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Abstract: Background: Deep neck infection (DNI) can lead to airway obstruction. Rather than
intubation, some patients need tracheostomy to secure the airway. However, no study has used deep
learning (DL) artificial intelligence (AI) to predict the need for tracheostomy in DNI patients. Thus,
the purpose of this study was to develop a DL framework to predict the need for tracheostomy in
DNI patients. Methods: 392 patients with DNI were enrolled in this study between August 2016
and April 2022; 80% of the patients (n = 317) were randomly assigned to a training group for
model validation, and the remaining 20% (n = 75) were assigned to the test group to determine
model accuracy. The k-nearest neighbor method was applied to analyze the clinical and computed
tomography (CT) data of the patients. The predictions of the model with regard to the need for
tracheostomy were compared with actual decisions made by clinical experts. Results: No significant
differences were observed in clinical or CT parameters between the training group and test groups.
The DL model yielded a prediction accuracy of 78.66% (59/75 cases). The sensitivity and specificity
values were 62.50% and 80.60%, respectively. Conclusions: We demonstrated a DL framework to
predict the need for tracheostomy in DNI patients based on clinical and CT data. The model has
potential for clinical application; in particular, it may assist less experienced clinicians to determine
whether tracheostomy is necessary in cases of DNI.

Keywords: artificial intelligence; deep learning; deep neck infection; tracheostomy

1. Introduction

Deep neck infection (DNI) affects the fascial spaces of the neck and can be fatal [1].
DNI may cause airway compromise, which is associated with serious morbidity and
even mortality. To manage DNI, protecting the airway is essential [2]. Tracheostomy is
considered for DNI patients when intubation is hard to perform. However, whether to
perform tracheostomy usually depends on the physician’s clinical consideration.

Artificial intelligence (AI) allows computers to perform tasks that normally require
human intellect and cognitive processes [3]. Machine learning is a form of AI that allows
predictions to be made based on information extracted from input data [4–6]. Multilayered
architecture based on mathematical functions allows machines to learn and think more
deeply, and to interpret complex data in a highly precise manner. Such machine learning
methods are referred to as deep learning (DL). DL AI has made remarkable progress in
recent years [7]. However, to date no DL model is available to help physicians determine
when to perform tracheostomy in cases of DNI, especially when there is no obvious sign of
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airway obstruction. Thus, our goal was to establish a DL model for predicting the need for
tracheostomy in patients with DNI.

2. Materials and Methods

Between August 2016 and April 2022, this study involved a retrospective review of the
medical records of 392 DNI patients admitted to Chang Gung Memorial Hospital in Linkou,
Taiwan. Computed tomography (CT) was performed for diagnostic imaging. When the
DNI cause the airway obstruction, progression of symptom was observed in the DNI after
2 days of intravenous antibiotics using, or ≥2 cm abscess was detected, the incision and
drainage was performed.

According to patient’s vital signs, blood oxygen saturation, respiratory situation,
laboratory and imaging findings, the treating physician decided whether each patient
should undergo tracheostomy to secure the airway [8].

Ceftriaxone (1 g, q12 h) and metronidazole (500 mg, q8 h) were the empiric antibi-
otics [9]. The antibiotic regime can be adjusted depending on the pathogen culture. If no
clear microorganisms are recognized, patients are treated with intravenous antibiotics for
7–10 days, followed by 7 days of oral amoxicillin trihydrate + clavulanate potassium or
clindamycin [10].

2.1. Measurement of CT

We measured the maximum diameter of the abscess in an axial, coronal, or sagittal CT
scan. Next, we measured the nearest distance from abscess to the inlet of the trachea on the
axial scan; both measurements were used as DL parameters (Figure 1A–D).
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Figure 1. Parameters measured on computed tomography (CT) scans. (A,B) The maximum diameter
of the abscess was determined based on axial, coronal, and sagittal CT scans. (C,D) The distance
between the abscess and upper airway inlet was measured on axial scans. Arrowhead, upper airway
inlet; double arrow, distance measured on CT scans.

