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Intra-tumor heterogeneity is a hallmark of many cancers and may lead to therapy resistance or interfere with person-
alized treatment strategies. Here, we combined topographic mapping of somatic breakpoints and transcriptional profiling
to probe intra-tumor heterogeneity of treatment-naı̈ve stage IIIC/IV epithelial ovarian cancer. We observed that
most substantial differences in genomic rearrangement landscapes occurred between metastases in the omentum and
peritoneum versus tumor sites in the ovaries. Several cancer genes such as NF1, CDKN2A, and FANCD2 were affected by
lesion-specific breakpoints. Furthermore, the intra-tumor variability involved different mutational hallmarks including
lesion-specific kataegis (local mutation shower coinciding with genomic breakpoints), rearrangement classes, and coding
mutations. In one extreme case, we identified two independent TP53 mutations in ovary tumors and omentum/peritoneum
metastases, respectively. Examination of gene expression dynamics revealed up-regulation of key cancer pathways in-
cluding WNT, integrin, chemokine, and Hedgehog signaling in only subsets of tumor samples from the same patient.
Finally, we took advantage of the multilevel tumor analysis to understand the effects of genomic breakpoints on qualitative
and quantitative gene expression changes. We show that intra-tumor gene expression differences are caused by site-specific
genomic alterations, including formation of in-frame fusion genes. These data highlight the plasticity of ovarian cancer
genomes, which may contribute to their strong capacity to adapt to changing environmental conditions and give rise to the
high rate of recurrent disease following standard treatment regimes.

[Supplemental material is available for this article.]

In recent years, tremendous progress has been made in the un-

derstanding of the complexity of the cancer genome (Stratton

2011). Studies including large numbers of patients per tumor type

have identified recurrent mutations, copy number variants, epi-

genetic changes, and genomic rearrangements specific for certain

cancer types (http://cancergenome.nih.gov/; The International

Cancer Genome Consortium 2010; The Cancer Genome Atlas Re-

search Network 2011).

Although more than 400 commonly mutated cancer genes

have been identified (Futreal et al. 2004; Santarius et al. 2010),

extensive genetic heterogeneity has been noticed across dif-

ferent cancer types and also within individual tumors (Stratton

2011; Yates and Campbell 2012). Intra-tumor heterogeneity is

a result of the action of the evolutionary forces of mutation and

selection (Stratton 2011; Yates and Campbell 2012). The tra-

ditional linear model of cancer evolution describes multiple,

successive cycles of mutations and selection leading to malig-

nant tumor cells, ultimately leading to metastases (Hanahan

and Weinberg 2000; Klein 2009; Yates and Campbell 2012). In

contrast, parallel evolution describes dissemination of tumor

cells from the primary tumor as a continuous process occurring

from very early on in tumor development. These disseminated

cells may continue to evolve independent of the primary tu-

mor, causing the formation of metastases genetically relatively

distinct from the primary tumor and other metastases (Gray

2003; Klein 2009). Several studies have focused on spatial

sampling of various cancer types to gain insight into the extent
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and complexity of tumor evolution (Campbell et al. 2010; Yachida

et al. 2010; Gerlinger et al. 2012; Bashashati et al. 2013).

Here we studied intra-tumor heterogeneity in epithelial

ovarian cancer. With an annual worldwide incidence of 220,000

and mortality of 140,000, epithelial ovarian cancer is the leading

cause of death among women with gynecological malignancies

and a disease in urgent need for improved treatment (Ferlay et al.

2010). Large-scale genomic analysis of ovarian cancer patients has

uncovered only a few recurrently mutated genes, such as TP53 and

mutations in BRCA1/BRCA2 (The Cancer Genome Atlas Research

Network 2011). Ovarian cancers show a relatively high number

of copy number variations and structural variations (SVs) (The

Cancer Genome Atlas Research Network 2011; Malek et al. 2011;

McBride et al. 2012). This may be explained by the high incidence

of deregulation of genes in the homologous recombination path-

way (BRCA1/BRCA2), which has provided opportunities for suc-

cessful treatment with PARP inhibitors (Banerjee et al. 2010;

McBride et al. 2012). Expression profiling has been instrumental

to classify ovarian cancers and revealed molecular subtypes with

prognostic relevance (Tothill et al. 2008; Verhaak et al. 2013).

Despite these advances in understanding of ovarian cancer bi-

ology, the cure rate has not much improved (Ledermann and

Kristeleit 2010; Vaughan et al. 2011).

We set out to understand the intra-tumor dynamics of treat-

ment-naı̈ve epithelial ovarian cancer by high-resolution analysis

of genomic rearrangements. Because the effects of genomic rear-

rangements in tumor development are only poorly understood, we

also examined the contribution of genomic rearrangements to

intra-tumor differences in gene expression. We found that treat-

ment-naı̈ve epithelial ovarian cancers exhibit remarkably diverse

patterns of genomic rearrangements, which in turn lead to intra-

tumor changes in gene expression, including up-regulation of

major cancer pathways in only subsets of samples from a single

patient. These findings provide novel insight in potential mecha-

nisms underlying treatment resistance.

Results

Topographic sampling of treatment-naı̈ve epithelial
ovarian cancer

Ovarian cancer is often discovered when the disease is already in

an advanced stage, resulting in the presence of a unique metastasis

pattern with cancer cells exfoliating throughout the abdominal

cavity following the peritoneal fluid circulation route. The tumor

mass is often large with metastases spread throughout the abdo-

men. Standard of care for such advanced ovarian cancer patients

involves surgical cytoreduction before starting chemotherapy

treatment. We obtained comprehensive tumor and whole blood

samples from three treatment-naı̈ve advanced epithelial ovarian

cancer patients with high tumor loads (Table 1). Patients 1 and 3

were diagnosed with a serous adenocarcinoma, whereas patient 2

was diagnosed with a carcinosarcoma, which is a less frequently

observed (<1%–4%) form of epithelial ovarian cancer (Rauh-Hain

et al. 2013). Carcinosarcoma is characterized by the mixed histol-

ogy of carcinomatous and sarcomatous components with a more

aggressive behavior and a poorer prognosis when compared with

serous adenocarcinomas (Supplemental Fig. 1; Harris et al. 2003).

