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It is well known that individuals in the same community can be exposed to a

highly variable number of mosquito bites. This heterogeneity in bite exposure

has consequences for the control of vector-borne diseases because a few people

may be contributing significantly to transmission. However, very few studies

measure sources of heterogeneity in a way which is relevant to decision-

making. We investigate the relationship between two classic measures of

heterogeneity, spatial and individual, within the context of lymphatic filaria-

sis, a parasitic mosquito-borne disease. Using infection and mosquito-bite

data for five villages in Papua New Guinea, we measure biting characteristics

to model what impact bed-nets have had on control of the disease. We combine

this analysis with geospatial modelling to understand the spatial relationship

between disease indicators and nightly mosquito bites. We found a weak

association between biting and infection heterogeneity within villages. The

introduction of bed-nets increased biting heterogeneity, but the reduction in

mean biting more than compensated for this, by reducing prevalence closer

to elimination thresholds. Nightly biting was explained by a spatial heterogen-

eity model, while parasite load was better explained by an individual

heterogeneity model. Spatial and individual heterogeneity are qualitatively

different with profoundly different policy implications.
1. Introduction
Heterogeneities in disease transmission play an important role in the epidemiol-

ogy of vector-borne diseases and influence opportunities for control. The

heterogeneous exposure to mosquito bites can drive vector-borne disease hotspots

[1], and is a crucial factor in the optimal design of disease control intervention [2].

The degree of exposure heterogeneity can be as important as mean transmission

rates in driving patterns of disease [3], but methods for measuring this hetero-

geneity vary and are rarely compared in the same setting [2,4,5]. It is also

unclear how best to evaluate the heterogeneity of exposure within individuals

in order to inform modelling and policy [6].

There are multiple levels of heterogeneity that contribute to the aggregation

patterns of disease observed within a community: spatial heterogeneity, which

is largely governed by ecological variation and environmental conditions [7],

and individual heterogeneity, which is governed by many factors such as socioe-

conomic, behavioural and physiological variation among hosts [8,9]. In the context

of heterogeneous exposure to mosquito bites, spatial heterogeneity may be due to
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Table 1. Policy consequences for different types of heterogeneity.

Heterogeneity High Low

Spatial different villages may have drastically different prevalence, one

cannot be compared with the other

use of sentinel sites can be justified; reduction in one village

comparable to reduction in another with the same

intervention

Individual small group of individuals highly burdened and

disproportionately contributing towards ongoing infection;

targeted treatment may be necessary

low variation in individuals implies blanket coverage would be

effective; no small subset of population driving disease

implying systematic non-adherence less of an issue
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landscape, rainfall, breeding site productivity, insecticide use,

household size or urbanicity [1,10–13]. Individual attractive-

ness to mosquitoes will differ by sex, age, size and variability

in human odours [14–16]. Spatial variation exists at multiple

scales [9,13,17]—with different transmission dynamics between

neighbouring villages and even between households [18].

These are rarely studied in the same place or through multiple

measures. The transmission of lymphatic filariasis (LF), a mos-

quito-borne helminth infection, provides the opportunity to

explore heterogeneity in bite exposure as well as in parasite

burden. LF affects over 120 million people worldwide but is cur-

rently targeted for elimination. Our aim is to evaluate the

multiple sources of heterogeneity which could undermine the

LF elimination campaign.

Global efforts to eliminate LF through the mass distribution

of anti-helminthic drugs have resulted in a large-scale reduction

of prevalence [19]. However, there are numerous challenges to

achieving LF elimination targets using community-wide treat-

ments. Top-down, uniform strategies which aim for a specific

intervention coverage or duration are unlikely to achieve

elimination without appreciation for the significant heterogen-

eity driving transmission and extinction dynamics [20,21]. For

LF, the target of less than 1% microfilaria (mf) prevalence set

by WHO as a mark of success gives poor confidence in the prob-

ability of elimination [20]. While the recommended strategy may

be sufficient in some areas [22], other areas can require many

more rounds [23]. The true threshold prevalence below which

transmission cannot be sustained depends on competence of

the dominant vector, vector biting rates and microfilaria intensity

[24]. Failure to break transmission would require community-

wide mass drug administration (MDA) for the duration of the

adult worm’s lifespan, or direct testing and treatment, both of

which may be prohibitively costly for a scaled-down LF pro-

gramme. For successful elimination we require clear targets of

the MDA coverage and duration needed to break transmission.

