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Abstract: In this paper, the organocatalytic asymmetric Michael addition/hemiketalization cascade
reactions between hydroxymaleimides and 2-hydroxynitrostyrenes were developed, which provided
a new protocol for building a chiral ring-fused chroman skeleton. This squaramide-catalyzed cascade
reaction provided chiral chroman-fused pyrrolidinediones with three contiguous stereocenters in
good to high yields (up to 88%), with excellent diastereoselectivities (up to >20:1 dr) and enantioselec-
tivities (up to 96% ee) at −16 ◦C. Moreover, a scale-up synthesis was also carried out, and a possible
reaction mechanism was proposed.

Keywords: organocatalysis; asymmetric catalysis; cascade reaction; hydroxymaleimide; chro-
man; pyrrolidinedione

1. Introduction

The development of pharmaceutical science is inseparable from the discovery of lead
compounds, primarily derived from natural products and analogues with biological ac-
tivity. Ring-fused chroman skeletons are widely present in many natural products and
analogues with bioactivity [1–11] (Figure 1). For example, myrtucommulone E, isolated
from the Mediterranean folk herb Myrtucommulone, has α-glucosidase inhibitory activ-
ity [1]; rhodomyrtone, isolated from the leaves of myrtle, a small Indonesian shrub, has
antibacterial activity [2]; miroestrol, isolated from the root of kudzu, a Thai herb, has
estrogenic activity [3]; rhododaurichromanic acid A, isolated from the shoots and leaves
of azalea from northern China and eastern Siberia, has anti-HIV activity [4] and so on. In
addition to specific actions in the field of biomedicine, the ring-fused chroman skeleton
also shows particular potential in the area of modern pesticide development. For example,
greveichromenol, isolated from geronniang, the traditional herbal medicine of the Dai
ethnic group, showed antitobacco mosaic virus activity, providing a lead compound for
the development of antitobacco mosaic virus pesticide [5]. Therefore, the construction of
the chroman skeleton has received great attention from organic and medicinal chemists.
In recent years, a large number of synthetic strategies of chroman derivatives have been
consistently reported [12–26].

2-Hydroxynitrostyrene plays an essential role in these reactions in the construction of
chiral chroman derivatives. For example, in 2013, Zhu’s group reported a new asymmetric
oxa-Michael/Michael cascade reaction for the construction of enantiomerically enriched
indolinone spiro-fused chromans; this protocol offered excellent stereo control under mild
conditions [27] (Scheme 1a). In 2018, Xu’s group developed an asymmetric catalytic method
for the synthesis of polysubstituted chromans through an oxa-Michael-nitro-Michael re-
action, and the squaramide-catalyzed domino reaction of 2-hydroxynitrostyrenes with
trans-β-nitroolefins produced chiral chromans with excellent enantioselectivities, diastere-
oselectivities and yields [28] (Scheme 1b). At the same time, because of the importance
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of the 2,5-pyrrolidinedione framework in biomedicine [29,30], Wang’s group synthesized
chiral chroman-fused pyrrolidinediones for the first time in excellent yields with excellent
stereoselectivities using organocatalytic enantioselective [4+2] cyclization reaction [31]
(Scheme 1c). Inspired by their work and continuing with our project with organocatalyzed
domino or cascade reactions for the synthesis of bioactive heterocycles, we intend to syn-
thesize chiral chroman-fused pyrrolidinediones using 2-hydroxynitrostyrenes as substrates
to consolidate and develop this research result (Scheme 1d).
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2. Results and Discussion
2.1. Optimization of Reaction Conditions

Initially, we started our study with hydroxymaleimide 1a (3-ethyl-4-hydroxy-1-phenyl-
1H-pyrrole-2,5-dione) and 2-hydroxynitrostyrene 2a as model substrates. We first tested the
feasibility of the model reaction in the presence of 10 mol% cinchona-derived squaramide
bifunctional catalyst C1 (Figure 2) in dichloromethane (DCM) at room temperature. Under
these conditions, the desired product 3aa was obtained in high yield (82%) with excellent
diastereoselectivity (>20:1 dr), although with moderate enantioselectivity (53% ee). En-
couraged by this important result and inspired by our previous work [32,33], we tried



Molecules 2022, 27, 5081 3 of 17

to reduce the reaction temperature to −16 ◦C to improve the enantioselectivity. Luckily,
the results improved to 80% yield, >20:1 dr, and 87% ee. Furthermore, we tried to screen
several catalysts, reaction solvent, and catalyst loading to further improve the outcome and
enantioselectivity. The results are outlined in Table 1.
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Figure 2. Organocatalysts selected.