For each patient, tumor biopsies were obtained during surgery

from physically separated tumor sites in the abdomen with the

final goal to obtain a representative set of samples (Supplemental

Table 1; Fig. 1A). The tumor content of each sampling site was

generally well above 50% based on histopathological measure-

ments, although computational measurements by ASCAT in-

dicated lower percentages (Supplemental Table 1; Supplemental

Fig. 1; Van Loo et al. 2010). Particularly, the metastatic tumor bi-

opsies from patient 1 (p1.IV-1, p1.IV-2, and p1.V-1) and the right

ovary tumor sample from patient 3 (p3.III) have a relatively low

tumor content. However, these samples were included in most of

our analysis, because we could compensate for the lower tumor

content by deep sequencing of identified genomic changes. A total

of 34 samples (27 tumor, seven reference samples) were obtained

and used for the analyses outlined below (Supplemental Table 2).

Heterogeneity of structural and copy number variation
in treatment-naı̈ve epithelial ovarian cancer

Ovarian cancer is notorious for its frequent genomic instability

(The Cancer Genome Atlas Research Network 2011; McBride et al.

2012). Whole-genome mate-pair sequencing allows direct detec-

tion of genomic rearrangement breakpoints based on discordantly

oriented and spaced mate-pairs (read pairs) (Medvedev et al. 2009).

We performed whole-genome mate-pair sequencing using an in-

sert size of ;3 kb (Supplemental Fig. 2) for each of the biopsies in

order to obtain a detailed and comprehensive representation of

the genomic instability within tumor samples from three ovarian

cancer patients. We used a breakpoint detection algorithm that

simultaneously clusters discordant mate-pair sequencing reads

from all tumor biopsies per patient (Kloosterman et al. 2011a),

allowing us to genotype breakpoints that are present at low fre-

quency with relatively high sensitivity, i.e., based on a single dis-

cordant read pair once a robust call is made in another sample of

the same patient. For example, given the median physical genomic

coverage of ;503, the data allow us to genotype a heterozygous

Table 1. Clinical data of epithelial ovarian cancer patients included in this study

Patient
number

Age at time
of debulking Histopathology Debulking

FIGO
stage Post-operative clinical course

1 53 Moderate to poorly
differentiated serous
adenocarcinoma

Primary, optimal IIIC Six cycles adjuvant combined intraperitoneal/
intravenous chemotherapy (cisplatin/paclitaxel).
No recurrence until 24 mo after primary debulking.

2 71 Carcinosarcoma Primary, optimal IIIC Six cycles adjuvant carboplatin monotherapy.
Progressive disease during adjuvant chemotherapy.
Patient died 11 mo after primary debulking.

3 77 Poorly differentiated serous
adenocarcinoma

Primary, incomplete IV Three cycles neo-adjuvant carboplatin monotherapy
followed by interval debulking. Three cycles adjuvant
carboplatin monotherapy. Disease recurrence at
12 mo after primary (incomplete) debulking. Patient
died 18 mo after primary debulking.
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breakpoint present in at least 5% and 14% of the tumor cells in

samples with a tumor percentage of 90% and 30%, respectively

(Supplemental Table 3). After stringent filtering and removal of SV

calls present in matching normal control samples, we found between

120 and 369 somatic genomic rearrangements across the primary and

metastatic tumor samples in three patients (Supplemental Table 4).

We used PCR to validate a set of breakpoint calls and could con-

firm 95 out of 121 tested (>78% specificity) (Supplemental Fig. 3).

Figure 1. Somatic genomic rearrangements detected in patient 1 (left), 2 (middle), and 3 (right). (A) Biopsy locations per patient. Ellipses indicate
physically separated tumors; black dots represent biopsy locations. Ellipses are not indicative for tumor size. For patients 1 and 2, ellipses are colored
according to the corresponding branch derived from the SV analysis (see panel C). Patient 1: ovaries (orange), om/per (blue). Patient 2: ovaries/pelvis
(orange), om/per (blue). (Illustration � 2010 Terese Winslow, U.S. Govt. has certain rights.) (B) Bar chart representing the distribution of the frequency of
breakpoints per patient. (C ) Heat map and clustering analysis of the detected somatic breakpoints per patient. Rows represent breakpoints, red and yellow
bars indicate the presence (red) or absence (yellow) of the breakpoint in a sample. Om/per, omentum/peritoneum. (D) Distribution of somatic rear-
rangement types per branch for patients 1 and 2 and for all patient 3 samples.
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For each somatic breakpoint detected by mate-pair sequenc-

ing, we determined the number of tumor samples that carried the

breakpoint. For patient 1, this revealed that only 2/369 somatic

breakpoints are shared between all samples, whereas the majority

was found to be shared between only four or five of the eight

samples from this patient. In patient 2 the largest number of

breakpoints is also shared between only four samples, but 34/120

breakpoints were shared between all nine tumor samples. In pa-

tient 3 the vast majority of breakpoints were shared between five

and seven of the seven tumor samples (Fig. 1B). We then performed

unsupervised hierarchical clustering using the breakpoint junc-

tions detected across each of the biopsies per patient. For patients

1 and 2, this revealed two clusters of samples. Particularly patient 1

showed two extremely different branches. For both patients, one

cluster contained all biopsies from the omentum and peritoneum,

whereas the other cluster contained all biopsies from the ovaries,

and for patient 2 also a biopsy from a tumor located in the pelvis. In

contrast to the branching patterns detected in patient 1 and 2,

a much more homogeneous pattern was detected in patient 3

(Fig. 1C). Several breakpoints overlap with cancer genes from the

Cancer Gene Census, including NF1, FANCD2, and CDKN2A and

these are all targeted by breakpoints present in only subsets of

samples (Supplemental Table 4; Futreal et al. 2004). For FANCD2

and the cancer-related genes ERBB4 and ESR1, which are targeted

by breakpoints in patient 2, we observed a sample-specific effect of

the breakpoint on gene expression (Supplemental Fig. 4). Expres-

sion of ESR1 is a prognostic factor for survival in ovarian cancer

(Zamagni et al. 2009).

