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P A L E O N T O L O G Y

A new fossil assemblage shows that large  
angiosperm trees grew in North America by the 
Turonian (Late Cretaceous)
Nathan A. Jud1*, Michael D. D’Emic2,3,4, Scott A. Williams3,5, Josh C. Mathews3,6,  
Katie M. Tremaine3,5, Janok Bhattacharya7

The diversification of flowering plants and marked turnover in vertebrate faunas during the mid-Cretaceous 
transformed terrestrial communities, but the transition is obscured by reduced terrestrial deposition attributable 
to high sea levels. We report a new fossil assemblage from multiple localities in the Upper Cretaceous Ferron 
Sandstone Member of the Mancos Shale Formation in Utah. The fossils date to the Turonian, a severely under-
represented interval in the terrestrial fossil record of North America. A large silicified log (maximum preserved 
diameter, 1.8 m; estimated height, ca. 50 m) is assigned to the genus Paraphyllanthoxylon; it is the largest known 
pre-Campanian angiosperm and the earliest documented occurrence of an angiosperm tree more than 1.0 m in 
diameter. Foliage and palynomorphs of ferns, conifers, and angiosperms confirm the presence of mixed forest or 
woodland vegetation. Previously known terrestrial vertebrate remains from the Ferron Sandstone Member in-
clude fish teeth, two short dinosaur trackways, and a pterosaur; we report the first turtle and crocodilian remains 
and an ornithopod sacrum. Previous studies indicate that angiosperm trees were present by the Cenomanian, 
but this discovery demonstrates that angiosperm trees approaching 2 m in diameter were part of the forest can-
opies across southern North America by the Turonian (~92 million years ago), nearly 15 million years earlier than 
previously thought.

INTRODUCTION
Terrestrial communities underwent marked changes associated with 
the diversification of flowering plants during the mid-Cretaceous 
(1). Unfortunately, globally high sea levels and reduced terrestrial 
deposition limit our understanding of these communities. An espe-
cially underrepresented time is the Turonian [ca. 94 to 90 million 
years (Ma) ago] for which few localities are known across western 
North America for plant and terrestrial vertebrate fossils (2). The 
combination of a sparse fossil record in western North America and 
marked ecological changes means that each new discovery has the 
potential to substantially influence our understanding of the eco-
logical changes that took place during this important interval.

Today, flowering plants range in size from minute herbs to enor-
mous trees. How quickly did they come to occupy this range of mor-
phospace? Ancestral state reconstructions suggest that the common 
ancestor of crown-group angiosperms produced small amounts 
of wood (3). Direct evidence from fossils shows that small herbs 
evolved early (4, 5) but it may have taken millions of years for flower-
ing plants to attain sizes rivaling the tallest living tropical lowland 
emergent trees. The fossil record of angiosperm woods is informative 
in part because trunk diameter is related to tree height and standing 
biomass (6). Fossil angiosperm wood is rare in pre-Campanian de-
posits, and most are small fragments (<0.1 m in diameter); there are 
fewer than 100 published occurrences worldwide (7, 8). These attributes 

contributed to the hypothesis that angiosperms were subordinate to 
gymnosperm trees in many habitats (9, 10); however, occurrences 
of moderately large angiosperm wood fragments (0.1 to 1 m in 
diameter) from Albian-Turonian deposits (11–14) suggest that sam-
pling biases might mask angiosperm physiognomic diversity and 
abundance in mid-Cretaceous deposits (15), as they do for several 
Cretaceous terrestrial vertebrate groups (2). Under this hypothesis, 
large angiosperm trees would have been an important component of 
poorly sampled mid-Cretaceous communities (15).

Here, we bring a new discovery to bear on the question of when 
angiosperm trees attained very large size (>1 m in diameter at breast 
height). By placing our findings in the broader context for fossil 
angiosperm woods, we show that large angiosperm trees were part 
of forest canopies across southern North America (Appalachia to 
the east and Laramidia to the west) by the Turonian. In addition to 
the fossil wood, we report the first leaf fossils and new terrestrial 
vertebrate fossils from the Ferron Sandstone Member of the Mancos 
Shale. Our findings highlight the current severity of geologic biases 
in the Upper Cretaceous North American fossil record while simul-
taneously opening a new fossiliferous horizon for remedying those 
biases.

