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A B S T R A C T

Background and objectives: Widespread use of antibiotics has resulted in selection pressure on genes

that make bacteria non-responsive to antibiotics. These antibiotic-resistant bacteria are currently a

major threat to global health. There are various possibilities for the transfer of antibiotic resistance

genes. It has been argued that animal vectors such as Rattus norvegicus (R. norvegicus) living in hospital

sewage systems are ideal for carrying pathogens responsible for fatal diseases in humans. Methodology:

Using a metagenomic sequencing approach, we investigated faecal samples of R. norvegicus from three

major cities for the presence of antibiotic resistance genes. Results: We show that despite the shared

resistome within samples from the same geographic locations, samples from hospital area carry sig-

nificantly abundant vancomycin resistance genes. Conclusions and implications: The observed pattern

is consistent with a selection for vancomycin genes in the R. norvegicus microbiome, potentially driven

by the outflow of antibiotics and antibiotic-resistant bacteria into the wastewater systems. Carriage of

vancomycin resistance may suggest that R. norvegicus is acting as a reservoir for possible transmission

to the human population.
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BACKGROUND AND OBJECTIVES

The clinical burden of infections caused by antibi-

otic-resistant pathogenic bacteria is an increasing

challenge worldwide. Especially the nosocomial in-

fections with multi-resistant bacteria are problem-

atic because of the rising difficulties in targeted

treatment that result in increased morbidity and

mortality particularly in immunocompromised pa-

tients [1,2]. For four decades, the preferred choice

of antibiotic drug to target methicillin-resistant

Staphylococcus aureus (MRSA) has been vancomycin

[3]; this has likely contributed to an increase in the

number of vancomycin-resistant Enterococcus sp.

(VRE) as well as vancomycin-intermediate-resistant

S. aureus and vancomycin-resistant S. aureus strains

identified in patients [4].

Resistance to vancomycin was first reported in

Enterococci sp. in 1988 [5, 6] and is conferred by

van operons, where vanA and vanB are clinically rele-

vant and most investigated van operons [7]. Both

vanA and vanB operons are mobilizable. Although

vanA is typically located in Tn1546-like transposable

elements that frequently reside on plasmids [8],

vanB is often a part of a larger conjugable chromo-

somal element (Tn1549) [9, 10] but has also been

observed on plasmids [11]. The pathogenesis of VRE

ranges from infections of the urinary tract, biliary

tract and wounds to severe bacteraemia and endo-

carditis, frequently linked to fatal outcome [12, 13].

VRE are more difficult to treat than the antibiotic

susceptible species and therefore VRE infections

are more often correlated with poorer prognosis

and increased number of hospitalization days [14–

17]. The resistance rate of clinical VRE in the period

from 1995 to 2002 has increased from�47 to�70%

in the USA [1], likely accounted by an increased use

of vancomycin and other antibiotics in hospitals.

The use of antibiotics in the hospitals can be

traced in the wastewater system of the hospitals,

where both antibiotics and antibiotic-resistant bac-

teria are readily detected [18–22]. There is a risk that

the antibiotic-resistant bacteria in the wastewater

systems can interfere with the local ecosystem.

First, antibiotics in the environment can select for

resistant bacteria. Second, resistance traits can

spread horizontally to the locally adapted sensitive

bacteria when resistance functions are mobilizable.

The gut of Rattus norvegicus (R. norvegicus) has been

hypothesized to act as an incubator for antibiotic-

resistant bacteria from the hospitals [23]. In this

case, R. norvegicus could migrate and carry the

antibiotic resistance genes or possibly carry mobile

genetic elements acquired from the hospital

wastewater systems.

In this study, we compare R. norvegicus faecal sam-

ples from hospital and non-hospital environments

using a metagenomics DNA sequencing approach.

We show that the faeces of R. norvegicus from hos-

pital environment have elevated levels of vanco-

mycin resistance genes.