Distinct patterns of genomic rearrangement classes are ob-

served among different cancers (Stephens et al. 2009; Campbell

et al. 2010; McBride et al. 2012). Analysis of breakpoint types per

patient revealed that deletions comprised the largest subset (40%)

in patient 1, which is consistent with recent findings indicating an

excess of deletions in ovarian cancer with germline BRCA muta-

tions (McBride et al. 2012), as was the case for this patient (see

below). However, more detailed analysis of branch-specific break-

points for patient 1 revealed a shift in rearrangement types be-

tween the two branches despite their shared BRCA status (Fig. 1D).

The cluster of four omental/peritoneal metastatic tumors showed

a higher percentage of somatic tandem duplication type rear-

rangements and inversions, and a lower percentage of deletions

and interchromosomal rearrangements when compared with the

cluster containing the tumors on the ovaries. In line with this, we

observed an increase in head-to-tail breakpoint junctions at a cost

of tail-to-head junctions for patient 1 in the omental/peritoneal

samples when compared with the samples that originated from

both ovaries (data not shown). A difference in rearrangement types

was, however, not apparent for the branches in patient 2. For pa-

tient 3 we observed that the majority (>40%) of somatic SVs com-

prise tandem duplications, in line with previous studies (Fig. 1D;

McBride et al. 2012). Inter-sample differences in rearrangement

signatures were not detected for patient 3.

To get further support for the dynamic patterns of heteroge-

neity revealed by the somatic genomic breakpoints in the ovarian

cancers studied here, we used SNP-array genotyping and copy

number analysis. We performed unsupervised hierarchical clus-

tering of allele frequencies derived from the SNP-array genotyping

data. The analysis includes all SNPs with differences in allele fre-

quencies across each of the biopsies per patient (;10–30K SNPs)

(Methods). Similar patterns of deviating allele frequencies for

specific subsets of samples indicate shared ancestry, whereas di-

versity of these patterns rather suggests independent evolution.

Heat map and clustering analysis of the allele frequencies of in-

cluded SNPs confirmed the results from the mate-pair analysis for

each patient (Supplemental Fig. 5).

Intra-tumor mutational profiles in ovarian cancer

Next, we screened coding sequences of a total of 2099 cancer genes

across each of the biopsies (Supplemental Table 3). We validated all

identified mutations on all tumor and matching normal tissue

samples using PCR-based resequencing on the MiSeq at >10003

coverage. The MiSeq data were also used to derive or refine muta-

tion frequencies (Supplemental Table 5). We detected 63 somatic

single-nucleotide mutations in patient 1, and considerably fewer

mutations in patients 2 and 3 (17 mutations per patient, Fig. 2A).

In patient 1, we also identified a BRCA2 germline frameshift indel

and concomitant LOH of chr 13 in the tumor biopsies.

All patients carried TP53 mutations. In patient 2 and 3 a single

TP53 mutation was detected in all tumor samples per patient. In-

terestingly, we identified two different driver TP53 missense mu-

tations (P278L and I195N) in patient 1, occurring at distinct tumor

locations. Both of these mutations have been described in the

COSMIC database (Forbes et al. 2010). Only the samples derived

from the right ovary (p1.I-1 and p1.I-2, the presumed primary

tumor), contained both TP53 mutations, albeit I195N was detected

at low frequency (1%–9% vs. 33%–77% for P278L) (Fig. 2B).

We observed 19 mutations that were unique to only a single

ovary tumor sample in patient 1 (private mutations). However,

none of the four metastases in the omentum and peritoneum

(p1.IV-1 to p1.IV-3 and p1.V-1) carried private mutations. In fact,

all mutations identified in the omentum and peritoneum cluster of

samples were ubiquitous and, with the exception of a mutation in

DLL1, all variants were also identified in the samples at the right

ovary. For patient 2, 12 of the 17 mutations were in FANCD2 and all

12 occurred in samples p2.VI-1 and p2.VI-2 within a window of

1.2 kb and comprising characteristic TpCpX trinucleotides, likely

resulting from kataegis (Nik-Zainal et al. 2012). Similar to kataegis

described in breast cancer, these mutations coincided with SV

uniquely present in these two tumor samples (Fig. 2C). Most of the

other coding variants identified in patient 2 were shared between

all samples. The majority of mutations in patient 3 were ubiqui-

tous. Two mutations occurred in the tumor suppressor gene TSC1

(one missense, P141R, and one essential splice mutation). The

TSC1 splice site mutation leads to truncation of the TSC1 tran-

script, suggesting deregulation of mTOR signaling as a possible

contributor to tumor development in patient 3 (Supplemental

Fig. 6; Dobbin and Landen 2013). An additional mutation was

found in CSMD3 in this patient, which is frequently mutated in

ovarian cancer and non-small cell lung cancer, although the

functional role of this gene in tumor formation is not clear (The

Cancer Genome Atlas Research Network 2011; Liu et al. 2012).

