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Carbonylation is a generic term which refers to reactive carbonyl groups present in biomolecules due to
oxidative reactions induced by reactive oxygen species. Carbonylated proteins, lipids and nucleic acids
have been intensively studied and often associated with onset or progression of oxidative stress related
disorders. In order to reveal underlying carbonylation pathways and biological relevance, it is crucial to
study their intracellular formation and spatial distribution. Carbonylated species are usually identified
and quantified in cell lysates and body fluids after derivatization using specific chemical probes. How-
ever, spatial cellular and tissue distribution have been less often investigated. Here, we report coumarin-
hydrazide, a fluorescent chemical probe for time- and cost-efficient labeling of cellular carbonyls fol-
lowed by fluorescence microscopy to evaluate their intracellular formation both in time and space. The
specificity of coumarin-hydrazide was confirmed in time- and dose-dependent experiments using
human primary fibroblasts stressed with paraquat and compared with conventional DNPH-based
immunocytochemistry. Both techniques stained carbonylated species accumulated in cytoplasm with
strong perinuclear clustering. Using a complimentary array of analytical methods specificity of coumarin-
hydrazide probe towards both protein- and lipid-bound carbonyls has been shown. Additionally, co-
distribution of carbonylated species and oxidized phospholipids was demonstrated.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Oxidative stress (OS) is characterized by increased production
of reactive oxygen species (ROS) overwhelming the cellular anti-
oxidant defense [1]. Increased ROS levels result in oxidation of
numerous biomolecules including proteins, lipids, nucleic acids
and carbohydrates [2]. Continuous exposure to high levels of ROS
can be detrimental to cells. Acute or chronic OS is associated with
numerous pathophysiological conditions, such as Parkinson’s and
Alzheimer’s diseases, atherosclerosis, heart failure, endothelial
dysfunction, and inflammatory disorders. It was estimated that
over 200 clinical disorders might be directly or indirectly linked to
oxidative stress [3].

A major oxidative modification in different biomolecule classes
is carbonylation, which refers to all reactions yielding reactive
carbonyl groups in the form of aldehyde, ketone or lactam [3].
Protein carbonylation has been studied the best, as this irrever-
sible post-translational modification is believed to trigger protein
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aggregation in cells and tissues and thus is a well-accepted bio-
marker of OS-related disorders [4–10]. However, protein carbo-
nylation covers a wide range of chemical modifications. There are
multiple mechanisms yielding protein carbonyls and at least three
different pathways have been described: (i) metal catalyzed oxi-
dation, (ii) advanced glycation end products, and (iii) reaction with
reactive lipid peroxidation products [11]. Reactive lipid peroxida-
tion products carrying carbonyl functions are not only a common
source of protein-bound carbonyl, but can also represent an
important pool of carbonylated species themselves. Lipid-bound
carbonyls have been less studied than protein carbonyls. Never-
theless, several studies demonstrated their importance as a source
of protein adducts, immuno-modulating and pro-inflammatory
molecules [12]. Truncated carbonylated phosphatidylcholine lipids
can be recognized by scavenger receptors leading to induction of
immune response and adhesion of monocytes to endothelial cells
[12]. Thus in order to understand multiple pathways of biomole-
cule carbonylation and their biological relevance, it is crucial to
follow the distribution of carbonylated species in biological
systems.

Carbonylated biomolecules cannot be specifically detected due
to the absence of specific physico-chemical properties, such as
absorption or fluorescence. Most analytical techniques rely on a
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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specific chemical derivatization of carbonyl groups with hydra-
zines, hydrazides and hydroxylamines [3,13]. Derivatized com-
pounds can be detected by absorbance [14], ELISA [15], Western
blot [16], chromatography [17], mass spectrometry [18,19] and
fluorescence [20–23]. Most of the protocols allow detection or/and
quantification of carbonylated species. However, spatial cellular
and tissue carbonyl distribution is much less investigated. Carbo-
nylation is a dynamic modification, which tends to accumulate
under OS and cellular localization of carbonylated species might
change over time. Thus it is important to understand carbonyl
spatial dynamic and attribute carbonyl levels to certain molecular
species.

One of the most widely used derivatization reagent is 2,4-
dinitrophenylhydrazine (DNPH), originally used for spectro-
photometric detection and quantification of carbonylated proteins
[14]. Availability of anti-DNP antibodies allowed to translate it into
sensitive immunodetection by western blots or ELISA [14,15].
Additionally, immunocytochemical detection and fluorescence
microscopy imaging was used to evaluate spatial distribution of
carbonylated proteins [23–26]. However, standard immunochem-
istry protocols are time consuming, expensive and often suffer
from cross-reactivities of antibodies (Ab). Additionally, DNPH-
based immunochemistry protocols are relatively specific for pro-
tein-bound carbonyls and thus do not stain other carbonylated
biomolecules [23–25].