Vector control can increase the likelihood that an elimin-

ation campaign of recommended coverage and duration

will achieve local elimination. The breakpoint prevalence of a

vector-borne parasitic disease, below which transmission

cannot be sustained, is dependent on vector biting density

[25–26], so vector control will help to raise the threshold micro-

filaria prevalence. Supplementing MDA with vector control

was recommended in countries where the burden is the heavi-

est [27], and evidence is mounting that vector control should be

an essential component of the global elimination strategy [28].

In addition to reducing vector-borne disease transmission,

vector-based interventions may also influence the spatial pat-

terns of exposure and risk. For preventive chemotherapy

vector-borne diseases such as LF, onchocerciasis and schisto-

somiasis, the success of community-wide coverage will be
influenced by the degree of aggregation. For example, higher

intervention coverage will be required in communities with

highly aggregated bite risk to ensure appropriate coverage of

hotspots [26]. If aggregation in biting differs significantly

from village to village, a uniform strategy may underestimate

the coverage required to break transmission across the

implementation area (see table 1).

Statistical models can be used in order to determine both

spatial and individual heterogeneity within a count distribution

[17] (figure 1). When individual heterogeneity is high, the count

distribution is heavy-tailed and an individual’s parasite count

can be far from the mean. When the individual heterogeneity

is low, the count distribution has a variance similar to the

mean. When both spatial and individual heterogeneities are

high, a highly over-dispersed distribution is produced with a

greater than expected number of zeros observed compared

with when the distribution is more spatially homogeneous.

The result of the aggregation observed under high heterogen-

eity implies that an intervention that does not obtain good

geographical coverage and population coverage may not be

able to achieve targets in reduction or elimination. These differ-

ences in the type of heterogeneity have a profound impact on

the control and elimination of parasitic disease; table 1 outlines

the policy implications for each of these scenarios.

Our understanding of the sources of heterogeneity within a

vector-borne disease transmission system is crucial for control

and elimination because high heterogeneity is often associated

with a higher basic reproduction number (R0) and a hard-to-

reach threshold at which elimination can be achieved [21,29].

However, the effect of heterogeneity on disease prevalence

will depend on numerous factors, including the transmission

dynamics of the parasite or pathogen. Malaria parasites are

cyclopropagative in the mosquito vector, while filarial worms

are cyclodevelopmental with sexual reproduction occurring

in the vertebrate host. Malaria transmission is highly efficient

and one infective mosquito could successfully transmit malaria

to multiple people. Filariasis transmission on the other hand is

inefficient, requiring continuous high exposure to the infective

stage larvae (up to 15 500 bites in one setting [30]) for a patent

infection. Filariasis transmission models show that hetero-

geneous exposure results in a higher disease prevalence at

low mean biting rates compared with homogeneous exposure,

but this relationship changes at higher biting densities [26].

The threshold biting rate, leading to a non-zero endemic equi-

librium, is significantly lower with heterogeneous biting [26].

In other words, heterogeneous exposure can sustain trans-

mission at a comparatively lower prevalence, making it

more difficult to break transmission with community-based

interventions. Universal coverage of community-based inter-

ventions in a heterogeneous system may be inefficient, even
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Figure 1. Teasing apart different types of heterogeneity. Size of houses represents relative risk in space and size of people represents relative risk in individuals.
A Gaussian process is used to simulate the mean rate (e.g. biting rate) across space, with both high (left-hand side) and low (right-hand side) variance. Com-
pounding this is the variance around the mean at each spatial location, which is referred to as intrinsic heterogeneity. Example probability distributions with a mean
of 10 and high and low heterogeneity are shown across the middle. Example outcomes for the four cases are given in the bottom row. How count data is aggregated
and whether there is heterogeneity among individuals (individual) and/or among space leads to qualitatively different forms of count distributions. Policy
implications for each of these situations are described in table 1. (Online version in colour.)
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leading to greater heterogeneity, and not protecting the high-

risk households [31]. The spread of infection to the broader

community from these households is a threat to elimina-

tion programmes and may require the integration of targeted

interventions [32]. Properly implemented targeted control

can result in impacts up to 4-fold higher than untargeted

control [5,31].

(a) Study aims
For elimination programmes to succeed, we must achieve

the appropriate coverage, continuity and combination of inter-

ventions to break transmission and prevent resurgence.