Temperature is a vital factor to affect the stereoselectivity in asymmetric organic
reaction, so we evaluated reaction temperature at first. Unexpectedly, a lower temperature
can lead to higher yield and enantioselectivity. To avoid the contingency of the case, we took
another catalyst C2 to confirm this. We can easily find that a lower temperature is better for
reaction from entries 1–4. Given the temperature conditions, we evaluated several catalysts
(Table 1, entries 2, 4–12) next; the cinchona-derived bifunctional thiourea catalyst C9 had
the best yield, while the enantioselectivity was ordinary and the diastereoselectivity was
not good enough (entry 11, 90% yield,−69% ee, 16:1 dr). The cinchona-derived squaramide
catalyst C6 has almost the best yield, as well as diastereoselectivity, but enantioselectivity
is so low that we do not consider it (entry 8, 89% yield, 59% ee, >20:1 dr). In terms
of enantioselectivity, cinchona-derived squaramide catalysts are better, compared to the
diaminocyclohexane-derived squaramide catalyst C10 (entry 12, 81% yield, 59% ee, 9:1 dr).
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When taking into account entry 2 (80% yield, 87% ee, >20:1 dr) and entry 4 (83% yield, 73%
ee, >20:1 dr), we easily find that the cinchona-derived squaramide catalyst C1 is superior
to the cinchona-derived thiourea catalyst C2. Taking into account entry 2 (80% yield, 87%
ee, >20:1 dr) and entry 5 (88% yield, 96% ee, >20:1 dr), we can easily find that the quinine-
derived squaramide catalyst C3 is superior to the cinchonidine-derived squaramide catalyst
C1. Eventually, we chose the quinine-derived squaramide catalyst C3 (entry 5, 88% yield,
96% ee, >20:1 dr) as the best catalyst in this reaction.

Table 1. Optimization of the reaction conditions a.
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Entry Solvent Catalyst Temperate
(◦C)

Yield b

(%)
dr c ee d (%)

1 CH2Cl2 C1 rt 82 >20:1 53
2 CH2Cl2 C1 −16 80 >20:1 87
3 CH2Cl2 C2 rt 85 >20:1 55
4 CH2Cl2 C2 −16 83 >20:1 73
5 CH2Cl2 C3 −16 88 >20:1 96
6 CH2Cl2 C4 −16 79 >20:1 77
7 CH2Cl2 C5 −16 77 >20:1 95
8 CH2Cl2 C6 −16 89 >20:1 59
9 CH2Cl2 C7 −16 82 >20:1 81

10 CH2Cl2 C8 −16 78 >20:1 73
11 CH2Cl2 C9 −16 90 16:1 −69
12 CH2Cl2 C10 −16 81 9:1 59
13 DCE C3 −16 87 >20:1 93
14 Toluene C3 −16 80 >20:1 85
15 MeCN C3 −16 89 >20:1 79
16 CHCl3 C3 −16 83 >20:1 87
17 THF C3 −16 trace – –

18 e CH2Cl2 C3 −16 86 >20:1 95
19 f CH2Cl2 C3 −16 80 >20:1 89

a Unless otherwise specified, the reactions were carried out with 1a (0.10 mmol), 2a (0.12 mmol) and catalyst
(10 mol%) in solvent (1.0 mL) for 24 h. b Isolated yield after column chromatography purification. c Determined
by 1H NMR analysis. d The enantiomeric excess (ee) was determined by HPLC analysis. e 5 mol% catalyst was
used. f 2.5 mol% catalyst was used.