METHODOLOGY

Faecal samples were collected from urban areas of

Malaysia, Hong Kong and Denmark. All Danish sam-

ples from wild rats (n = 20) were collected from four

locations within the Copenhagen area: Egedal mu-

nicipality (EM) (n = 3), Copenhagen University

Hospital (CUH) (n = 6), Botanical Garden of

Copenhagen (BGC) (n = 2) and Amager East (AE)

(n = 9). In addition, five samples were collected in

Kuala Lumpur (KLU), Malaysia, one in Kuala

Langat, Malaysia and two samples were obtained

from Hong Kong, China. Freshness of the samples

was assessed by visual and tactile inspection. Rat

fecal matter is easy to recognize visually. However,

we performed a metabarcoding study on six of the

samples, data published elsewhere [24], to confirm

that they had R. norvegicus origins. The samples col-

lected in Asia were shipped at ambient temperature

in Falcon tubes and immediately frozen upon arrival.

The samples from Denmark were frozen at –20�C

within 24 h of collection.

The frozen faecal samples were vortexed vigor-

ously in 800 ml of PBS for 1 min and incubated at

room temperature for 30 min. Following the incuba-

tion, the samples were re-vortexed vigorously for a

minute and then centrifuged at 12 000 g for 5 min.

The supernatant was split into three aliquots of 160

ml and subsequently passed through 0.22 mm sterile

filters at 6000� g for 5 min. Each of the three filtrates

were nuclease treated using 14ml Turbo DNase (2 U/

ul)(Ambion), 6 ml Baseline ZERO DNase (1 U/ul)

(Epicentre), 6 ml RNase Cocktail (Ambion), 8.5 ml

sterile water and 20.5 ml 10� Turbo buffer in a total

volume of 205 ml and incubated at 37�C for 2 h. The

three aliquots were pooled and nucleic acid extracted

using the QIAamp Viral RNA Mini Kit (Qiagen), fol-

lowed by the addition of 1 ml RNase Out (Invitrogen)

to the extract. Indexed DNA libraries were subse-

quently prepared using Nextera XT DNA Sample

Preparation kit (Illumina), according to the manu-

facturers’ guidelines. All subsequent sequencing
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was performed by 100 bp paired-end sequencing on

an Illumina HiSeq 2000.

Raw reads from the HiSeq platform were

demultiplexed using Novobarcode (http://www.

novocraft.com, vBeta-0.8). For each sample,

AdapterRemoval (v1.1) [25] was used to trim low

quality bases, to remove adapter sequences from

paired-end reads and to merge paired-end reads

overlapping with more than 11 nucleotides.

The sequences were aligned to the ARG-ANNOT

[26] nucleotide database using Bowtie2 [27] (–no-

unal –end-to-end -q) and only perfect matches were

used for further analyses. All matches were masked

using Dustmasker (v1.0.0) [28] and read matches

with less than 20% low-complexity nucleotide se-

quence and longer than 75 nucleotides were con-

sidered a real match and counted. Genes with less

than ten reads mapping to them (n = 297) from all

samples were excluded.

A global mean normalization was applied to the

remaining 240 313 reads that mapped to the nucleo-

tide sequences in the ARG-ANNOT database [26].

Empirical Bayes moderated t-tests were obtained

using limma [29]. P-values were adjusted using

the Bonferroni method of multiple-testing correc-

tion. To further characterize genes differentially

distributed between hospital and non-hospital sam-

ples, we performed two-dimensional hierarchical

clustering using Euclidean distance measure.

To identify genes shared among sample loca-

tions, a gene was considered present in a location

if at least one read mapped to the gene sequence.

Assembly of the reads was performed using Ray

Meta (v2.2.0 default settings) [30] and contigs were

mapped to the ARG-ANNOT database using

bowtie2 and the contigs with a match were aligned

using BLASTn (v2.2.29+ default settings) to verify

their origin. To establish the microbial composition

of the samples we applied MetaPhlAn (v1.7.7 default

settings) [31] on the reads of the samples.