However, the approach and target coverage will depend on

the aggregation of exposure and disease. It is therefore impera-

tive to understand the impacts of heterogeneity on disease

breakpoints to better tailor interventions and elimination cam-

paigns. The aims of this study are twofold: (1) to determine

what drives the heterogeneity in LF prevalence and intensity;

and (2) to determine how aggregated biting patterns are influ-

enced by vector control and the implications for LF elimination.

The first aim compares the spatial relationships between breed-

ing sites, anopheline biting rates, and infection prevalence and

intensity to determine whether heterogeneity in disease status

is driven by heterogeneity in either spatially dependent bite

exposure or through individual variation. The second aim con-

siders heterogeneity on a village scale by quantifying spatial

aggregation of mosquito biting in five neighbouring villages

before and after bed-net distribution. The fitted village biting

heterogeneities are then used to parametrize an individual-

based transmission model to estimate the implications

of bed-net introduction on the sustainability of ongoing trans-

mission. More broadly, this study aims to evaluate which

of our standard measures and analyses of heterogeneity are

most appropriate to evaluate heterogeneities which are

relevant for infectious-disease control.
2. Methods
In order to understand the causes and effects of heterogeneity on

the prevalence of LF and its underlying intensity we consider

two approaches to analyse the heterogeneity of risk and infec-

tion. The first approach considers the non-spatial heterogeneity

in bites and mf count by fitting these distributions by village

to an over-dispersed distribution and measuring the amount of

overdispersion for each fit. These fitted distributions for biting

density are then applied to an individual-based model of LF

transmission in order to understand how vector control impacts

the ongoing transmission of LF.

The second approach considers how these indicators vary

spatially and what the spatial association is between them in

order to understand whether the heterogeneity in disease status

or intensity is driven by spatial heterogeneity, individual hetero-

geneity or both. This was done by first fitting a model of

individual and spatial variation to each disease outcome (mf

prevalence, mf intensity and antigenic prevalence) in turn. A com-

bined model was then used where the spatial variation is

dependent on the biting density.

(a) Study sites
Five villages in the East Sepik province of Papua New Guinea have

been the focus of extensive research into filariasis epidemiology

and transmission [20,33–34]. These villages received annual

MDA from 1993 through 1998, with no further interventions

until long-lasting insecticidal nets (LLINs) were distributed in

August 2009. Self-reported LLIN use ranged 75–90% [35].

(b) Infection prevalence
Antigen prevalence and microfilaria prevalence were measured in

these communities in 2008 as part of the post-MDA evaluation

[35]. This was done by BinaxNow filariasis antigen test and by

microscopic evaluation of 1 ml filtered venous blood, collected at

night (21.00–03.00). The age and sex of participants were recorded

as well as the time of blood collection. The GPS coordinates of

all households were recorded.
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(c) Mosquito collection
Mosquitoes were collected monthly by the human landing catch

method from July 2007 through July 2010 as described by

Reimer et al. [35]. Villages were divided into four quadrants and

houses were chosen from each quadrant every month for even

sampling across the village. Mosquitoes were collected in the

front of the house from July 2007 through July 2010. Quarterly col-

lection continued in Nanaha and Yauatong through December

2011. The total collection effort ranged between 40 and 48 collec-

tion nights. All host-seeking anophelines were included in the

density summary. Anopheles punctulatus comprised the majority

of mosquitoes collected; additional members of the

An. punctulatus group included An. koliensis, An. hinesorum,

An. farauti 4 and An. farauti s. s. [36].

All temporary and permanent breeding sites were geolocated.

These breeding sites were further categorized as confirmed or

potential depending on the presence of anopheline larvae at the

time of the survey.

(d) Non-spatial modelling
To determine the heterogeneity at each village before and after

the distribution of bed-nets, a negative-binomial distribution

was fitted to both the mf count and bite data, parametrized by

the mean m, and the heterogeneity parameter k. Here, a smaller

k indicates a more over-dispersed distribution and a higher k
indicates a less dispersed or more Poisson-like distribution. For

a count n, the probability distribution is defined as

P(N ¼ n) ¼ G(nþ k)