Only two private cancer gene single-nucleotide mutations were

found in patient 3 (sample p3.IV).

Overall, the single-nucleotide mutation data revealed a simi-

lar pattern of genetic heterogeneity as the structural and copy

number variation data for patient 1; one cluster of mutations oc-

curred at metastatic tumor sites in the omentum and peritoneum

and another cluster of mutations was found in the tumors in the

left ovary. Both clusters shared mutations with the presumed pri-

mary tumor samples (p1.I-1 and p1.I-2). Interestingly, we found

a difference in the Transition/Transversion (Ti/Tv) ratio for the two

branches in this patient (Fig. 2D), suggesting that distinct muta-

tional forces acted in different branches of the ovarian tumor in

Genome Research 203
www.genome.org

Evolution of epithelial ovarian cancer



Figure 2. Somatic single-nucleotide mutation analysis results for patients 1, 2, and 3. (A) Regional distribution of mutations across tumor samples per
patient. Blue gradient indicates the percentage of reads that carried the mutation. Gene colors indicate mutation impact: high, essential splice site or
frame-shift (orange); medium, nonsynonymous (yellow); or silent, intronic, 59 or 39 UTR (white). (B) Distribution of the two TP53 missense mutations
detected in patient 1 (P278L and I195N) across all tumor samples of this patient. (C ) Kataegis as detected in patient 2 samples p2.VI-1 and p1.VI-2. The 12
single-nucleotide changes in FANCD2 coincide with a genomic breakpoint, which is solely detected in these samples. (D) Transitions versus transversions
for patient 1. All ovarian samples (primary tumor [p1.I-1 and p1.I-2] and metastases located in the other ovary [p1.II-1 and p1.II-2]) versus the omentum/
peritoneum metastases (p1.IV-1, p1.IV-2, p1.IV-3, and p1.V-1).



patient 1 (Alexandrov et al. 2013). For patients 2 and 3 we found

much fewer mutations and several of these were present in all

samples. A mutation in BBS4 further supported the branching

pattern observed in patient 2.

Gene expression differences across ovarian cancer biopsies
reveal intra-tumor subtypes and branch-specific pathway
activation

Gene expression profiling of ovarian cancer enabled classification

in distinct subtypes associated with differences in survival and

therapy resistance (Tothill et al. 2008; Verhaak et al. 2013). We

performed RNA sequencing to measure gene expression across

each of the tumor biopsies and we detected between 1000 and

1300 differentially expressed genes per sample compared with all

other samples of the same patient (Supplemental Table 6). Hier-

archical clustering of gene expression differences for each of the

patients revealed two major branches for both patient 1 and pa-

tient 2 (Supplemental Fig. 5). For patient 3 the clustering of dif-

ferentially expressed genes across tumor biopsies did not reveal

any distinct subgroups. The clustering of samples based on RNA

expression differences further substantiated intra-tumor diversity

as observed based on genomic breakpoints.

We used the normalized coverage for 1500 genes that define

six different epithelial ovarian cancer subtypes to classify each of

the tumor biopsies from patients 1 to 3 (Tothill et al. 2008; The

Cancer Genome Atlas Research Network 2011). The tumor biopsies

from patient 1 fall apart into distinct subtypes following the

branching we observed based on clustering of genomic and tran-

scriptomic data: The samples from the omentum and peritoneum

clearly display the C1 (high stromal) signature, overlapping with

the C2 (high immune) signature as described before (Tothill et al.

2008), whereas samples from the ovaries rather fall into the C4

(low stromal response) category although some expression of

genes in the high immune signature can also be observed (Fig. 3A).

The samples from patient 3 display the C2 and C4 gene expression

signatures. Patient 2 samples explicitly show the C5 (mesenchy-

mal) signature, as expected from the histological examination,

which indicated a carcinosarcoma (Supplemental Fig. 1). The dis-

tant metastases of patient 2 are different from the ovary and pelvis

samples as they also show overlap with the C2 category.

To determine whether single-nucleotide changes observed in

the genome were also found in expressed transcripts we analyzed

the frequency for each of the identified mutations among RNA

sequencing reads for patient 1 (Fig. 3B). This analysis showed that

some single-nucleotide changes present at the DNA level are

not expressed. In addition, we also find that alleles with single-

nucleotide variants detected at low frequencies at the DNA level

are expressed at very high levels. For example, the shared TP53

I195N variant and the private BBS1 and MEN1 variants are ex-

pressed at a much higher frequency in the RNA, suggesting that

they are relevant for tumor growth.

Based on the top 5% most significantly differentially expressed

genes we used Cytoscape software to evaluate whether specific

cellular pathways or processes have altered expression in any of the

branches or samples (Shannon et al. 2003). All branches showed

activation of pathways or processes related to cancer development

compared with the total pool of non-tumor samples of all three

patients, such as the different aspects of cell division (e.g., cell

cycle checkpoints, DNA replication, chromosome segregation)

and growth factor and p53 signaling (Supplemental Table 6).

Specific pathway activation was observed for the two branches in

patients 1 and 2 (Fig. 3C; Supplemental Table 6). The samples in

the ovarian cluster from patient 1 expressed significantly higher

levels of genes involved in ERBB signaling and post-translational

protein modification compared with the samples in the omentum/

peritoneum cluster. Up-regulation of Hedgehog/WNT/Cadherin

genes was observed in the ovarian and pelvic samples of patient 2.

Interestingly, samples from the omentum and the peritoneum in

both patients 1 and 2 had many pathways commonly up-regulated

compared with the other samples in these patients, including

chemokine signaling and cytokine–cytokine receptor interactions,

immune response, extracellular matrix organization, and integrin

signaling. Finally, cell adhesion (CAM) was one of the processes

enriched for in the ovary and pelvis samples in patients 1 and 2,

although the exact genes up-regulated in the samples from these

two patients differ.