RESULTS

Rat faecal samples were collected in the vicinity of

Copenhagen University Hospital (CUH), and several

urban, non-hospital locations in Copenhagen,

Malaysia and Hong Kong. DNA from the samples

was isolated and sequenced using a metagenomic

approach and a total 240 313 reads were mapped

onto the ARG-ANNOT [26] database that comprises

1689 curated antibiotic resistance genes of which 89

are vancomycin resistance genes. Read mapping to

the antibiotic resistance genes showed that 63 of

these 1689 genes had at least 10 mapped reads

across samples, and they were considered hits

(Supplementary Fig. S1). There were 2697 unique

reads mapping to vancomycin resistance genes. A

student’s t-test demonstrated a significant differ-

ence between the samples from the hospital area

and all other locations in terms of the total uniquely

mapped reads. Out of the 63 genes with at least 10

mapped reads, 13 genes had significantly higher

amounts of mapped reads in hospital compared to

non-hospital samples. Nine of these significantly

abundant genes were vanB genes. Two-dimensional

hierarchical clustering of these genes with all sam-

ples demonstrated high levels of vancomycin genes

in the CUH samples (Fig. 1a). Hierarchical cluster-

ing of all normalized reads mapping to ARG-ANNOT

genes showed a clear clustering among CUH sam-

ples (Fig. 1b). To establish the common resistome

and shared antibiotic resistance genes, we grouped

the samples based on locations and compared the

read counts of antibiotic resistance genes. If a gene

had at least one read match, it was considered to be

present. A majority of genes (15) were shared among

all locations in the Copenhagen area (Fig. 1c),

whereas 13 genes were specifically present in CUH

samples. The urban Copenhagen area (AE, CUH,

BCG) had a shared resistome (18 genes) that was

not shared with the rural EM samples. In summary,

there clearly appeared to be a shared resistome

among samples in the Copenhagen area, but the

samples from CUH carried a specific set of genes

(13), that were not present in other samples from

Copenhagen (Fig. 1c).

To obtain more information on the underlying

genomic sequences represented by all reads, we de

novo assembled the reads into contigs. The contigs

resembling vancomycin-resistance genes were short

(100–750 nucleotides), but the majority of them

mapped with high similarity to the vanB operon

SAU16 (Acc:KF823968) or SAU28 (Acc:KF823969),

which is typically located on the transposon Tn1549.

We therefore mapped all reads from the hospital

samples to the Tn1549 transposon (accession num-

ber: NG_035288) to see the combined read distribu-

tion (Supplementary Fig. S2). The consensus

sequence of the mapped reads had 99% identity to

Tn1549, an average read depth of 54 and the entire

Tn1549 sequence had a read depth of at least one.

Furthermore, when mapping to MetaPhlAn marker

genes in samples across the geographical locations,

we observed low quantities of Enterococcus faecalis
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and Enterococcus faecium (<0.5% in samples from

AE, EM, HK, KLU and CUH) and S. aureus (< 0.08%

in samples from AE, EM, BGC, KLU and CUH).

CONCLUSIONS AND IMPLICATIONS

Recent investigations of antibiotic resistance genes

in environmental, human gut and faecal samples

from wildlife have revealed the presence of a variety

of antibiotic resistance genes, collectively called a

resistome [32–34]. The resistome from urban R.

norvegicus faecal samples from seven locations in

three major cities around the world revealed the

presence of a variety of genes associated with

antibiotic resistance (Supplementary Fig. S1). The

resistomes from the hospital locations clearly clus-

ter together, whereas the other samples show no

tendency of geographical clustering (Fig. 1a

and b). A t-test analysis showed significant differ-

ences between the resistome of hospital and non-

hospital samples. Highly abundant vancomycin re-

sistance genes present in the hospital samples

primarily accounted for these differences (Fig. 1a

and c).