RESULTS
Our fieldwork expands the floral and vertebrate records in the Ferron 
Sandstone Member of the Mancos Shale, adding angiosperm macro-
fossils and turtle, crocodylian, and ornithopod body fossils to already 
known chondrichthyan (16) and pycnodont teeth (17), pterosaur 
body fossils (18), and trackways of ornithopod (19) and therizino-
saur (20) dinosaurs. The fossils described herein are from the top of 
parasequence 6 (that is, sixth from the top of the Ferron Sandstone) 
in sequence 2 (that is, second from the top) of Zhu et al. (21). Ben-
tonites above and below parasequence 6, in sequences 1 and 2 of 
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Zhu et al. (21), constrain the age of the vertebrate and plant body 
fossils and vertebrate ichnofossils to between 90.64 ± 0.25 Ma and 
90.69 ± 0.34 Ma and are correlated to the Prionocyclus macombi 
ammonite zone of Cobban et al. (22).

Angiosperm wood
A large decorticated log, ~11 m in preserved length with a maxi-
mum diameter estimate of 1.8 m, was found at 38.2°N, 110.8°W 
(more precise location is on file with the Bureau of Land Management). 
This is approximately double the size of previously documented an-
giosperm woods from pre-Campanian deposits worldwide (Fig. 1). We 
did not collect the entire specimen (Fig. 2A), but hand samples and thin 
sections are archived at the University of Florida (UF 19462-69143). 
A 3D surface model created through photogrammetry is available on 
Morphobank (http://morphobank.org/permalink/?P3218). Pres-

ervation of the trunk is variable. The core is more than 1.6 m in di-
ameter, and following the partial excavation and careful examination 
of the trunk, we estimate the diameter at 1.8 m; however, it does not 
appear to have undergone significant taphonomic distortion on macro- 
or microscopic scales that would make the diameter appear larger. 
We estimated the stem length (tree height) at 50.8 m based on the 
1.8 m in diameter estimate (at approximately breast height) using 
the allometric scaling equation developed from the cannel compendium 
data (23) by Niklas and Spatz (24) and 53.6 m using the pantropical 
model of height-diameter relationships developed from direct mea-
surements of tropical dicot trees by Feldpausch et al. (25). The di-
ameter at breast height value of 1.8 m is beyond the range of values 
in both data sets, precluding the use of a prediction interval; however, 
we defend our initial estimate because the empirical data used to 
develop these models fit a mechanistic predictive model (24).

Fig. 1. Cretaceous woods. Map of Turonian localities in western North America with angiosperm woods >10 cm in diameter and stacked area curve showing the contri-
bution of this discovery (indicated by star) to the global record of Cretaceous angiosperm woods. Ages are midpoint estimates. The gray area indicates the maximum 
observed angiosperm diameter through the Cretaceous. Dashed box indicates Turonian occurrences shown in the map above. Inset shows the new angiosperm log in 
the field (Photo Credit: M.D. D’Emic, Adelphi University). During much of the Late Cretaceous, the Western Interior Seaway divided North America into Appalachia in the 
east and Laramidia in the west. Map modified from Blakey (38).

http://morphobank.org/permalink/?P3218
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We studied the anatomy of the angiosperm wood in transverse, 
radial longitudinal, and TLS from a hand sample taken from the 
outermost portion of the log. The wood lacks distinct growth rings 
and is diffuse-porous. The vessels are solitary (30%) and in radial 

multiples of up to 11, with a mean tangential diameter of 137 m 
(n = 25; SD, 30; range, 92 to 181 m) and a frequency of 6.0 vessels 
mm−2 (Fig. 2B). The vessel elements have simple perforation plates, 
abundant tyloses, and crowded alternate intervessel pits 11 and 12 m 
across (Fig. 2C). Axial parenchyma is scanty paratracheal (Fig 2B). 
The rays are heterocellular and mostly 2 to 4 seriate, with 1 to 2 rows 
of marginal upright cells (Fig. 2, D and E). Mean ray height is 645 m 
(n = 25; SD, 299; range, 204 to 1449 m), and ray frequency is 
7.1 mm−1. Poor preservation obscures the vessel-ray parenchyma 
pits. Fibers are medium thick-walled (Fig. 2F), septate, and without 
distinctly bordered pits. We did not observe crystals, storied struc-
ture, canals, nor cambial variants.