G(k)G(nþ 1)

m
k
þ 1

� ��k�n m
k

� �n
: ð2:1Þ

The negative-binomial distribution was fitted to village-level

count data using a maximum-likelihood approach. For the

nightly mosquito catches, the data were stratified before and

after LLINs were distributed as a further measure of the

impact of vector control on heterogeneity.
(e) Infection transmission model
In order to understand the fitted heterogeneity k and mean biting

density before and after the introduction of bed-nets in the con-

text of disease transmission, the results were compared with an

established model of LF transmission, TRANSFIL [26]. The

model is a multi-scale stochastic simulation of individuals with

worm burden, microfilaraemia and other demographic para-

meters relating to age and risk of exposure. Humans are

modelled individually, with their own male and female worm

burden. The density of mf in the peripheral blood is also modelled

for each individual and is dependent on the number of female

worms. The total mf density in the population contributes towards

the instantaneous density of L3 larvae in the human-biting mos-

quito population. This density combined with the mosquito

biting rate and an intrinsic factor that varies between individuals

determines the probability of an individual being infected with a

new adult worm. See [26] for a full model description.
( f ) Spatial modelling
In order to determine how much spatial variation and individual

variation contribute towards differences in disease status between

individuals a number of geospatial models were implemented.

These models take into account distance to breeding sites,

anopheline biting rates, and infection prevalence and intensity.

The first group of models compare the measured disease statuses

dependent on a random spatially varying risk. The second group

of models combine together the biting density and disease

status, by assuming that spatial variation in status is determined

by the biting density alone.
Gaussian process. The underlying spatial variability (in mos-

quito bites, mf intensity, parasitaemia and antigenaemia) is

modelled using a Gaussian process S(xi) for each spatial location

xi. A Gaussian process describes the spatial relationship between

different spatial locations and is defined as, given a set of locations

fxig, the probability of observing the set fS(xi)g is a multivariate

Gaussian probability with zero mean and a defined covariance

function. For flexibility and computational reasons, a Matérn

covariance function was used, which is defined as

Cov(S(xi), S(xj)) ¼
s2

2n�1G(n)
(kkxi � xjk)nKn(kkxi � xjk), ð2:2Þ

where Kn is a modified Bessel function of the second kind and

order n . 0. The Matérn covariance function has three free par-

ameters which control the marginal variance, the distance of

spatial correlation and the sharpness of the function. These par-

ameters can be combined to give the distance at which there is

less than 10% correlation between two points, which is given asffiffiffiffiffi
8n
p

=k. This is referred to as the practical range.

Modelling distance to breeding sites. A second set of data includes

the spatial locations of sites that may contribute to mosquito breed-

ing. These sites include pig houses, creeks, gardens and garden

houses. These data and the household bite data do not match up

in terms of their geolocations. In order to circumvent this problem,

we may instead use the minimum distance to a breeding site as a

covariate to inform the models. All breeding sites are assumed to

be equivalent whether they contained anopheline larvae or not,

as there are only a limited number of sites, so as to increase

power of the covariate.

Random walk latent model for breeding site distance. The relation-

ship between minimum distance to breeding sites and the number

of bites was found to be nonlinear (see the electronic supplemen-

tary material). In order to capture the full complexity observed

in this relationship a more general functional form of the distance

dj was used, i.e. f (dj). For this functional form, distances were split

into a discrete lattice of points. Each lattice point k then has a cor-

responding coefficient xk related to the nightly bites through the

log intensity in the negative binomial. The assumed model was a

random walk of length one, i.e. xkþ1�N(xk, s
2). The fitted function

f (dj) then returns the coefficient xk corresponding to the nearest

lattice point to the actual distance dj.

Infection status and mosquito catch models. Both the infection

status of each individual and the mosquito nightly bites were

modelled separately using a generalized linear model including

fixed effects for each observed variable (electronic supplemen-

tary material, figure S1). The general form of the model is,

given a set of observations fyig at spatial locations fxig, the out-

comes yi have the distribution

Yi jmi � X(mi): ð2:3Þ

For a general random variable X, with underlying mean mi. The

mean is also a random variable with the structure

f (mi) �
X

j

bjzij þ S(xi), ð2:4Þ

where f is a link function transforming the mean from the posi-

tive numbers to the entire real line, zij is the jth covariate for

the ith data-point and bj is the regression coefficient for the jth
covariate, which also includes an intercept. S(xi) is the Gaussian

process as previously defined.