After a preliminary screening of the catalysts, a survey of the solvent effect using C3
as the organocatalyst concluded that dichloromethane (DCM) was still the best solvent
among 1,2-dichloroethane (DCE), chloroform, toluene, acetonitrile, tetrahydrofuran (THF).
Some solvents, such as 1,4-dioxane, will freeze at −16 ◦C; we do not consider these (Table 1,
entries 13–17). It seems unexpected that when the reaction was carried out in THF, only
trace products was detected by TLC. In general, THF will have an effect on stereoselectivity
owing to compete hydrogen bond formation with catalyst, but the great influence on
product yield may have other reason. We finally discovered that hydroxymaleimide 1a, one
of the substrates, cannot dissolve well in THF, which could shed light on this phenomenon.

Afterwards, we further investigated the reaction with 5 and 2.5 mol% catalyst loading,
respectively (Table 1, entries 18 and 19), and no improvements were obtained. Therefore,
the optimal reaction conditions for this Michael/hemiketalization cascade reaction were to
use a catalyst loading of 10 mol% of squaramide C3 in DCM at −16 ◦C for 24 h.
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2.2. Substrate Scope

With the optimized conditions in hand, we then began to investigate the substrate
scope and limitation of this reaction, and the results are summarized in Scheme 2.
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Scheme 2. Substrate scope for chroman-fused pyrrolidinediones 3. The reactions were carried out
with 1 (0.10 mmol), 2 (0.12 mmol), and catalyst C3 (10 mol%) in DCM (1.0 mL) at −16 ◦C for 24 h.
The yields were isolated after column chromatography. The dr values were determined by 1H NMR
and the ee values were determined by HPLC analysis.

Firstly, we examined the tolerance of various hydroxymaleimides 1 under the opti-
mized conditions. Various hydroxymaleimides with electron withdrawing and electron
donating substituents at the 4-position on the benzene ring participated in the reaction
easily, and the corresponding products 3ba–3ha could be generated in high yields (79–88%)
with excellent stereoselectivities (up to >20:1 dr and up to >99% ee), except products 3da
and 3fa, whose diastereoselectivity was 4:1 and 5:1, respectively. There is no clear rule
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of the influence of substituents on stereoselectivity. The effect of substituents on stereos-
electivity cannot be explained by the electronic effect, because the enantioselectivity and
diastereoselectivity are affected by many factors. Afterwards, the cascade process gave
the desired products 3ia–3na with high stereoselectivity and good yield, even with the
substituents at the 3-position or 3,5-position on the benzene ring. Unfortunately, substrate
1o substituted with phenyl did not work with 2a; no other addition was observed. The
starting materials were recovered unaltered, probably because of the steric hindrance and
the phenyl delocalization of the negative charge, so that the intramolecular Michael addi-
tion step cannot occur. Furthermore, we tested some substituents at different positions on
2-hydroxynitrostyrenes; most of them showed excellent results, including 3ab–3ae and 3ag
(up to >20:1 dr, 92% ee). However, when the substituent is a nitro group, such as 2f, the
reaction cannot work well, probably due to the strong electron-withdrawing effect of the
nitro group, which lowers the nucleophilic reactivity of the corresponding phenoxy anion.
The nitro group in 2f can block the catalyst by hydrogen bonding, and this may also hinder
the reaction from proceeding.

We also tried to lower the temperature to increase the stereo control of the reaction.
One can take 3ca as an example. When the reaction was carried out at −30 ◦C, the trace
product was detected even after 72 h; when the reaction was carried out at −20 ◦C, the
yield decreased to 78% and the diastereoselectivity remained at 10:1 dr.

To expand the synthetic application and the substrate scope, we also tried other types
of Michael accepter, such as (E)-3-(2-hydroxyphenyl)-1-phenylprop-2-en-1-one, (E)-methyl
4-(2-hydroxyphenyl)-2-oxobut-3-enoate, and 2-benzylidenemalononitrile, but the corre-
sponding reaction results were not satisfactory, no new products were observed when these
Michael acceptors reacted with 1a, and the starting materials were recovered unchanged.