Genomic heterogeneity causes intra-tumor differences
in gene expression

The marked differences in gene expression observed across bi-

opsies from the same patient prompted us to analyze the contri-

bution of genomic rearrangements to these differences, an aspect

of tumor biology which is poorly understood. Based on copy

number profiling we identified 14 large copy number gains and

losses (range: 0.97–28 Mb) that were only present in subsets of

samples from patient 1 and patient 2 (Supplemental Table 7). For

each of these copy number changes we determined the mean of

the differences in log2 ratios from SNP-arrays and compared these

with the mean of the log2 ratios derived from the RNA sequencing.

We observed a strong correlation between copy number changes

and gene expression changes based on pairwise comparisons

(Fig. 4A), indicating that gene expression is strongly influenced

by DNA copy number. However, on a genome-wide basis, only

1.5%–1.8 % of the differentially expressed genes are within the

boundaries of the large copy number changes for patients 1 and 2,

respectively. Thus other factors, such as mutations, translocations,

epigenetic changes, or secondary effects are likely contributing to

the intra-tumor gene expression differences.

To further study the effect of genomic breakpoints on gene

expression, we utilized the precise breakpoint definition provided

by mate-pair sequencing. We reasoned that an expression effect of

a breakpoint should result in either a positive or negative change

in gene expression in samples with the breakpoint, relative to

samples without the breakpoint. To test this, we used the gene

expression differences (log2 ratios) derived from pairwise com-

parisons based on each of the samples from patient 1 and catego-

rized the comparisons in three bins: (1) Both samples have a

breakpoint, (2) one sample has the breakpoint and the other does

not have the breakpoint, and (3) both samples do not have

a breakpoint. If genomic breakpoints have an effect on expression

of the respective genes, we would anticipate an overall increase in

fold changes in bin 2 versus bins 1 and 3. Indeed, we observed a

significant increase of the variance of the distribution of fold

changes in bin 2, indicating that on average, genomic rearrange-

ment breakpoints affect gene expression both positively and neg-

atively (Fig. 4B).

To get a more precise picture of the effects of SVs on gene

expression, we measured the normalized read counts for exons

located before and after an SV breakpoint in a gene (Fig. 4C). A shift

in the ratio of the read count before and after the breakpoint would

be expected if the expression of the exons before and/or after a

breakpoint has changed as a result of the breakpoint. For example,

Evolution of epithelial ovarian cancer
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part of a gene could be up-regulated due to fusion with another

partner gene or a decrease in expression could be expected if one

half of a gene is deleted. Furthermore, measuring this ratio allows

us to solely detect the effect of a breakpoint in the gene and exclude

influences of other factors on gene expression (e.g., neighboring

breakpoints, promoter methylation). Figure 4D shows a boxplot of

the distribution of ratios for the genes that do not contain a

breakpoint and the genes that do contain a breakpoint, indicating

Figure 3. (A) Heat map of the percentage concordance of each sample with the subtypes of ovarian cancer presented by Tothill and colleagues (Futreal
et al. 2004; Tothill et al. 2008; Santarius et al. 2010). C1, high stromal response; C2, high immune signature; C3, low malignant potential (LMP) signature;
C4, low stromal response; C5, mesenchymal signature; C6, low grade endometrioid. (B) Allele frequencies of coding mutations in RNA and DNA for
patient 1. (C ) Branch-specific expression differences of genes involved in major signaling pathways for patient 1 (top) and patient 2 (bottom).

Hoogstraat et al.
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a marked shift in distribution toward more extreme ratios for all

genes containing a breakpoint. We repeated the same analysis by

randomly assigning breakpoints to samples. In this case the dis-

tribution of ratios is the same for genes with and without break-

points, indicating the specific effects of the breakpoints on gene

expression (Fig. 4D). These results emphasize that expression mea-

surements should not be determined only on a per gene basis,

because subtle intra-gene expression differences due to rearrange-

ments will be obscured for whole-gene measurements.

The changes in exon expression for samples with and without

a deletion breakpoint in the MANBA and UBE2D3 genes (patient 1)

illustrate the sensitivity of the ratio analysis (Fig. 4E). Exons at the 39

end of MANBA are expressed higher in samples with the break-

point relative to samples without the breakpoint and the reverse is

true for exon 1. Similar effects were found for the UBE2D3 gene.

An UBE2D3–MANBA in the frame fusion gene resulted from the

somatic deletion in the ovary samples and the fusion transcript

was expressed as verified by RT-PCR (Supplemental Fig. 7).

We systematically searched for genomic rearrangements that

are predicted to result in gene fusions and found 28 putative fu-

sions in patient 1 (Supplemental Table 4). For 12 of the predicted

rearrangements, we designed PCR primers for RT-PCR across the

breakpoint junctions and we could confirm expression of seven

fusion transcripts of which four were in frame and differentially

expressed in tumor biopsies (Supplemental Fig. 7). Among these is

one fusion containing the MAST4 kinase. MAST kinases are in-

volved in recurrent fusions in breast cancer and enhance cell

proliferation (Robinson et al. 2011).