For both the mosquito bite model and the mf count model,

the random variable X that the observations are drawn from is

assumed to be negative binomial with aggregation (hetero-

geneity) parameter k. The microfilaraemia and antigenaemia

models have observations that are either positive (1) or negative

(0), and hence the observations are assumed to be drawn from a

Bernoulli random trial, i.e.

P(X ¼ x jm) ¼ mx(1�m)1�x: ð2:5Þ
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The link function for the negative-binomial models was taken to

be log and the link function for the Bernoulli models was taken

to be logit.

The fixed effects for each model considered for the infection

status models were the distance to breeding site, age of the indi-

vidual and the sex of the individual. For the mosquito bite

model, the covariates included were the presence or absence of

bed-nets and the distance to breeding site.

Combined model. The models for the infection status were gener-

alized to have this Gaussian process derived from the mosquito

catch data, rather than including an independent spatial Gaussian

process. The two-level hierarchical structure incorporates both the

disease status for an individual Yi and the bites at household

locations Bi. Both observations are drawn from their own random

variables X and Y , with underlying means mi and ni, respectively.

The random variables are connected through a linear model struc-

ture of these two means with their covariates combined with a GP

fitted to the transformed bite means. This GP is related to the infec-

tion status mean through the coefficient h, which measures the

dependency of the infection status mean on the underlying spatial

distribution of bites conditioned on the fixed effects of the bites.

Mathematically, the model is defined as

Yi jmi � X(mi), ð2:6Þ
f (mi) �

X
j

bjzij þ hS(xi)þ ui, ð2:7Þ

Bi jni � Y(ni) ð2:8Þ
and g(nk) �

X
j

zjzkj þ S(yk): ð2:9Þ

Here the underlying Gaussian process is assumed to capture the

distribution of bites, and is fitted to both the bites and infection

status simultaneously. h gives the strength of the dependency on

the underlying spatial structure of bites on infection status and ui

is a random effect with variance s2
u used to capture the variation

observed in the infection status that is not captured by the bite data.

Model fitting. The model fitting was performed using the

R-INLA package [37]. This implements an integrated nested

Laplace approximation (INLA) method, which is a faster alterna-

tive to Markov chain Monte Carlo (MCMC) for certain classes of

models. The package also approximates the Gaussian process as

a Gaussian Markov random field (GMRF), which approximates

the continuous space used in GP, by a discretization of space

using a triangulation based on the spatial location of the data

points [38–39]. The spatial model fitting also provides an

estimate of the underlying mean and variation across space.

Model comparison. In order to systematically compare the

spatial and non-spatial variants of the mosquito nightly catches

(bites) and mf, the Akaike information criterion (AIC) was

used to assess which model produces a better fit to the data

[40]. This is defined as

AIC ¼ 2k � 2 log (L), ð2:10Þ

where L is the maximum likelihood of the model and k is the

number of model parameters. Two AIC were compared by

taking the difference of the two.
3. Results
The LF antigen prevalence, microfilaria prevalence and inten-

sity were collected from all consenting community members

(n ¼ 1046 individuals). Nightly biting data were collected

from 170 households with 2180 sampling nights total (figure 2).

(a) Heterogeneity within villages
A negative-binomial distribution was fitted independently to

bite counts in each village before and after the introduction of
bed-nets (LLIN) (figure 3a). There is significant variation

in the heterogeneity between villages pre-LLIN. A reduc-

tion in k, corresponding to an increase in heterogeneity, is

observed across most villages. Where this reduction is signi-

ficant is in Albulum, Nananha, Ngahmbule and Yauatong.

For Peneng, there is observed a reduction in the maximum-

likelihood estimate of k, although the confidence intervals

of the estimate overlap.

To determine whether aggregated biting patterns were

associated with an aggregated parasite population, we com-

pared the pre-LLIN bite rate heterogeneity with the mf count

heterogeneity (figure 3b). There was observed a large amount

of variation in the mf count heterogeneity, with Nanaha and

Nghambule less than 0.0125, and Peneng, Yauatong and

Albulum with heterogeneity greater than 0.03. The hetero-

geneity in the mf counts is significantly greater than the bites

in all cases. There is a positive relationship between the two

heterogeneities, although the correlation is extremely weak

(correlation coefficient 0.012).