Here we present a simple, fast and cost efficient microscopy
imaging of cellular carbonyls based on coumarin-hydrazide, which
provides spatial information on both protein and lipid carbonyls.
The protocol was verified for cellular model of paraquat induced
OS and compared with DNPH-based immunocytochemistry. Spe-
cificity of coumarin-hydrazide was confirmed by gel electrophor-
esis, thin layer chromatography and mass spectrometry, whereas
the co-distribution with oxidized lipids was evaluated by confocal
microscopy using oxidized phosphatidylcholine specific natural
antibodies.
Material and methods

Chemicals

2,4-Dinitrophenyl hydrazine (DNPH), paraquat (PQ), thiourea,
7-(diethylamino)-coumarin-3-carbohydrazide (CHH), Hoechst
33,258 (Hoechst), 2,7-dichlorofluorescin diacetate (DCFDA), tert-
butyl methyl ether (MTBE), primary goat anti-DNP Ab and sodium,
potassium, and ammonium salts were purchased from Sigma
Aldrich GmbH (Taufkirchen, Germany). Formic acid was obtained
from BiosolveBV (Valkenswaard, Netherlands). Dithiothreitol
(DTT), urea, and ethanol were obtained from CarlRoth GmbH & Co.
KG and chloroform was from Merck KGaA (Darmstadt, Germany).
Dulbecco's modified Eagle's medium (DMEM/Ham's F12), fetal
bovine serum (FBS), phosphate buffer saline (PBS), 7-aminoacti-
nomysin-D (7-AAD), Trypan Blue (0.1%) and antibiotic (penicillin/
streptomycin) solutions were obtained from Life Technologies
GmbH (Darmstadt, Germany). Secondary rhodamine (TRITC) Affi-
niPure Rabbit Anti-Goat IgG (HþL) Ab and peroxidase-conjugated
donkey anti-goat Abs were obtained from Jackson ImmunoR-
esearch Laboratories, Inc. (Pennsylvania, United States). E06-
monoclonalAb-TopFlour™ antibody was purchased from Avanti
Polar Lipids, Inc. (Alabama, United States of America). Low fluor-
escent PVDF membranes, immunoblot blocking solution (Advan-
Block), immunoblot washing solution (AdvanWash) were pur-
chased from Advansta (California, United States of America).
Cell culture

Human primary skin fibroblasts (kind gift of Dr. Ulf Anderegg,
Clinic for Dermatology, Venerology and Allergology, Faculty of
Medicine, University of Leipzig) were cultured (37 °C, in a humi-
dified atmosphere of 95% O2 and 5% CO2) in DMEM/Ham's F12
medium supplemented with FBS (15%) and antibiotics (1%). Med-
ium was replaced with serum free medium 4 h before paraquat
(PQ) was added as solution in DMEM/Ham's F12 (37 °C).

Primary rat cardiomyocytes (Innoprot, Spain) were cultured
until 80% confluence in DMEM/F12 medium supplemented with
FBS (20%), horse serum (5%), L-glutamine (2 mmol/L), non-essen-
tial amino acids (0.1 mmol/L), sodium pyruvate (3 mmol/L) and
antibiotics (1%) at 37 °C (95% O2 and 5% CO2 atmosphere). Medium
was replaced to serum free 24 h prior to 3-morpholinosydnoni-
mine treatment (SIN-1; 10 mmol/L, 30 min).

Primary murine hepatocytes (kind gift of Prof. Dr. Ralf Geb-
hardt, Institute of Biochemistry, Faculty of Medicine, University of
Leipzig) were cultured in William's E medium supplemented with
FBS (10%), glutamine (2 mmol/L), antibiotics (0.5%) and dex-
amethasone (0.1%) at 37 °C (95% O2 and 5% CO2 atmosphere). Cells
were left to attach for 3 h before mediumwas replaced with serum
free medium containing acetaminophen (10 mmol/L; for 20 h).

DCFDA assay

Cells were grown on flat bottom black 96-well plates (Greiner
CELLSTARs) overnight in DMEM/Ham's F12 medium without FBS.
Next day the medium was replaced with transparent DMEM
containing DCFDA (10 mmol/L) and incubated (37 °C, 1 h). Cells
were washed and incubated in DMEM. After 1 h the medium was
changed to DMEM containing different concentrations of PQ and
the fluorescence (485/535 nm) was recorded for 3 h on a Para-
digm™ Detection Platform (Molecular devices, Salzburg, Austria).