Discussion
We here show that treatment-naı̈ve epithelial ovarian cancer,

whether serous adenocarcinoma or carcinosarcoma, may display ex-

tensive intrinsic genomic and transcriptomic heterogeneity, leading

to a broad variety and potentially functional lesion-specific dereg-

ulation of cellular pathways. The major genomic and transcriptomic

Figure 4. Intra-tumor differences in gene expression resulting from genomic rearrangements in patient 1. (A) Pairwise comparison of copy number
changes and gene expression changes. (B) Boxplot showing log ratios derived from pairwise comparisons of patient 1 samples, categorized in three bins:
(1) Both samples have a breakpoint, (2) one sample has the breakpoint and the other does not have the breakpoint, (3) both samples do not have
a breakpoint. Statistical testing of differences in variance was performed using Levene’s test. (C ) Schematic representation of a method used to detect
expression differences of exons before and after a breakpoint in a gene. Per gene, the ratio of the normalized exonic read count before and after the
breakpoint was determined for each of the samples from patient 1. Ratios were separated in two bins: one containing ratios derived from genes with
a breakpoint and one containing ratios derived from genes without a breakpoint. (D) Boxplot of the distribution of ratios of the normalized exonic read
count before and after a breakpoint for genes that contain a breakpoint (with bp) and genes that do not contain a breakpoint (no bp). The analysis was
repeated by randomly assigning breakpoints to samples (randomized data set). Statistical testing was performed using a Mann-Whitney U-test. (E )
Changes in gene expression for the exons of the MANBA and UBE2D3 gene exons in patient 1. In the presence of the deletion breakpoint a MANBA–UBE2D3
fusion gene is formed. (Red) Breakpoint present; (white) no breakpoint present.
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differences were found between distant metastasis located at the

omentum or peritoneum versus tumor samples at the ovaries and

pelvis, substantiating previous evidence for intra-tumor hetero-

geneity in serous epithelial ovarian cancer (Khalique et al. 2007;

Bashashati et al. 2013). The most striking heterogeneity was found

for patient 1, where both the mutation and the SV data supported

two subsets of tumor biopsies. This included two independent

TP53 mutations, raising the question as to whether two separately

initiated and evolving tumors had occurred in patient 1, with tis-

sue from both tumors interwoven at the right ovary. So-called

collision tumors have been described before and these are marked

by histologically distinct tumors separated by stroma or basal

lamina (Bige et al. 2009). Both ovaries are frequently affected in

serous ovarian cancer (65%) (Cotran et al. 1999) and in rare cases

this involves tumors with bi-focal origin (Abeln et al. 1995), which

is a possibility we cannot fully exclude in our case. Both scenarios

were not obvious from the histopathological examination. In-

terestingly, patient 1 harbored a germline BRCA2 mutation. BRCA2

functions in DNA repair, and disruption of BRCA2 leads to geno-

mic instability (O’Donovan and Livingston 2010). Therefore, this

mutation could possibly have promoted the very early separation

of the tumor samples from this patient as opposed to the more

coherent evolutionary patterns in patients 2 and 3.

Multi-site profiling of genomic changes allows estimation of

the evolutionary course of cancer development, including timing

of mutational events (Gerlinger et al. 2012; Yates and Campbell

2012). TP53 mutations were present in all samples from the three

patients, indicating that these occurred early during tumor evo-

lution. For patient 1, we observed two subsets of samples, which

constitute two independent tumors or very early branched sub-

clones (with independent TP53 mutations). This evolutionary

pattern was supported by both mutation data and SV data. Within

each of the branches we observed much more coherence than

between the branches: We observed no unique mutations and just

one unique rearrangement for the omentum and peritoneum

samples. For the ovary samples of patient 1 we found several

unique changes. This included 19 private mutations and 48 private

genomic rearrangements all of which likely occurred late during

tumor evolution, demonstrating continuous evolution at both the

structural and mutational level in this branch. Furthermore, we

observed indications of different mutational mechanisms operat-

ing in each of the two subsets in patient 1, both at the level of

genomic rearrangements and point mutations. For patient 3, we

observed only two private mutations, whereas all other mutations

(15) were shared between samples. A large overlap between sam-

ples was also supported by the SV data from patient 3. However, we

did observe 22 unique rearrangements, suggesting ongoing evo-

lution at separate sites at the level of genomic rearrangements.

For patient 2, the SV data showed the presence of two subsets of

samples. However, a large fraction (34/120) of somatic SVs were

found in all samples indicating a common evolutionary origin as

opposed to the very early branching observed for patient 1. The

common origin and branching in patient 2 was further supported

by the presence of mutations shared by all samples and a unique

coding mutation in the ovary/pelvis branch, respectively. In ad-

dition, we observed ongoing evolution in two pelvis samples based

on the observation of a condensed cluster of mutations in FANCD2

coinciding with SVs, a mutational process which has been termed

‘‘kataegis’’ (Fig. 2C; Nik-Zainal et al. 2012). These data show that

kataegis may act only regionally within the tumor of a single pa-

tient. Similarly, we have previously also observed that chromo-

thripsis may exclusively occur in either primary, or metastatic tumor

samples from the same patient (Kloosterman et al. 2011b), dem-

onstrating that massive mutation mechanisms may occur late during

tumor development and do not necessarily represent an initiating

event. Whole-genome sequencing should reveal more single-

nucleotide changes and provide further insight into possible dif-

ferences in evolutionary timing relative to SVs in ovarian cancer.

There is a strong need for improved and targeted therapies for

ovarian cancer to increase cure rates (Ledermann and Kristeleit

2010; Vaughan et al. 2011; Banerjee and Kaye 2013). Several tar-

geted therapies are being tested, but careful selection of patients for

targeted treatment is essential (Smolle et al. 2013). We show here

that there is major intra-tumor heterogeneity concerning expres-

sion of cellular pathways, some of which are candidates for tar-

geted treatment. For example, overexpression of the Hedgehog

pathway was observed in a subset of metastases in the omentum

and pelvic region of patient 2, compared with other pelvic lesions

and tumor sites in the ovaries. High expression of the Hedgehog

transcription factor gene GLI1 is associated with poor survival in

advanced serous ovarian cancer (Ciucci et al. 2013) and Hedgehog

components are deregulated in various sarcomas, presenting new

treatment possibilities such as Hedgehog ligand antagonists and

inhibition of Gli1 transcription activity (Kelleher et al. 2012). Also,

we detected strong up-regulation of integrin pathway members

in peritoneum and omentum metastases in patient 1, as well as

elevated expression of inflammatory chemokines and cytokines

primarily found in metastases in the omentum of both patients

1 and 2. Expression differences in these genes in metastatic lesions

compared with primary tumors have previously been observed

(Davidson 2007). These may provide an attractive target for treat-

ment of ovarian cancer (Mantovani et al. 2008; Vaughan et al.