(b) Impact on elimination
The change in the vector-to-host ratio and the heterogeneity in

bites after the intervention of bed-nets was explored using the

stochastic model of LF transmission TRANSFIL [26]. The

number of rounds to 1% microfilaraemia (which is used as an

assessment for halting MDA [41]) and the prevalence at base-

line before the start of any intervention were calculated

across a range of bite heterogeneity and vector-to-host ratio

values (figure 4). The threshold at which transmission is

broken and infections are no longer sustained in the population

was also calculated from these simulations. For increased het-

erogeneity, a smaller vector-to-host ratio, and therefore mean

monthly bite rate, can sustain transmission. However, for

decreased heterogeneity the vector-to-host ratio required to

sustain infection increases. The effect of bed-nets can be seen

to both reduce the vector-to-host ratio as well as increase the

heterogeneity of bites, although for the villages in the study,

the reduction in the vector-to-host ratio more than offsets the

increased heterogeneity. Figure 4b highlights the number of

rounds required to pre-TAS without any prior intervention.

For high heterogeneity many more rounds would be required

than for the equivalent bite rate at smaller heterogeneity. The

impact of bed-nets can clearly be seen to rapidly reduce the

number of rounds required in each village. The range in pre-

dicted rounds between villages is also large; this is, however,

reduced by the introduction of bed-nets.

(c) Spatial modelling
With a weak but positive association between heterogeneous

biting and heterogeneous infection, we sought to determine

whether this pattern could be interpreted due to spatial vari-

ation. Spatial heterogeneity was therefore explored for both

the bite distribution and distribution of mf count, microfilar-

aemia and antigenaemia. The fixed effects considered for

each of the infection status spatial models were sex of the

individual, age of the individual and the minimum distance

to breeding site. For the spatial mosquito catch model, both

the presence of LLIN and distance to breeding site were con-

sidered as fixed effects. There was found to be no significant

seasonal trend in bites, and hence month at which bite survey

was conducted was not included. There was also found to be

no significant trend in the time at which bleeds were taken,

and hence this was also not included.
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indicates Yauatong is a hotspot for biting, and Albulum and Yauatong are hotspots for the presence and intensity of mf. Grey values in (c,d ) indicate zero values for
the nightly bites and mf concentration, respectively. (Online version in colour.)
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For the infection status models, age was found to be stat-

istically significant in all cases (p , 0.001), although with a

small effect in all cases. Sex of the individual was found to

only be marginally significant ( p ¼ 0.15, 0.05, 0.02 for micro-

filaraemia, antigenaemia and mf count, respectively), with

males having an increased risk of microfilaraemia, antigenae-

mia and mf count. The distance to breeding site was not

found to be significant for any of the cases.

For the spatial mosquito catch model the presence of LLIN

was found to be statistically significant, with the presence of

bed-nets decreasing the coefficient by 76%. The distance to

breeding site was both not statistically significant and had a

very small effect compared with the intercept. The overall cal-

culated k for the infection status mf count model was estimated

at 0.05, with a standard deviation of 0.0043 and the k for the

bites model was estimated to be 0.73 with a standard deviation

of 0.035. The overall heterogeneity in both cases was, therefore,

broadly in keeping with the estimates of the villages separately,

where the mf count heterogeneity varied between 0.05 and 0.01

and the heterogeneity of bites for the villages where the mf

surveys were conducted was between 0.9 and 0.3.

The fitted spatial model also provides an estimate of the

mean intensity for infection status and bites across space
(figure 3c,d). The estimated bite rate intensity is distributed

around Yauatong, with a maximum bite rate of around 60

(figure 3d). This decreases smoothly to zero out towards

Ngahmbule to the southeast and Peneng to the northwest. By

contrast, both the prevalence of antigen and mf have the high-

est intensity around Peneng in the northwest, with a smooth

decrease down towards Ngahmbule. Both prevalence spatial

patterns exhibit different underlying intensity. There is a sig-

nificant increase in antigenaemia around Yauatong, with a

similar, but less pronounced increased risk of microfilaraemia.

The uncertainty in prevalence of mf is high for Peneng,

Albulum and Yauatong in the northwest, and small in the

southwest (near Yauatong), where the mean prevalence is

around 40%. The mf count mean is more varied than for the

other distributions, with high-intensity areas around the

southern part of Yauatong, Albulum and the southeast per-

imeter of Peneng. Ngahmbule and Nanaha have the lowest

mf count matching with the lowest villages for antigenaemia

and bite rate. Peneng has high levels of antigenaemia and mf

count; however, it is the lowest for bites.