Contigs mapping to the vancomycin resistance

genes of the vanB genotype (Fig. 1a) had high simi-

larity to the SAU28 operon and the nearly identical

SAU16 operon in clinical E. faecium strains. One of
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Figure 1. Summary of resistome comparison. (a) Two-dimensional hierarchical clustering of significantly differentially abundant genes between hospital and

non-hospital environments. Hospital samples (labelled CUH) show higher levels of vancomycin resistance genes compared to the non-hospital samples.

Abbreviations are EM, Denmark, CUH, Denmark, BGC, Denmark, AE, Denmark, KLU, Malaysia, Kuala Langat, Malaysia (KLA) and Hong Kong, (HK).

(b) Hierarchical clustering of normalized read counts of the ARG-ANNOT mapped genes, using Euclidean distance method. (c) A Venn diagram showing the

number of genes shared among sample locations in Copenhagen area
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the most common means of the transfer of antibiotic

resistance genes between bacterial populations is

horizontal gene transfer (HGT) via mobile genetic

elements. The conjugative transposon Tn1549

carries the vanB operon as well as elements for

HGT of the transposon by conjugation [10], allowing

itself to spread to bacterial populations independent

of other mobile elements. We found that a consen-

sus sequence derived from all reads from the hos-

pital-associated samples mapped to the complete

transposon Tn1549 with 99% identity. Although nor-

mally found in the chromosome, Tn1549 has also

been found on plasmids in clinical isolates of E.

faecalis [11, 35], suggesting multiple ways of transfer

of the vanB resistance traits.

Rodents’ intestines may constitute an important

reservoir of microbes including human pathogens

such as MRSA and VRE [36, 37] and antibiotics

present in their guts may favour colonization of in-

testines by opportunistic, antibiotic-resistant patho-

gens [38]. Additionally, exposure to low levels

of antibiotics has been shown to drive the selec-

tion for antibiotic resistance genes in bacterial

communities [39]. Hence, long-term exposure of

rats to antibiotics could drive a positive selection

for resistance genes in their guts. The hierarchical

clustering of all normalized reads showed a clear

clustering among CUH samples, indicating that

vanB genes have been selected for in the guts

of R. norvegicus near hospitals (Fig. 1a and b).

Interestingly, high levels of vancomycin have been

detected from the CUH wastewater [22] (median

vancomycin concentration of 9.1 mg/l), which

could be the main driver of the selection for vanB

genes. The detection of vanB in hospital samples

suggests that antibiotics used in hospitals and

their subsequent spread to the environment

through sewage might select for VREs in the rats’

intestines.

As mentioned earlier, Rattus spp. are well-known

carriers of bacterial pathogens like MRSA,

Leptospira, Streptobacillus moniliformis etc [40, 41],

and our results indicate presence of Enterococcus

spp. as well. In addition, individual rats residing

close to hospital environments have been shown

to carry hundreds of plasmids in their gut

microbiome [23]. It could therefore be of interest to

explore if R. norvegicus can act as a vector of plasmids

and transposons carrying vancomycin resistance

genes to humans around hospitals.

Recently, risks associated with antibiotic resist-

ance in the environment were ranked, and highest

risk was attributed to antibiotic resistance genes on

mobile elements that can be acquired or hosted by

known human pathogens [42]. In this study, we high-

light this risk by demonstrating significantly higher

abundance of resistance genes exclusively in hos-

pital samples and showing that these abundant

genes are associated with mobile genetic elements.

Furthermore, the risk situation can be assessed with

an ecological perspective in which the ecological

connectivity is deemed to be a major determinant

of the horizontal transfer of antibiotic resistance

[43]. Essentially, a donor and a recipient need to be

in close contact, and still a subsequent transfer

event between habitats would be low unless the re-

cipient is under positive selection, which is the

case in the presence of antibiotics [42]. We have dis-

covered a high-risk situation that might be driven by

the elevated number of antibiotic resistance

genes and influx of antibiotics, as seen in the sewage

from the hospital use, in combination with an envir-

onmental connectivity between wastewater, rats

and humans. If humans are infected with vanco-

mycin-resistant pathogenic bacteria spread by

R. norvegicus as carrier, there could be a complete

environmental loop from rodents to humans

requiring hospitalization, and thus spreading the re-

sistance genes further to other rodents or patients

(Fig. 2).