7-(Diethylamino)-coumarin-3-carbohydrazide (CHH) labeling [18,27]

Primary fibroblasts were grown on cover slips. After PQ treat-
ment, cells were washed with PBS, fixed (4% paraformaldehyde,
15 min, 37 °C or ice cold methanol, 10 min, on ice) and washed
again (PBS). For CHH labeling cells were blocked in blocking
solution (5% FBS, 0.1% Tween-20 in PBS, 1 h, RT) and incubated
with CHH (0.2 mmol/L, 2 h, RT). Cells were washed (PBS; 3 times),
nuclei were counterstained with 7-AAD (1:300, 30 min, RT),
washed (PBS), and the cover slips were mounted on cover slides
using Immunoselect Antifading mounting medium (Dianova
GmbH, Hamburg, Germany).

For live imaging, after PQ treatment (1 mmol/L, 1 h), cells were
washed with warm PBS and incubated with CHH (0.8 mmol/L in
DMEM, 2 h, 37 °C). Cells were washed (warm PBS) and imaged
immediately.

Immunocytochemistry [23]

Carbonyl compounds were derivatized with DNPH (3 g/L in 98%
ethanol containing 1.5% sulfuric acid, 4 °C, overnight on a shaker).
Cells were washed thoroughly with washing buffer (1% FBS, v/v, in
PBS), and incubated in washing buffer (30 min, 4 °C). Cells were
permeabilized (0.5% w/v, Triton X-100, 5 min) and incubated with
a goat anti-DNP Ab (1:200 in washing buffer, 1 h, 4 °C). Cells were
washed (washing buffer, 3 times), incubated with Rhodamine
(TRITC) AffiniPure Rabbit Anti-Goat Ab (1:200 in washing buffer,
1 h, 4 °C) and washed (PBS, 3 times). Nuclei were counterstained
with Hoechst Dye (1:1000, 10 min, RT) and washed again (PBS)
before the cover slips were mounted on cover slides as described
above.
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Microscopy

Cells were examined by inverted fluorescent microscope
(DMI6000 B, Leica MikrosystemeVertrieb GmbH, Wetzlar, Ger-
many), equipped with an �40 objective (N. A-0.60), 12 V/100 W
halogen lamp as a light source and a Leica DFC360FX camera.
Images of DNP labeled carbonyls and 7-(AAD) were acquired with
a Cy3/TRITC Filtercube (λexc¼552 nm, λem¼578 nm); CHH and
Hoechst Dye using with an A4 Filtercube (λexc¼359 nm,
λem¼461 nm). Images were quantified using ImageJ.

Immunocytochemical detection of oxidized phospholipids

Cells were treated with PQ as described above, incubated in
blocking solution (1% BSA in PBS, 1 h, RT) and then with EO6-
mAbTopFluor (1:100 in PBS, 1 h, RT) [28,29]. Cells were washed
(PBS, 3 times) and the nuclei were counterstained with Hoechst
dye. Cells were washed twice with PBS and examined as men-
tioned above. For co-staining experiments fixed and blocked
samples were first incubated with CHH (0.2 mmol/L, 2 h, RT),
washed (PBS; 3 times), and stained with EO6-mAbTopFluor (1:100
in PBS, 1 h, RT). Cells were washed (PBS; 3 times), and the cover
slips were mounted on cover slides using Immunoselect Antifad-
ing mounting medium (Dianova GmbH, Hamburg, Germany).
Images for co-localization were obtained with a confocal micro-
scope (LSM 780; Carl Zeiss) equipped with 40� /1.3 NA or 63� /
1.46 NA oil immersion objectives. Image analysis and processing
were performed using Zen 2012 Blue software (Carl Zeiss).

Protein extraction

After PQ treatment the medium was discarded, cells were
scraped and cell pellets collected by centrifugation (1000g, 5 min,
4 °C). Cell pellets were washed (ice cold PBS, 3 times), disrupted in
lysis buffer (7 mol/L urea, 2 mol/L thiourea, 2% w/v CHAPS,
50 mmol/L TrisHCl, pH 7.5), and sonicated (20 kHz, 1 min, 30%
amplitude; Vibra-Cell, Sonics & Materials, Inc. CT, USA). Samples
were centrifuged (10,000g, 10 min, 4 °C) and the protein con-
centration in the supernatant was determined by the Bradford
assay.