In order to understand the difference in spatial scale

between infection status and bites, the fitted covariance struc-

ture from the mf count spatial model was compared with the
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structure from the bite model (electronic supplementary

material, figure S1). The practical range for the mf spatial

correlation was smaller than the range for the bites (0.0148 to

0.0088 or �1.5 km to �0.9 km). The difference in the marginal

(non-spatial) variance is also great, with the variance for the

mf field s2 ¼ 38 and the variance for the bites s2 ¼ 5. There

was found to be no significant difference in the fitted k (sharp-

ness of covariance) between the mf and bite count.

The change in AIC between the spatial and non-spatial

model for mf was 1308.26, whereas for the bites model was

2352.03 indicating the bite distribution is better explained

by a spatial model and mf count is better explained by a

non-spatial model.

Combined model. In the final analysis, the bite data and infec-

tion status data were combined to produce a bite-count-

dependent spatial field that is also used to predict the distri-

bution of mf count, antigenaemia and microfilaraemia

separately. The fixed effects used in the first spatial analysis

were kept for the combined model. All fixed effects were

found to have a similar strength and significance as in the sep-

arate models. The coefficient that described the strength of the

bite rate spatial field on the outcome of the disease status

spatial distribution was also calculated. These coefficients

were found to be significant for mf count, microfilaraemia

and antigenaemia. The largest dependency was for mf count

(1.71 (1.38, 2.06)), with antigenaemia the second strongest

(1.17 (1.13, 1.21)) and microfilaraemia the weakest (1.00 (0.96,

1.00)). A spatially independent random-effects term was also

included in the model to account for all variation not already

accounted for by the fixed effects or the spatial distribution
produced by the bites model. These were found to be negligible

in all cases.
4. Discussion
The primary aim of the study was to determine whether hetero-

geneous biting activity drives the observed heterogeneity in LF

prevalence and intensity. We observed a much more complex

picture than previously expected, with heterogeneity being

driven by both spatial biting patterns and individual processes.

The secondary aim was to determine how aggregated biting

patterns are influenced by vector control and determine the

implications for LF elimination. Combining a statistical and

modelling approach, we demonstrate that vector control

increases heterogeneity while also uniformly reducing biting.

This resulted in decreased variability in the predicted

number of years required to achieve elimination between

neighbouring villages in Papua New Guinea.

Heterogeneity poses numerous challenges to global elimin-

ation programmes that rely on broad-scale mapping to inform

distribution of community-wide interventions. Heterogene-

ities in exposure and infection are well-known drivers of

persistent disease transmission. Diseases such as LF have com-

plex ecological interactions that can lead to threshold

behaviour, where sustained transmission is dependent on

biting density or parasite load [24]. The basic reproduction

number R0 is expected to be greater under heterogeneous

biting [42]. The probability of re-introduction of a disease in a

fully susceptible population can also have a nonlinear
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relationship with the basic reproductive number of the infec-

tion [43]. The potential for transmission can be dependent on

heterogeneous exposure (some people bitten by mosquitoes

more than others), poor mixing (non-random contacts between

hosts and mosquitoes) and finite population sizes (each

host can contribute at most one new infection towards the

population total) [44].

Heterogeneities in infection can complicate disease surveil-

lance programmes since public health infection mapping is

usually performed at village/town level, while interventions

are often implemented at a broader administrative level. Data

aggregated by population can hide the true patterns, which

are more apparent when data are considered in a spatially

explicit fashion. It is therefore imperative to understand the

relationship between the underlying heterogeneity for these

scales and how this heterogeneity impacts the efficacy of inter-

ventions [17]. Spatial and individual heterogeneity should be

considered in order to ensure implementation policy is appro-

priate to local transmission and epidemiology (table 1).

Individual heterogeneity of infection in a population

reduces the likelihood that community-wide interventions

are protecting the highly exposed. As a result there is a lower

threshold mf prevalence required to break transmission and a

greater likelihood that high-density infections in a few individ-

uals can seed new infections (figure 1). Spatial heterogeneity

can also conflate an elimination campaign, as there may be

regions of high disease burden adjacent to regions with low

rates of transmission. This poses a significant challenge when

sentinel and spot-check sites are used to determine the preva-

lence for an entire region for the purposes of implementation

[45]. This may lead to limited resources being wasted on

MDA distribution in villages that have lower than threshold

prevalence, while possibly missing areas that will require a

longer duration of MDA to break transmission.