2.2. Data Collection

To establish the DL model for predicting the need for tracheostomy, we collected
the following clinical data based on medical records as Table 1 shown. Together with the
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maximum diameter of the abscess and the nearest distance from the abscess to the inlet
of trachea, these clinical variables were entered into the DL model. The values for all
continuous and categorical variables were standardized, i.e., were converted into z-scores.
We subtracted the mean score for a given variable from all individual scores and then
divided the remainder by the standard deviation [11].

Table 1. Clinical characteristics of the 392 patients with deep neck infection.

Characteristics N (%)

Gender 392 (100.0)
Male 261 (66.58)

Female 131 (33.42)
Age, years ± SD 51.36 ± 18.74

Chief complaint period, days ± SD 5.04 ± 4.49
WBC, uL ± SD 15,007.39 ± 5801.19

CRP, mg/L ± SD 156.94 ± 99.61
Blood sugar, mg/dL ± SD 142.66 ± 72.46

Diabetes mellitus 147 (37.50)
Deep neck infection space involved

Single space 108 (27.55)
Double spaces 151 (38.52)

Multiple spaces, ≥3 133 (33.93)
Mediastinitis 20 (5.10)

Maximum diameter of abscess, cm ± SD 6.36 ± 3.08
Nearest distance from abscess to inlet of

trachea, cm ± SD 1.41 ± 1.35

Tracheostomy performance 50 (12.75)
N, numbers; SD, standard deviation; WBC, white blood cell (normal range: 3500–11,000/µL); CRP, C-reactive
protein (normal range < 5 mg/L); Blood sugar (normal range: 70–100 mg/dL). Maximum diameter of abscess and
nearest distance from abscess to inlet of trachea were evaluated in CT scan.

2.3. k-Nearest Neighbor Method

To develop a DL model, the dataset of interest is first separated into training and test
subsets [4,6]. The model can then be validated using the test dataset; this allows for the
accurate prediction of model performance when analyzing previously unseen data [3].

In this study, 80% of the data (n = 317) were randomly selected for model training; the
remaining 20% (n = 75) were used for testing the model (Figure 2). Several mathematical
algorithms may be used for DL models; the k-nearest neighbor (k-NN) method was used
for this DL model. The k-NN algorithm is used to classify hitherto unclassified data,
based on the classification of the nearest neighbors among a set of previously classified
instances [12–16]. In other words, the k-NN algorithm measures the distance or similarity
between test and training instances [17–19], and classifies each training set instance based on
its similarity to its neighbors. The final classifications and output depend on the distances
between the test and training data (Figure 3) [5,6,11,14,20,21].

When using the k-NN algorithm, Euclidean distance D is obtained to represent the
distance between two points, x and y, in n-dimensional space, with each n-dimension
corresponding to one of the n-features needed to characterize an instance [11,19,22,23]. The
following formula is used:

D(x, y) =
√
(x1 − y1)2 + (x2 − y2)2 . . . + (xn − yn)2

The k value used should be that resulting in the highest classification accuracy [19].
In this study, k = 1 was chosen because this value provided the optimal classification
performance after cross-validation, as the previous study [21].
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Figure 3. Diagram of the k-nearest neighbor model. In (A,B), green dots represent training group
patients who underwent tracheostomy, and blue dots represent training patients who did not undergo
tracheostomy. Red dots represent test group patients. The dotted line distinguishes cases in which
tracheostomy was performed from those in which it was not performed. The circles are the nearest
neighbors to test and training group instances.

After verifying our model, we used it to predict the need for tracheostomy in DNI
patients. The model parameters were optimized through an iterative process that progres-
sively reduced the discrepancy between the actual and expected model outputs [6].

2.4. Exclusion Criteria

Patients with immunocompromised status, serious cardiopulmonary illness, or history
of head and neck trauma were excluded. In total, 392 patients were enrolled.

2.5. Statistical Analysis

The Kolmogorov–Smirnov test revealed that the data were not normally distributed,
so we used the chi-square and Mann–Whitney U tests to analyze categorical and continu-
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ous variables, respectively. Classification accuracy (tracheostomy vs. non-tracheostomy)
was calculated as the ratio between the number of correctly classified patients and the
total number of patients [11]. Sensitivity (true-positive rate) refers to the proportion of
correctly identified positive (tracheostomy) patients, while specificity (true-negative rate)
is the proportion of correctly identified negative (non-tracheostomy) patients. All data
were analyzed using MedCalc software (ver. 18.6; MedCalc, Ostend, Belgium) and Excel
(Microsoft Corp., Redmond, WA, USA) [7,24]. A p value < 0.05 was considered to reflect
statistical significance.