Western blots

Proteins were dissolved in sample buffer (62.5 mmol/L TrisHCl,
pH 6.8, 50 mmol/L DTT, 2% w/v SDS, 20% w/v glycerol, 0.2% w/v
bromophenol blue) and separated by SDS-PAGE (10% T; BioRad
mini protean III cell; BioRad Laboratories GmbH, München, Ger-
many). Proteins were semidry blotted onto a low fluorescent
polyvinylidene difluoride (PVDF) membrane (Trans-Blot Turbo
Transfer System, BioRad Laboratories GmbH, München, Germany).
Membranes were equilibrated (2 M HCl), derivatized with DNPH
(1 g/L in 2 M HCl, 30 min, RT), washed with 2 M HCl (5 min) and
methanol (5 min, 5 times). Membranes were blocked overnight
(4 °C, Immunoblot Blocking solution; AdvanBlock, Advansta),
incubated with goat anti-DNP Ab (1:10,000; in blocking buffer, 1 h,
RT), and washed (Immunoblot Washing solution, AdvanWash,
Advansta) before peroxidase-conjugated donkey anti-goat Ab
(1:10,000, in blocking buffer) were added (1 h, RT). Membranes
were visualized using WesternBright Sirius HRP substrate
(Advansta) and imaged on a Fusion FX7 Imaging system (Peqlab
Biotechnologie GmbH, Erlangen, Germany).

SDS-PAGE of CHH labeled carbonylated proteins

CHH labeled protein pellets remained after lipid extraction
were dissolved in lysis buffer and separated by SDS PAGE as
described above. CHH derivatized proteins were visualized on a
ChemiDoc™ MP (Bio-Rad Laboratories GmbH, München, Ger-
many), using the Image Lab™ software and DyLight 488 channel
filter for Blue Epi illumination.

CHH labeling and mass spectrometry analysis of carbonylated lipids

Cell pellets were resuspended in 0.1% aqueous ammonium-
acetate (w/v, 50 mL) and derivatized with CHH [18,27]. Briefly, CHH
stock solution (3.5 mL,100 mmol/L in DMF) was added to the cell
pellet and incubated (1 h, 37 °C). Lipids were extracted using
methyl-tert-butyl ether (MTBE) as described previously [30].
Samples were diluted in a mixture of methanol and chloroform
(2:1, v/v) containing ammonium formate (5 mmol/L) and analyzed
using robotic nanoflow ion source (TriVersaNanoMate; Advion-
BioSciences, Ithaca, NY) equipped with nanoelectrospray chip
(1.5 kV ionization voltage, 0.4 psi backpressure) coupled to an LTQ
Orbitrap XL ETD mass spectrometer (Thermo Fischer Scientific
GmbH, Bremen, Germany). The temperature of the transfer capil-
lary was set to 200 °C and the tube lens voltage to 110 V. Mass
spectra were acquired with a target mass resolution of 100,000 at
m/z 400 in a data-dependent acquisition (DDA) mode using FT-MS
survey scan followed by consecutive CID fragmentations of the five
most abundant ions in the LTQ using gas phase fractionation [27].
Acquired data were analyzed by using Xcalibur software (version
2.0.7).

Thin layer chromatography

CHH-derivatized lipids were separated on HPTLC Silica gel
60 F254 plates (7 cm�10 cm, Merck KGaA, Darmstadt, Germany)
using a mixture of dichloromethane and acetonitrile (9:1; v/v).
HPTLC plates were dried on air and immediately scanned (Biorad
GelDoc EZ Imager, UV Tray; Bio-Rad Laboratories GmbH-Munich,
Germany) to visualize carbonylated lipids. All lipid were detected
by dipping the plate into primuline solution (0.02% in acetone/
water, 8:2, v/v) and imaged (Biorad GelDoc EZ Imager, UV Tray).
Results

Fluorescent microscopy

To induce biomolecules carbonylation in cellular model of
primary human fibroblast, paraquat, a well known redox cycling
compound, was used. A variety of cellular enzymes (e.g. oxidor-
eductases such as cytochrome P450) can reduce PQ to the radical
cation which is reoxidized by molecular oxygen to PQ with for-
mation of superoxide anion [31,32]. Indeed, over expression of
superoxide dismutase (SOD) or treatment with SOD mimetics was
shown to reduce PQ-toxicity in a number of studies [33–35].
Superoxide anion in turn can give rise to other ROS formation,
including hydrogen peroxide and hydroxyl radical. Large number
of studies used PQ as OS inducer in different cellular models
[25,36,37]. PQ treatment of primary fibroblast resulted in fast,
dose-dependent production of free radicals which was demon-
strated by DCFDA assay (Fig. S1). Thus we used this simple cellular
model of OS to evaluate CHH labeling of cellular carbonyls.

The specificity of CHH labeling of carbonylated biomolecules
was demonstrated with primary fibroblasts treated with PQ
(1 mmol/L, 1 h) with and without NaBH4 reduction prior to CHH
labeling (Fig. S2). It was clearly demonstrated that reduction of the
carbonyl groups with NaBH4 (negative control) diminished the
CHH fluorescence.