The fossil belongs to the genus Paraphyllanthoxylon Bailey. In nearly 
all features observed, this specimen conforms to Paraphyllanthoxylon 
alabamense Cahoon (table S1); however, we did not observe the 
vessel-ray parenchyma pits, and it has vessels that are arranged 
in longer radial multiples than observed in the specimens from 
Alabama (13). It is our judgment that these differences do not war-
rant the recognition of a new species, so we refer the Ferron log 
to P. cf. alabamense. The largest reported diameter from the 
type locality for that species is 0.9 m (13), although anecdotal evi-
dence suggests that there were also specimens more than 1 m in 
diameter (26).

Leaf assemblage
Approximately 11 km northwest of the large angiosperm log, we made 
a small collection of leaf fossils from brownish gray shales (38.39°N, 
110.88°W), near an accumulation of Rosselia trace fossils erroneously 
identified as sauropod dinosaur footprints in a conference abstract 
(27). The leaves co-occur with impressions of bivalves in a fluvial 
and distributary channel that is part of a broader fresh-to-brackish 
water lower delta plain environment. The assemblage includes iso-
lated shoots of Elatides curvifolia (Dunker) Nathorst (Fig. 3, A and B), 
and fragmentary remains of nonmonocot angiosperm leaves. The most 
complete angiosperm leaf is the lower portion of a notophyllous leaf 
with an attached petiole (Fig. 3C). We also found small fern frag-
ments (Fig. 3D).

Vertebrate remains
Vertebrate body fossils occur primarily at the base of fluvial and 
distributary channels about 10 km northwest of the large angiosperm 
log and were deposited in a fresh-to-brackish water lower delta plain 
environment. A single shark tooth [Burpee Museum of Natural History 
(BMRP) 2017.8.1] is attributable to Cretodus crassidens (Fig. 4A), 
a common lamniform shark in Turonian Western Interior Seaway 
deposits (16, 28). We also recovered crocodyliform teeth (BMRP 
2017.8.5, BMRP 2017.8.4, and BMRP 2017.8.3; Fig. 4B), a large 
(~9 cm long and ~1 cm thick) turtle scute (BMRP 2017.8.6; Fig. 4C), 
and a partial ornithopod sacrum (BMRP 2017.8.2; Fig. 4D).

DISCUSSION
The Ferron Sandstone Member preserves fossil wood, leaves, and 
both terrestrial and marine vertebrate body fossils. The occurrence 
of C. crassidens and associated radiometrically dated bentonite beds 
confirms the Turonian age for the fossils. The Turonian vertebrate 
fossil record is sparse (2), limiting our understanding of the ori-
gin of exceedingly diverse and geographically heterogeneous (29) 
Campanian-Maastrichtian communities. These findings begin to fill 

Fig. 2. P. cf. alabamense UF 19462-69143. (A) Photograph of the log in the 
field. (B) Transverse section (XS) showing diffuse porous wood with vessels in 
short radial multiples of 2 to 11, growth rings absent, axial parenchyma rare, 
radial bands of fibers, and rays roughly the same width. (C) Tangential longitudi-
nal section (TLS) showing crowded, hexagonal pits on the vessel wall. (D) TLS 
showing closely spaced lens-shaped 2- to 4-seriate rays among elongate fibers. 
(E) Radial longitudinal section showing rows of procumbent and upright ray pa-
renchyma cells. (F) XS showing thin-walled ray cells (at left) and medium thick-
walled fibers (at right). Scale bars, 500 m (B), 100 m (C), 250 m (D), 200 m (E), 
and 50 m (F). (Photo Credits: A: M.D. D’Emic, Adelphi University; B to F: N.A. Jud, 
University of Florida)



Jud et al., Sci. Adv. 2018; 4 : eaar8568     26 September 2018

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 6

the gap in our knowledge of mid-Cretaceous terrestrial communities 
in North America.

Until now, the only plant fossils known from the Ferron Sandstone 
Member were palynomorphs obtained within 10 km of where the log 
reported herein is located (30). The mixture of fungal, algal, and fern 
spores, taxodiaceous conifer pollen, and palm pollen are indicative of 
a warm (frost-free), ever-wet climate (30). It is surprising that in the 
same formation where an enormous angiosperm tree was found, no 
nonmonocot angiosperm pollen types have yet been reported (30); 
however, in at least some instances, Paraphyllanthoxylon woods are 
attributable to Lauraceae (31), a family with a notoriously poor dis-
persed pollen record (32). The log described here is substantially 
larger than all previously published reports of angiosperm wood 
from Cretaceous deposits, except for some stumps from the upper 
Campanian of New Mexico (33). Collectively, these fossils repre-
sent the largest known Cretaceous angiosperms (Fig. 1).