3. Results

Table 1 lists demographic and clinical data. In total, 392 patients with DNI were en-
rolled: 261 males (66.58%) and 131 females (33.42%) with a mean age of 51.36 ± 18.74 years.
The mean chief complaint period was 5.04 ± 4.49 days. With regard to laboratory data, the
mean WBC count was 15,007.39 ± 5801.19 µL, the mean CRP level was 156.94 ± 99.61 mg/L,
and the mean blood sugar level was 142.66 ± 72.46 mg/dL. Furthermore, 147 (37.50%)
patients had DM status.

Involvement of single deep neck space was observed in 108 (27.55%) patients, while
double spaces were involved in 151 (38.52%) patients, and three or more spaces were
involved in 133 (33.93%) patients. Mediastinitis was observed in 20 (5.10%) patients. On
CT images, the mean maximum diameter of abscess was 6.36 ± 3.08 cm, and the mean
nearest distance from abscess to inlet of trachea was 1.41 ± 1.35 cm. A tracheostomy was
performed in 50 (12.75%) patients.

Table 2 compares the 317 patients in the training group with the 75 patients in the
test group. No significant differences were observed between the two groups in terms of
clinical variables or CT scan parameters.

Table 2. Clinical and computed tomography data of the training and test groups.

Characteristics Training Group; N (%) Test Group; N (%) p Value

Gender 317 (100.0) 75 (100.0)
Male 215 (67.82) 46 (61.33) 0.340

Female 102 (32.18) 29 (38.67)
Age, years ± SD 50.88 ± 18.89 53.40 ± 18.06 0.364

Chief complaint period, days ± SD 5.20 ± 4.79 4.34 ± 2.79 0.455
WBC, µL ± SD 14,824.91 ± 5732.75 15,778.66 ± 6060.84 0.240

CRP, mg/L ± SD 155.08 ± 98.23 164.81 ± 105.52 0.511
Blood sugar, mg/dL ± SD 140.51 ± 70.13 151.77 ± 81.46 0.080

Diabetes mellitus 0.598
Yes 121 (38.17) 26 (34.66)
No 196 (61.83) 49 (65.34)

Deep neck infection space involved
Single space 92 (29.02) 16 (21.33) 0.198

Double spaces 120 (37.85) 31 (41.33) 0.599
Multiple spaces, ≥3 105 (33.13) 28 (37.34) 0.499

Mediastinitis 0.557
Yes 15 (4.73) 5 (6.66)
No 302 (95.27) 70 (93.34)

Maximum diameter of abscess, cm ± SD 6.23 ± 2.91 6.92 ± 3.71 0.293
Nearest distance from abscess to inlet of

trachea, cm ± SD 1.49 ± 1.44 1.03 ± 0.79 0.169

Tracheostomy performance 0.700
Yes 42 (13.24) 8 (10.66)
No 275 (86.76) 67 (89.34)

N, numbers; SD, standard deviation; WBC, white blood cell (normal range: 3500–11,000/µL); CRP, C-reactive
protein (normal range < 5 mg/L); Sugar (normal range: 70–100 mg/dL). Maximum diameter of abscess and
nearest distance from abscess to inlet of trachea were evaluated in CT scan.

Based on the parameters which we chose, our DL model yielded a patient classification
accuracy of 78.66% (59/75). The analysis revealed that the sensitivity and specificity values
were 62.50% and 80.60%, respectively.
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4. Discussion

Complications of DNI can include esophageal perforation, pneumonia, internal jugu-
lar vein thrombosis (Lemierre’s Syndrome), carotid artery erosion, and airway compro-
mise [25–27]. The mortality rate is relatively high whiles these complications occur [28]. A
tracheostomy is needed in some DNI cases to secure the airway.