When cells were incubated with increasing concentrations of
PQ (0, 0.25, 0.5, 1, 2 and 5 mmol/L for 3 h), CHH fluorescence



Fig. 1. CHH efficiency to label cellular carbonyls in response to PQ-induced OS. Human primary fibroblasts were treated with different doses of PQ for 3 h (A) or with
1 mmol/L PQ for different time periods (B). The optimal concentration of CHH was evaluated by treating cells with PQ (1 mmol/L) for 1 h (C). Carbonylation levels were
evaluated by CHH fluorescence microscopy and images were quantified by ImageJ. The results are expressed as mean fluorescence intensity 7SD of 15–25 cell images
obtained from three independent experiments. Statistical analysis was performed using unpaired t-test (Po0.0001 for each conditions versus control).
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intensities doubled and tripled at the lowest PQ concentrations
compared to the relatively low background that resemble the
native carbonylation level of unstressed cells (Fig. 1A). The fluor-
escence intensity increased gradually afterwards up to the highest
PQ dose (5 mmol/L; treatment accompanied by high cell death).
Fig. 2. Fluorescence microscopy of carbonylated biomolecules in PQ-treated primary fib
PQ-treated cells (1 mmol/L, 1 h) using DNPH-based immunocytochemistry (A and B)
experiments performed in triplicates.
Additionally, CHH fluorescence intensity increased with the incu-
bation times (15, 30 min, 1, 2 and 3 h), as indicated for the inter-
mediate PQ concentration (Fig. 1B). The fluorescence increased
linearly for 1 h followed by a slight decrease afterwards that is
most likely related to the cell death induced by prolonged PQ
roblasts. Carbonylation was monitored by fluorescence microscopy in control and
and CHH labeling (C and D). Images are representatives of three independent
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treatment. Thus, the CHH fluorescence intensity clearly monitors
the dynamic of carbonylation processes in cells.

CHH concentrations up to 200 mmol/L linearly increased the
fluorescence intensities (Fig. 1C), whereas a further increase
(400 mmol/L) resulted in a higher background, and saturation of
the signal intensities in the areas with the highest carbonyl con-
tents. Thus 200 mmol/L CHH was used for all following labeling
experiments. Finally, CHH labeling was evaluated for live cell
imaging. Although higher concentrations of CHH were required
(800 mmol/L), it was possible to reproduce carbonyl specific
staining using PQ treated primary fibroblasts (Fig. S3).

The established DNPH staining provided in general a similar
response in fluorescence as CHH labeling for PQ treated and
untreated cells (Fig. 2), indicating that carbonylated species are
mostly present in the cytoplasmic region but not in the nucleus.
These data are in agreement with previous studies on DNPH
immunocytochemistry in different cell types and under OS con-
ditions [23,24]. To address the possible role of formaldehyde
fixation (as carbonyl containing molecule) on background fluor-
escence intensity separate experiments using methanol fixation
were performed (Fig. S4). No significant differences in background
levels were observed between PFA and methanol fixation, thus all
further experiments were performed using PFA.

Whereas the DNPH staining requires cell permeabilization,
overnight DNPH labeling, intensive washing steps, incubations
Fig. 3. Single cell fluorescence microscopy images of carbonyl stains obtained by DNPH-b
induced with PQ (1 mmol/L, 1 h). Images are representatives of three independent expe
with primary and secondary antibodies, corresponding to at least
20 h of a total sample preparation time, CHH labeling can be
accomplished within 3 h. Importantly, both staining techniques
indicated a similar distribution of cellular carbonyls that increased
in PQ treated primary fibroblasts (Fig. 2C and D). Close examina-
tion indicated distribution of carbonylated biomolecules in the
cytoplasm and absence in the nuclear regions for both techniques
(Fig. 3). The relative fluorescence intensities for CHH and DNPH
labeling in the cytoplasmic regions were very similar, but CHH
related signals were more intense in the perinuclear region of the
cell. It is important to note, that in contrast to DNPH, CHH is
lipophilic and can penetrate membranes and thus can react with
both protein- and lipid-bound carbonyls (see below).

The versatility of CHH labeling in microscopy was further tested
on other OS models. Rat primary cardiomyocytes challenged by
peroxynitrite donor (SIN-1; 10 mmol/L) resulted in significantly
increased carbonylation levels (Fig. S5). CHH staining was distributed
in the cytoplasmic region and not in the nuclei, besides a strong
perinuclear accumulation. Similarly, murine primary hepatocytes
were treated with acetaminophen (10 mmol/L) which depletes the
cellular glutathione, showed a strong increase of carbonyl specific
fluorescence (Fig. S5) with the same spatial distribution of carbony-
lated molecules as described for the other two OS models.
ased immunocytochemistry (A) and chemical CHH labeling (B). Oxidative stress was
riments performed in triplicates.
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CHH reactivity towards carbonylated biomolecules