2011; Sawada et al. 2012), because the vast majority of patients die

as a consequence of metastatic disease, while the primary tumor is

often completely removed during debulking surgery.

The cancer genome harbors a wide variety of genomic alter-

ations. Particularly the contribution of structural genomic rear-

rangements to tumor development is poorly understood. We here

demonstrate that intra-tumor heterogeneity may involve cancer

genes disrupted by genomic breakpoints present in only a subset of

tumor masses. Furthermore, we associated the intra-tumor ex-

pression differences with genomic rearrangement breakpoints and

found that effects may range from altered expression due to copy

number changes of entire genes to very subtle effects involving

breakpoints affecting only part of a gene, all occurring within a

single patient. These data show that the effects of genomic rear-

rangements are profound, contribute to intra-tumor heterogene-

ity, and may be equally important as coding mutations for tumor

development.

Because our study only covered multi-site analysis of three

ovarian cancer patients, it remains to be seen how representative

the identified genomic and transcriptomic characteristics will be in

a larger sample set. Large-scale follow-up studies should be con-

ducted to determine the rate of extreme intra-tumor heterogeneity

in ovarian cancer. This aspect of tumor biology requires further

attention to fully understand escape routes as a response to treat-

ment and improve survival rates.

Methods

Patient sampling and consent
All patients included are epithelial ovarian cancer FIGO stage III/IV
patients undergoing primary cytoreductive debulking according to

Hoogstraat et al.
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the standard of care (Table 1). During primary debulking, tumor
samples were obtained from thoroughly documented locations.
Patients 1 and 2 underwent successful optimal debulking. In pa-
tient 3, optimal debulking appeared infeasible perioperatively and
only partial cytoreduction was achieved. She later underwent
successful cytoreduction after neo-adjuvant chemotherapy. We
only included the tumor samples obtained from the first debulking
for patient 3. In addition, DNA from blood and saliva was obtained
from every patient as control samples (Oragene DNA kit, DNA
Genotek Inc.). Tumor samples were immediately forwarded from
the operating room to the pathology department. If feasible,
multiple core and peripheral tumor samples of each individual
metastasis or primary tumor were snap-frozen in liquid isopentane
within 1 h. Tissue was processed into frozen sections and stained
by Hematoxylin & Eosin (H&E) (Supplemental Fig. 1). A patholo-
gist reviewed all slides and confirmed tumor type, estimated tumor
cell percentage, and amount of necrosis (Supplemental Table 1).
This study was approved by the ethics committee of the UMC
Utrecht, The Netherlands. Patients could indicate in a specific
section of the informed consent form that they wanted to be in-
formed about incidental findings in their germline DNA that could
affect their health, or the health of their relatives. All patients
signed informed consent before debulking.

DNA, RNA isolation

Fresh frozen samples were homogenized and subsequently split for
independent DNA and RNA isolation. DNA was isolated using the
Qiagen Genomic DNA kit (Qiagen). Total RNA was isolated using
TRIzol reagent (Life Technologies). After isolation, DNA samples
were stored at �20°C, RNA samples at �80°C.

Mate-pair sequencing

Mate-paired libraries were generated from 5 to 10 mg of DNA iso-
lated from tumor and control samples using the 5500 SOLiD Mate-
Paired library kit (Life Technologies). Samples were sheared to 3-kb
fragments by Hydroshear DNA shearing (Digilab). Per library, 2 3

50-bp mates were sequenced on a SOLiD 5500xl or SOLiD WildFire
instrument. Forward and reverse tags were mapped independently
(samse) to the reference genome (GRCh37) using BWA software
and settings –c –l 25 –k 2 –n 10 (Li and Durbin 2009). Discordant
reads were clustered using in-house software as described pre-
viously (Kloosterman et al. 2011a). The software is available from
https://github.com/Vityay/1-2-3-SV. In a first step, we estimated
the insert size distribution and location of discordant mate-pairs.
This was done separately for each sample. Furthermore, PCR du-
plicates, reads with mapping quality 0, and nonuniquely mapped
reads were removed from further analysis. As a second step clus-
tering of discordant pairs was done for all samples from each pa-
tient together. Two pairs are considered to belong to the same
cluster when the distance between coordinates of their 59 tags to-
gether with the distance between 39 tags does not exceed the me-
dian distance of the library with the largest insert size. The search is
continued until no clusters with at least five clones in at least one
of the samples can be found. As analysis of discordant read pairs
does not give exact breakpoints of structural variants, the output
lists genome segments containing each breakpoint along with
information about the source of the discordant pairs (samples) and
the properties of the cluster as outlined in Supplemental Table 4.
The orientation of the different mate-pair tags in a cluster relative
to each other is indicated by H (or h for the minus strand) when the
tag has its ‘‘head’’ side (the side that points toward the start of the
chromosome) opposed to the pairing tag and T (or t for the minus
strand) when a tag has its ‘‘tail’’ side (the side that points toward the

end of the chromosome) opposed to the pairing tag. The clustering
results in calling of intrachromosomal rearrangements (deletion
type, inverted, tandem duplication type) and interchromosomal
rearrangements. To select for somatic variants, all genomic rear-
rangement breakpoints were filtered for normal tissue samples
(blood, muscle, tuba) and an in-house database of mate-pair se-
quencing data from healthy individuals. To achieve high-quality
calling of somatic structural variants, we required at least five in-
dependent discordant sequence reads derived from at least one
tumor sample (Kloosterman et al. 2011a,b). For all breakpoint calls
consistent with these criteria, presence of the breakpoint in other
samples from the same patient was determined based on presence
of at least one overlapping discordant read pair with the same
orientation.