Despite considerable evidence for high species richness among 
angiosperms since the Albian-Cenomanian (1), the angiosperm con-
tribution to canopy cover before the Campanian-Maastrichtian 

(that is, during the mid-Cretaceous) remains obscure (10, 15). Only 
a handful of plant assemblages with fossilized woods are known 
from the Turonian of North America, and none of those specimens 
approach the size of the Ferron log (data file S1). The largest of 
the previously documented mid-Cretaceous woods are P. arizonense 
logs >0.6 m in diameter from the Cenomanian-Turonian of Arizona 
(8), and P. alabamense logs >0.9 m in diameter from the Cenomanian- 
Turonian of Alabama (13, 26). This discovery demonstrates that an-
giosperm trees approaching 2 m in diameter were part of the canopy 
by the Turonian nearly 15 Ma earlier than previously thought.

We report new and unexpected floral and faunal occurrences from 
a severely underrepresented time in the terrestrial geologic record 
of North America. Among these newly reported occurrences are chon-
drichthyan, testudine, crocodyliform, and ornithopod remains and 
fern, conifer, and angiosperm megafossils. This Paraphyllanthoxylon 
is the earliest documented occurrence of an angiosperm tree more 
than 1.0 m in preserved diameter. Our findings demonstrate that by 
the Turonian, flowering plants diversified to effectively fill the full 
range of heights available to land plants.

MATERIALS AND METHODS
We used traditional survey and excavation methods to recover ver-
tebrate and plant fossils from the study area. The study horizon is the 
Ferron Sandstone Member of the Mancos Shale Formation in Utah, 
which records relatively brief intervals of eastward fluvio-deltaic 

Fig. 4. Vertebrate fossils from the Ferron Sandstone of Utah. (A) Tooth of C. 
crassidens BMRP 2017.8.1. (B) Crocodyliform teeth 2017.8.5 (left), 2017.8.4 (center), 
BMRP 2017.8.3 (right). (C) Dorsal turtle scute BRMP 2017.8.6. (D) Ornithopod sacrum 
BMRP 2017.8.2. (Photo Credits: S.A. Williams, Burpee Museum of Natural History)

Fig. 3. Plant compression fossils from the Ferron Sandstone of Utah. (A) Leafy 
shoot of E. curvifolia (Dunker) Nathorst; UF 19523-70170. (B) Close-up of (A). 
(C) Indeterminate angiosperm leaf; UF 19523-70171. (D) Isolated fern pinnule; UF 
19523-70170. Scale bars, 5 mm (A to C) and 3 mm (D). (Photo Credits: N.A. Jud, 
University of Florida)
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deposition into the then-extensive Western Interior Seaway (21). 
Plant and vertebrate fossils were collected on lands administered 
by the Bureau of Land Management under permits UT13-013S and 
UT13-014E. The fossil log was discovered in a tidal deposit, indicat-
ing some degree of transport from the site of growth. We used Agisoft 
Photoscan (34) to produce 3D models of the log using photogram-
metry. Thin sections of transverse, radial, and tangential planes were 
produced using standard petrographic techniques (35). Thin sec-
tions were examined with light microscopy. The description of the 
wood anatomy follows the International Association of Wood Anatomists 
guidelines (36). Photos were taken with a Canon Electro-Optical System 
digital camera, mounted onto a Nikon microscope for microscopic 
images. The images were processed in Photoshop using only whole- 
image manipulations to improve contrast. We compared the spec-
imen with other Cretaceous angiosperm woods described in the 
literature and with fossil specimens at the Florida Museum of Natural 
History, including those of P. alabamense Cahoon (13). We eval-
uated the significance of the size of the specimen by comparing it 
with other Cretaceous occurrences from around the world for 
which we could obtain diameter estimates. We augmented the data 
set of North American occurrences presented by Jud et al. (37) with 
updated diameter estimates, and we included occurrences from 
other continents.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/9/eaar8568/DC1
Table S1. Comparison of the Cretaceous Paraphyllanthoxylon species and the anatomically 
similar genus Aplectotremas.
Data file S1. Cretaceous angiosperm wood fossils used to create Fig. 1 (Excel file).
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