Untreated and PQ-treated cells were collected and derivatized
with CHH before lipids and proteins were separated by liquid–
liquid extraction. The SDS-PAGE yielded several bands with sig-
nificantly higher fluorescence intensity in PQ-treated samples than
the corresponding bands of the control (Fig. S6). Conventional oxy-
blot that rely on derivatization with DNPH after the protein
transfer followed by an immunostaining, indicated similar levels of
protein carbonylation (Fig. S6). Importantly, the carbonyl positive
bands on CHH gels and DNPH blots were similar, especially for
smaller proteins (below 40 kDa). The carbonyl-positive bands of
the middle- and high-molecular weight proteins appeared more
intense on the SDS-PAGE after CHH labeling than on the corre-
sponding oxy-blots. Immunodetection of carbonylated proteins
requires their transfer onto PVDF membrane and thus lower signal
intensity for carbonylated proteins with higher molecular weight
on the blots can be attributed to their lower blotting efficiencies
compared to the low molecular weight proteins.

CHH labeled lipids obtained by liquid–liquid extraction were
separated by NP HPTLC and visualized using fluorescence imaging
Fig. 4. CID tandem mass spectra of CHH-derivatized carbonylated lipids from cellular
tadecanal (B), 1-hydroxy-2-oxo-butanoyl-sn-glycero-3-phosphatidylcholine (C), and 1-
specific signals are marked by asterisks, lipid head group specific peaks are indicated
clovers.
(Fig. S6), to detect low molecular weight carbonylated lipids (ali-
phatic aldehydes and ketones such as alkanals, alkenals, and
hydroxy-alkenals). CHH labeled propanal, heptanal, decanal as
well as cholesterol (negative control) were used as standards
(Fig. S6, line M) with Rf-values increasing with the length of the
carbon chain. The cellular lipid samples indicated an accumulation
of low molecular weight carbonyls in PQ-treated cells in compar-
ison to control, as a primuline stain confirmed equal lipid loads for
both control and PQ-treated samples based on the cholesterol
band.

Recently we showed that CHH-labeling of oxidized lipids
allows the simultaneous and sensitive detection and identification
of both phospholipid-bound carbonyls and low molecular
weight water soluble aliphatic aldehydes using ESI-MS/MS [18,27].
Additionally, CHH tertiary amino-group has a high proton affinity
providing high ionization efficiencies of CHH-derivatized
carbonylated lipids. CHH-derivatized lipids from control and PQ-
treated cells were analyzed by shotgun lipidomics approach.
Manual inspection of the tandem mass spectra identified CHH-
derivatized lipid carbonyls, such as 4-hydroxy-nonenal (Fig. 4A),
pentadecanal (Fig. 4B), 1-hydroxy-2-oxo-butanoyl-sn-glycero-3-
extracts of PQ-treated fibroblasts. CHH derivatized 4-hydroxy-2-nonenal (A), pen-
palmitoyl-2-oxo-dihydroxy-heptanoyl-sn-glycero-3-phosphatidylcholine (D). CHH
by triangles and carbonylated phosphatidylcholine specific signals are marked by



Fig. 5. Confocal fluorescence microscopy showing the subcellular localization of oxPL (A; control and PQ-treated) and carbonylated biomolecules (B; control and PQ-treated)
alone or in co-staining experiments (C) in PQ-treated primary fibroblasts. Fixed cells were immunostained with E06 antibodies (green; A) and CHH (blue; B). For better
representation of co-staining (C) E06 stain shown in green and CHH stain red colors. Merged images (yellow) demonstrate the co-localization of oxPL with carbonyl stain.
Images are representatives of three independent experiments performed in triplicates.
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phosphatidylcholine (Fig. 4C) and 1-palmitoyl-2-oxo-dihy-
droxy-heptanoyl-sn-glycero-3-phosphatidylcholine (Fig. 4D). This
unambiguously illustrates the capability of CHH to label different
types of lipid peroxidation products as well as variety of modified
lipids formed by PQ treatment.

Fluorescent microscopy of oxidized phosphatidylcholines

Based on the detection of CHH-derivatized carbonylated
phospholipids (oxPL) by MS, we evaluated oxPL subcellular dis-
tribution. To the best of our knowledge, the only immunocyto-
chemical approach to detect oxidized phospholipids (oxPL) relies
on natural Ab E06 recognizing oxidized phosphatidylcholines
(oxPC). Though the exact epitope(s) are unknown, it recognizes
oxidized fatty acids in sn-2 position and the PC head group.
Fluorophore labeled Ab E06 indicated significantly increased
amounts of oxPL in primary fibroblasts after PQ treatment
(Fig. 5A). Interestingly, the images of many cells looked similar to
the CHH staining (Fig. 5B), i.e. the oxPL specific fluorescence was
mostly localized in the perinuclear space indicating that CHH
labeling can localize carbonylated lipids. To confirm oxPL co-
localization with carbonylated species, control and PQ-treated
cells were used in co-staining experiments and imaged by confocal
microscopy (Fig. 5C).
Discussion