Primers for PCR confirmation of somatic breakpoints were
designed based on mate-pair sequencing data. PCRs were performed
under standard conditions as described before (Kloosterman et al.
2011a).

Cancer gene resequencing

SNVs and indels were detected by targeted sequencing of a total of
2099 cancer genes. First, samples were interrogated by a designed
‘‘Cancer mini-genome’’ consisting of 1977 cancer genes. Barcoded
fragment libraries were generated from 2 mg of isolated DNA from
tumor and control samples as previously described (Harakalova
et al. 2011). Pools of libraries were enriched for 1977 cancer-related
genes (Cancer mini-genome [Vermaat et al. 2012]) using SureSelect
technology. Enriched libraries were sequenced on a SOLiD 5500xl
or SOLiD WildFire instrument according to the manufacturers’
protocol. Furthermore, the exons within a subset of 409 oncogenes
and tumor suppressor genes were interrogated by the Ion Ampliseq
Comprehensive Cancer Panel (Life Technologies). Libraries were
constructed from 40 ng of isolated DNA for each sample using
standard AmpliSeq procedures. Barcoded libraries were pooled and
sequenced on the Ion PGM Sequencer (Life Technologies).

Ion Torrent reads were aligned to the human reference ge-
nome version 19 (GRCh37) using Tmap. Variant calling on Ion
Torrent data was performed using Strelka (Saunders et al. 2012).
SOLiD reads were mapped on the same genome version, using
BWA (–c –l 25 –k 2 –n 10) and variant calling was done using a
custom pipeline identifying variants with at least 103 coverage, a
15% allele frequency, and multiple (>2) occurrences in the seed
(the first 25-bp most accurately mapped part of the read) as well as
support from independent reads (>3). All variant positions iden-
tified in either SOLiD or Ion Torrent data were subsequently geno-
typed in the raw data sets of both techniques for all samples using
samtools mpileup, to ensure the presence or absence of possible
low-frequency variants. Validation of single-nucleotide mutations
and indels was performed by PCR amplification of mutation loci
followed by Nextera XT library prep and sequencing on MiSeq
(Illumina).

SNP-array analysis

For each sample, 200 ng DNA was used as input for copy number
profiling using Cyto12 SNP arrays according to standard pro-
cedures (Illumina). Genomic events were identified by applying
ASCAT processing (Allele Specific Copy Number Analysis of Tu-
mors) with Nexus Copy Number 6.0 (BioDiscovery). Briefly, all
signals in tumor samples similar to those in the provided reference
sample are excluded from analysis, increasing specificity in detect-
ing additional events in tumor samples.

Clustering of SNP array data was done by calculating a Eu-
clidean distance matrix based on B-allele frequencies of all SNP
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positions showing a heterozygous genotype in the reference sam-
ples (allele frequency 20%–80%), and performing hierarchical
clustering on these data using standard R functions.

RNA sequencing

Total RNA was processed with the Poly(A) Purist Kit (Life
Technologies) to select for poly(A)+ RNA. Next, the mRNA-
ONLY Eukaryotic mRNA Isolation kit (Illumina) was used to
select for 59 capped mRNA. Paired-end libraries were con-
structed from 8–30 mg total RNA per sample, using the SOLiD
total RNA-seq kit (Life Technologies). Libraries were barcoded
and sequenced on a SOLiD 5500xl instrument in paired-end
mode (50 3 35 bp). Forward (F3) and reverse (F5) reads were
mapped independently to the human reference genome
(GRCh37) using BWA (–c –l 25 –k 2 –n 10) (Li and Durbin 2009).
Coverage per gene was determined by adding up read counts of
all coding regions as determined by BEDTools 2.16.2 multicov
(Quinlan and Hall 2010).

Because of the lack of a true reference sample, i.e., healthy
tissue from the ovaries of each patient, we compared each sample
separately against the pool of all other samples of the same patient
and determined gene expression differences within patients using
the DEGseq R package (Wang et al. 2010). To identify the most
significant expression differences, DEGseq output was first cor-
rected for multiple testing by selecting genes with a P-value <

4.6399 3 10�8 (0.001 divided by 21552 [the number of tested
genes]) and extracting the top 5% and bottom 5% of normalized
log ratios. Normalized coverages of the genes emerging from this
analysis were used to cluster samples based on Poisson Mixture
Models generated with the HTSCluster R package (Rau et al. 2011).
Pathway and GO biological process enrichment of up-regulated
genes within the thus created clusters was determined by com-
paring the core samples in these clusters to a pool of all reference
samples from our three patients and finally to each other by DEGseq
and selecting the top 5% genes as described above. Resulting gene
lists were analyzed through the Reactome FI Cytoscape Plugin
(Shannon et al. 2003), and pathways or processes containing at
least two up-regulated genes and a false discovery rate (FDR) <0.1
were reported as being affected. We performed molecular sub-
typing of samples by calculating the percentage of concordance
of up- and down-regulated genes (compared with the common
reference pool) with the profiles presented by Tothill and col-
leagues (Tothill et al. 2008; The Cancer Genome Atlas Research
Network 2011).

Data access
The SNP-array data have been submitted to the NCBI Gene Ex-
pression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) un-
der accession number GSE47633. The sequencing data have been
submitted to the European Nucleotide Archive (ENA; http://www.
ebi.ac.uk/ena/) under accession number ERP003455.
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