We observed a strong spatial correlation between biting

density and antigenaemia, which captures current or prior

presence of adult worms, including amicrofilaraemic infec-

tions. While biting density was also significantly associated

with microfilaria intensity, this association was weaker than

for either antigen or microfilaria prevalence, indicating a

weak relationship between high exposure to mosquito bites
and intensity of infection. Although the distance to breeding

site was not statistically significant for infection status or

bites, there is a stronger mean effect from the bite counts

than from the infection status. The distance to breeding site

would naturally be more associated with biting density,

whereas infection status is more strongly dependent on other

factors, hence the weaker regression effect. As current microfi-

laria intensity is the result of fecund adult worms that have

established after years of exposure to infective bites, long-

term changes in the mosquito population may not be taken

into account from the current distribution of breeding sites.

Previous studies in these study villages have shown that high

density infections are associated with reduced strain variation,

and are not necessarily due to multiple adult worms [46]. Host

immunity or W. bancrofti strain fecundity probably play a

greater role in the intensity of microfilariae.

In our study heterogeneity in bite exposure varied substan-

tially from village to village before the LLIN distribution, and

this was associated with wide-ranging predictions on the

number of rounds of MDA required to break transmission.

Heterogeneity increased significantly after the introduction of

LLINs in all villages except the one village with very low

pre-LLIN biting rates, resulting in a very similar heterogeneity

parameter across the five villages. The greater heterogeneity

observed post-LLIN in all communities is associated with a

transmission threshold at a lower mean biting rate. In this par-

ticular transmission system, the reduction in vector density

caused by the LLIN distribution compensated for this change

in threshold biting rate. However, it does highlight the extreme

importance of considering heterogeneity in elimination strat-

egies, because changes in heterogeneity cause elimination

targets to move. Globally there are 54 countries engaging in

preventive chemotherapy for the elimination of LF [47], and

each of these countries will need to decide when to stop

MDA and switch to long-term surveillance. That decision

will be made based on the available evidence that microfilaria

prevalence has fallen below 1% in sentinel villages, but

there is a risk that the minimum duration of MDA will differ

significantly between neighbouring villages.

Statistical models can help shed light on the complex fac-

tors that contribute towards heterogeneity in disease-burden
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and transmission [48]. While heterogeneity in the vector

population can lead to a particular aggregated exposure,

there is an assumption that aggregated exposure leads to an

aggregated burden of infection. In transmission models for

macroparasites, there is usually an explicit distribution of

risk across individuals in the same community, but it is

often parametrized against the resulting distribution of infec-

tion burden rather than vector data [26,49,50]. Here we have

demonstrated that factors including individual and spatial

heterogeneity can all contribute towards the perceived vari-

ation in the aggregated distribution (figure 1). Although

here bites are measured at the household as opposed to the

individual-level, these results suggest that modelling should

more explicitly take into account other aspects that lead to

the final distribution, such as strength of infection-blocking

immunity. However, we acknowledge that variation in infec-

tion burden has been much more frequently measured than

variation in vector biting rates, due to understandable practi-

cal challenges, and therefore this may be the best way to

proceed in the absence of more vector data. In other vector-

borne disease, heterogeneity in exposure is rarely explicitly

included in transmission models, despite a number of

measurements and theoretical studies highlighting its impor-

tance [1,3,5,7]. Our study once again demonstrates the likely

impact of these heterogeneities, and the need for more epide-

miological and entomological studies performed at the same

time and in the same place. While these data are challenging

to interpret, larger studies would allow us to identify the

right correlates of current transmission rates and the likely

impact of control.
5. Conclusion
Understanding sources of heterogeneity is important both in

disease modelling and ultimately in the control and
elimination of a disease. We have comprehensively demon-

strated here that individual and spatial heterogeneity can

impact disease prevalence and intensity in different ways,

and has direct implications to policy. There are many logis-

tical and financial challenges to sustaining long-term MDA

campaigns in a setting like Papua New Guinea, where com-

munities are hard to reach and departments of health have

competing priorities. The risks of resurgence if programmes

fail to break transmission thresholds would compromise the

gains already made by global elimination efforts. Therefore,

knowledge of the degree of heterogeneity is necessary to

understand where transmission thresholds lie, and under-

standing the sources of heterogeneity is essential to

designing and delivering interventions with the greatest

chance of success.
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