DL models are used for making predictions based on previous observations [6,29].
Several DL algorithms are available to analyze large datasets; through such analyses,
complex and heterogeneous data can inform real-world clinical practice and recommen-
dations [30–34]. The medical applications of DL include cancer diagnosis, prognostic
predictions, integration of clinical and genomic data, clinical trial design, and analysis of
readmission and mortality data [35–39]. With regard to infectious diseases, DL has been
used to aid diagnosis, predict severity, and determine the most appropriate antimicrobial
treatment for individual patients [40]. Wilson et al. used DL to diagnose peritonsillar
abscess with high accuracy [4]. Our DL model was able to predict whether tracheostomy
would be needed for DNI patients based on their clinical and CT data; the results suggest
that it could be used in clinical practice.

The k-NN algorithm is one of the oldest, simplest, and most accurate DL algorithms for
data mining and pattern classification, and is widely applied in many fields [17,21,41–43].
The k-NN algorithm operates on the assumption that instances in a dataset are often in
close proximity to other instances with similar characteristics; classification is based on
the similarity of instances with their nearest neighbors. The relative distance between
instances is more important than their absolute position within a given region [19]. The
k-NN algorithm is suitable for analyzing large, multidimensional datasets [41,44], and is
the optimal method when prior knowledge of the data distribution is lacking [17,45]. Fur-
thermore, there is no requirement for off-line training when using the k-NN algorithm, so it
is also time efficient [14]. It already plays an important role in the fields of transportation,
information security, and medicine [21].

As a user-defined integer, the value of k is typically small. If k = 1, the algorithm
considers the nearest neighbor to be an unclassified instance. If k = 3, k-NN compares
the distance to the unclassified instance among its three nearest neighbors [11]. When
small k values are used, approximation error decreases while estimation error increases; the
opposite trends are seen when k takes a large value. In practical applications, k generally
takes a relatively small value, and cross-validation is usually used to determine the most ap-
propriate value [21]. The 1-NN classifier is usually used as a benchmark for other classifiers
because it exhibits reasonable performance for many pattern classification problems [14].

In this research, most patients were males, and this preponderance has been detected
in former reports [9,46]. The average age of our patients was middle age, which was
consistent with the prior researches [47,48]. Only significant factors can be used for clas-
sification [23], and research is ongoing to determine how to identify the most important
variables and features for learning algorithms [49–51]. In this study, factors were selected
for the DL model based on the ease of implementation and interpretation, with the goal of
providing clinicians with insight into the circumstances under which tracheostomy should
be performed. We considered the maximum diameter of the abscess, and its distance from
the upper airway inlet on CT scans, to be the most influential parameters with regard to
the decision to perform tracheostomy. Therefore, we included these two CT parameters in
the training model.

As shown in Table 2, no significant differences were observed in clinical variables or
CT parameters between the training and test groups. As with other DL models, we input
retrospective data, such that the model was based on the past decisions of clinicians. Our
DL model yielded a prediction accuracy of 78.66%. Failure to achieve a better accuracy
may have been related to the variables used in the model, and to the subjective nature of
clinicians’ decisions to perform tracheostomy. We did not consider the reason why DL is
necessary because of the increasing errors of physicians’ clinical judgment. Conversely, this
DL model can help clinicians determine whether patients should undergo tracheostomy
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at the beginning of the treatment course; this could be especially valuable for physicians
who are less experienced in making decisions about whether to perform tracheostomy.
Well-designed models with acceptable prediction accuracy based on training data can be
tuned to handle new data inputs [6].

Study Limitations

Limitations of this study included the use of retrospective data, reliance on patient
self-reports for medical history data, subjective judgment, and decision making for tra-
cheostomy, and manual measurement of CT scans. Thus, the disparities or inconsistencies
could occur due to these biases. This pilot study is preliminary research, which has several
deficits to address. Furthermore, the dataset was also relatively small (n = 317 in training
group; n = 75 in test group) and based on a single institution.

5. Conclusions

We demonstrated a DL model to predict the need for tracheostomy based on patients’
clinical and CT data. It can help clinicians to decide whether tracheostomy should be
performed in cases of DNI, and may lead to improvements in critical care.
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