A transmission route has been proposed for the

spread of VRE between animals and humans, but it

does not include the spread from sewage to wildlife

and subsequently to humans [44]. In this study, we

demonstrate that the transfer of antibiotic-resistant

bacteria from hospital environment to rodents is a

strong possibility. Several studies demonstrate anti-

biotics and antibiotic-resistant bacteria in sewage

around hospital environments [18–22, 45]. One

study showed a higher prevalence of extended-spec-

trum beta-lactamase-producing Escherichia coli in

rats around hospital wastewater [46]. If elevated

levels of antibiotics in the hospital wastewater are

driving the selection of antibiotic resistance in an

important vector like R. norvegicus, it is imperative

to investigate the full extent of this phenomenon on

a global scale. Besides hospitals, where the same

antibiotic selection-driven ecosystem probably res-

ides, farms with livestock also have an extensive use

of antibiotics. Assessment of the spread of antibiotic

resistance genes into important vector species in

these areas will also be highly relevant for risk as-

sessment. It would also be of outmost importance to

determine what relevant pathways exist for spread of
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antibiotic resistance genes from R. norvegicus to the

human microbiome, so that appropriate timely

measures can be taken to limit the spread of fatal

infections to humans.
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Supplementary data is available at EMPH online.
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37. Lozano C, González-Barrio D, Garcı́a JT et al. Detection

of vancomycin-resistant Enterococcus faecalis ST6-

vanB2 and E. faecium ST915-vanA in faecal samples

of wild Rattus rattus in Spain. Vet Microbiol 2015;177:

168–74.

38. Kesteman A-S, Perrin-Guyomard A, Laurentie M et al.

Emergence of resistant Klebsiella pneumoniae in the intes-

tinal tract during successful treatment of Klebsiella

pneumoniae lung infection in rats. Antimicrob Agents

Chemother 2010;54:2960–4.

39. Gullberg E, Albrecht LM, Karlsson C et al. Selection of a

multidrug resistance plasmid by sublethal levels of antibi-

otics and heavy metals. MBio 2014;5:e01918–14–14.

40. Himsworth CG, Miller RR, Montoya V et al. Carriage of

methicillin-resistant Staphylococcus aureus by wild urban

Norway rats (Rattus norvegicus). de Lencastre H (ed.).

PLoS One 2014;9:e87983.

41. Himsworth CG, Parsons KL, Jardine C et al. Rats, cities,

people, and pathogens: a systematic review and narra-

tive synthesis of literature regarding the ecology of

rat-associated zoonoses in urban centers. Vector Borne

Zoonotic Dis 2013;13:349–59.

42. Martı́nez JL, Coque TM, Baquero F. What is a resistance

gene? Ranking risk in resistomes. Nat Rev Microbiol

2015;13:116–23.

43. Cohen O, Gophna U, Pupko T. The complexity hypothesis

revisited: connectivity rather than function constitutes a

barrier to horizontal gene transfer. Mol Biol Evol

2011;28:1481–9.

44. Nilsson O. Vancomycin resistant enterococci in farm ani-

mals - occurrence and importance. Infect Ecol Epidemiol

2012;2:606.

45. Moges F, Endris M, Belyhun Y et al. Isolation and charac-

terization of multiple drug resistance bacterial pathogens

from waste water in hospital and non-hospital environ-

ments, Northwest Ethiopia. BMC Res Notes 2014;7:215.

46. Guenther S, Wuttke J, Bethe A et al. Is fecal carriage of

extended-spectrum-b-lactamase-producing Escherichia

coli in urban rats a risk for public health? Antimicrob

Agents Chemother 2013;57:2424–5..

226 | Hansen et al. Evolution, Medicine, and Public Health