Cellular carbonylation plays a vital role in many OS-related
human disorders and its increase was correlated with disease
progression. Carbonylation refers to a complex mixture of struc-
turally diverse modifications in both proteins and lipids [11].
Detection of carbonylated biomolecules is usually done via label-
ing of carbonyl group by different chemical probes, including
hydrazines (e.g. DNPH), hydrazides (e.g. biotin hydrazide and CHH)
and hydroxylamines (aldehyde reactive probe and fluorescent
hydroxylamine) [3]. Additionally, a number of antibodies raised
against specific protein carbonyls are available, including anti-
bodies against hydroxy-nonenal (HNE)- and malondialdehyde
(MDA)-protein adducts [38–40]. In order to understand the
dynamic behavior and the underlying mechanisms, it is crucial to
identify and quantify carbonylated species as well as evaluate their
spatial distribution in cells and tissues.

DNPH-based immunocytochemistry, as well as anti-HNE and
anti-MDA Ab, are widely used to access spatial distribution of
carbonylated proteins [40,41]. However, these protocols do not
address lipid derived carbonyls. Further limitations of standard
immunostaining protocols are permeabilization of cell plasma
membranes and thin-sectioning of tissue samples in order to
ensure antibody access to the targeted molecules. Additionally,
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immunocytochemical protocols require cell fixation and thus are
not suitable for live imaging. Finally, as for any antibody based
techniques, specificity of antibodies is crucial.

Based on our recent studies on the favorable analysis of CHH
labeled carbonylated lipids by mass spectrometry [18] we tested
here this coumarin-hydrazide to detect carbonylated species by
fluorescence microscopy in paraquat treated human primary
fibroblasts. CHH is a versatile fluorescent chemical probe
(λex ¼ 420–450/λem¼ 468 nm) with a characteristic blue light
emission in the range of DAPI or Hoechst dyes. Generally, cou-
marin-based dyes have been favorably applied in numerous stu-
dies due to their high fluorescent efficiency, good solubility, and
efficient cell permeability. In CHH the electron donating group in
position 7 (N,N-diethyl group) and electron withdrawing group in
position 3 (carbohydrazide) provide additionally high fluorescence
quantum yields [42].

Samples reduced with sodium borohydride and thus missing
reactive carbonyls indicated no unspecific background allowing
time and dose dependent studies on PQ treated cells. Importantly,
the fluorescence increased with both PQ concentration and incu-
bation times. The fluorescence increased very fast within 15 min,
reaching a maximum after 2 h before decreasing slightly due to
the cell death. Thus CHH allows specific monitoring of the cellular
carbonyls formation in response to external signals or reagents.

Microscopy imaging of total biomolecule carbonylation
requires fixation protocols capable to preserve not only protein but
also lipid, polysaccharide and nucleic structures within a cell.
Fixation with paraformaldehyde (PFA) is widely used in cyto- and
histochemistry studies. PFA, which is a formaldehyde polymer,
might look like suboptimal choice of fixative for carbonyls detec-
tion. However, aqueous solution of PFA exists in equilibrium
between methylene glycol and formaldehyde with a favor to
methylene glycol [43]. Additionally it is important to note that
formaldehyde can react with nucleophilic molecules (e.g. lysine
primary amino group) only via Schiff base mechanism thus car-
bonyl function is consumed within the reaction and do not provide
artificial levels of protein carbonylation. PFA fixation followed by
hydrazide/hydrazine based detection of carbonylated biomole-
cules was used in multiple studies to address OS-related effects
[44–48]. Application of organic solvent based fixatives (e.g.
methanol, acetone) was shown to extract majority of cellular
phospholipids and alter cellular structures with high lipid content
(e.g. biological membranes, lipid droplets) [49] and thus would be
unsuitable to study total biomolecules carbonylation. Furthermore,
we did not observe significant differences in background fluores-
cence of PFA and methanol fixed cells stained with CHH. Thus PFA
fixation which allow to preserve both protein and lipid cellular
structures was used here to assess the total level of biomolecules
carbonylation.

Gel electrophoresis of carbonylated proteins, TLC and MS of
carbonylated lipids confirmed that CHH labels efficiently both
carbonylated biomolecules. Gels can be directly used for fluor-
escent detection of carbonylated proteins without additional
staining, which is also true for TLC separated carbonylated lipids.
Finally, several molecular species of CHH-labeled carbonylated
lipids, i.e. low molecular weight aliphatic aldehydes, lysoPC, and
truncated PC species, were identified by MS.

