 and R551 are shown in ball and stick

representation, with nitrogen atoms in blue and oxygen atoms in

red. The hydrogen bonds between the side chains of E549 and

R551 and between R465 and E549 are indicated with dashed

lines. The figures were prepared with Chimera software [48]. (C)

Superposition of the dimerization interfaces shown in (A) and (B).

Black arrows indicate movements of the side chains in response to

inhibitor binding.

(TIF)

Figure S6 Alignment of the protease sequences used for
modeling. Alignment of the MALT1 caspase-like domain and

caspase-3, -8, -9 sequences used for building the MALT1

homology model. The coloring scheme used for conserved

residues in the alignment is indicated; green: polar amino acids,

blue: hydrophobic amino acids, red: basic amino acids, magenta:

acidic amino acids, cyan: aromatic amino acids, orange: Gly

residues, yellow: Pro residues, pink: Cys residues. Alignment was

visualized with Jalview [53].

(TIF)
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