Microscopy images obtained after CHH labeling and regular
DNPH-based immunocytochemistry correlated well with CHH
labeling being much faster (i.e. 3 versus 20 h), less expensive (no
antibodies) and it simultaneously detects both protein and lipid
derived carbonyls. The fluorescence imaging obtained by both
techniques provided similar increases in cellular carbonyls indi-
cating that both techniques allow quantitative evaluations.

Furthermore, specificity of hydrazine/hydrazide labeling
reagents towards carbonyl groups in other biomolecules needs to
be discussed. Free sugars (e.g. glucose) can carry carbonyl function
but only in the open chain form. However, more than 99% of
glucose is believed to be present in the cell in closed-ring form
(pyranose) and thus will not be reactive to hydrazide tag. Glyco-
proteins might represent another source of OS-independent car-
bonyls. But similarly to free carbohydrates, sugar moieties in gly-
cosylated proteins are present in the closed-ring form connected
by glycosidic bonds.

Carbonyl groups in the nucleic acids, indeed, can be labeled by
hydrazine. Reactivity of DNPH towards nucleic acids was reported
by Luo and Wehr and streptomycin precipitation or enzymatic
DNA/RNA degradation were proposed to be included in spectro-
photometric DNPH-based protein carbonyl assays [16]. Thus it can
be expected that coumarin-hydrazide will also be able to label
carbonyl groups of nucleic acids. However, using DNPH and CHH
for microscopy imaging we did not observe significant nuclear
staining, as well as co-localization of DNPH- and CHH-signals with
DNA specific dyes. DNA in the cell is not present in its linear form
assessable to the labeling tag, but is folded in nucleosomes by
histones and decorated by many other interacting proteins form-
ing a compact chromatic structure. This can be one of the reasons
why hydrazides/hydrazines do not show high reactivity towards
cellular DNA in its native form. Overall, low level of carbonylation
in cell nucleus was demonstrated on different cell types in a
variety of oxidative stress models, and was attributed to the higher
concentration of 20S proteasome in the nucleus as well as pro-
teasome activation upon stress induction [50,51]. Indeed, the link
between DNA repair mechanisms and activity of 20S proteasome
was demonstrated via PARP-1-mediated proteasomal activation
[52]. Furthermore, the role of nuclear glutathione (GSH) in main-
taining low levels of DNA and protein damage upon oxidative
stress was shown as well [53].

Previous studies demonstrated perinuclear accumulation of
oxidized molecules in different models of OS, though this phe-
nomena cannot be explained yet. Jung et al. concluded from the
total and carbonylated protein distributions in HT-22 cells treated
with different OS inducers that high carbonylation levels in peri-
nuclear space correlate with high protein concentrations [23].
However, when protein carbonylation was normalized to the
protein amounts along the cell space, the highest level of protein
carbonyls was assigned to the cytosol near the plasma membrane.
Recently, the high perinuclear clustering of HNE-modified proteins
was attributed to protein carbonylation in the endoplasmic reti-
culum (ER) of rat aortic smooth muscle cells treated with HNE and
several modified proteins including ER resident chaperons were
identified by MS [40]. Our approach similarly indicated a strong
perinuclear clustering of carbonylation specific signals in PQ-
treated fibroblasts. Taking into account the lipophilic nature of
CHH and TLC and MS data, we propose that these signals derived
from both protein-bound carbonyls and carbonylated lipids
formed under OS conditions. This was additionally confirmed by
co-distribution of CHH signals with signals from natural antibodies
E06 which localize oxidized lipids mainly around the nuclear
membranes. The biological significance of low molecular weight
aliphatic aldehydes is well known and was recently further
extended for carbonylated phospholipids as inflammatory and
immune responses modulators. However, the cellular and tissue
distribution of carbonylated lipids are rarely studied. To the best of
our knowledge, only one chemical probe, tetrazolium salt of
2-hydroxy-3-naphthoic acid hydrazide, was used to address this
question [54]. Thus, ability of CHH to label both protein-bound and
lipid derived carbonyls provides new opportunities to access the
levels and spatial distribution of carbonylated species and can be
further extended to tissue imaging experiments.
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Conclusion

The present study demonstrates that 7-(diethylamino)-cou-
marin-3-carbohydrazide (CHH) is a time and cost efficient reagent
for fluorescence microscopy imaging of carbonylated biomolecules
in cellular models of OS. CHH labeling was equally efficient as
conventional DNPH immunocytochemistry, but can be additionally
combined with complimentary analytical techniques (SDS PAGE,
TLC and MS) and fluorescence staining of oxidized phospholipids.
We could prove that CHH stains protein-bound carbonyls and lipid-
oxidation derived species, thus allowing to monitor subcellular
distribution of a broad range of carbonylated biomolecules.
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