2.3. Scaled-Up Synthesis

To prove the synthetic value of this cascade reaction, a scaled reaction of 1a and 2a with
amplification ten times was carried out under standard conditions. As shown in Scheme 3,
the desired product 3aa was obtained in slightly reduced yield (85%), with maintained
diastereoselectivity and slightly lower enantioselectivity (>20:1 dr, 94% ee). This result
shows that this asymmetric catalytic strategy has broad prospects for mass production.
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2.4. X-ray Diffraction Analysis

A single crystal of 3ca was obtained from the slow evaporation from the mixed
solvents of methanol and dichloromethane. The absolute configuration of product 3ca
was unambiguously determined by single-crystal X-ray diffraction analysis as (3aS,9S,9aR)
(Figure 3) [34] (See Supplementary Materials). The absolute configurations of the other
products were assigned by analogy.
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2.5. Controlled Reactions and Plausible Mechanism

For a better understanding of the mechanism of this cascade reaction, we designed
three controlled reactions (Scheme 4). When hydroxymaleimide 1b and β-nitrostyrene 2h
were used under the optimized conditions, the corresponding Michael addition product 4
was obtained with a yield of 20%. This result indicated that 1a is a suitable Michael donor
to trigger the first Michael addition step of the Michael/hemiketalization cascade reaction.
When the OH group in hydroxymaleimide 1a was protected with the acetyl group, as
in substrate 1q, no reaction was observed when 1q reacted with 2-hydroxynitrostyrene
2a. Meanwhile, N-phenylmaleimide 1r also could not react with 2a. The last two control
experiments indicated that the OH group in hydroxymaleimides is essential, and the
hemiketalization reaction was the second step of the cascade reaction, instead of the oxa-
Michael reaction as the first step.
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Scheme 4. Controlled reactions to explore the mechanism.

Based on these experimental results and previous work [33], we proposed a plausible
mechanism based on the absolute configuration of 3aa (Scheme 5). In the first step of
Michael addition, the squaramide catalyst C3 initially promotes the formation of transition
state A, and catalyst C3 works in a double activation model. 2-Hydroxynitrostyrene 2a
is oriented and activated by the squaramide moiety through double hydrogen bonding
and the OH group in 1a is deprotoned by the tertiary amine unit to form enolate, which is
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oriented by another hydrogen bond. 2-Hydroxynitrostyrene 2a is attacked by the enolate
of 1a from the Si-face. In the second step of the hemiketalization reaction, the OH group in
2-hydroxynitrostyrene 2a is deprotoned by the tertiary amine unit in squaramide, and the
newly formed carbonyl group in 1a is attacked by the deprotonated phenolic hydroxyl of 2a
from the Si-face via transition state B, leading to the formation of (3aS,9S,9aR)-configured
3aa and regenerates the bifunctional catalyst C3 after a protonation process.
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3. Conclusions

In conclusion, we have successfully developed novel Michael addition/hemiketalization
cascade reactions between hydroxymaleimides and 2-hydroxynitrostyrenes to synthesize
chiral ring-fused chromans. Under mild conditions, a range of structurally diverse chiral
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chroman-fused pyrrolidinediones, containing hemiketals, were obtained in good to high
yields with excellent stereoselectivities. Additionally, the potential utility of this method-
ology has been demonstrated by scaling-up synthesis. This cascade synthetic strategy is
bound to be a powerful tool for medicinal chemistry studies.

4. Materials and Methods
4.1. General Information

Commercially available compounds were used without further purification. Solvents
were dried according to standard procedures. Column chromatography was performed
with silica gel (200–300 mesh). The melting points were determined with an XT-4 melting
point apparatus and were not corrected. 1H NMR spectra were measured with a Bruker
Ascend 400 MHz spectrometer (Karlsurhe, Germany) and the chemical shifts were reported
in δ (ppm) relative to tetramethylsilane (TMS) as the internal standard. 13C NMR spectra
were measured at 100 MHz with a 400 MHz spectrometer, and the chemical shifts were
reported in ppm relative to tetramethylsilane and referenced to the solvent peak (CDCl3,
δC = 77.00 ppm; CD3OD, δC = 49.05 ppm; acetone-d6, δC = 30.83 ppm). High-resolution
mass spectra were measured with an Agilent 6520 Accurate-Mass Q-TOF MS system (Bei-
jing, China), equipped with an electrospray ionization (ESI) source. Optical rotations were
measured with a Krüss P8000 polarimeter (Beijing, China) at the indicated concentration
with units of g/100 mL. Enantiomeric excesses were determined by chiral HPLC analysis,
using an Agilent 1200 LC instrument (Beijing, China) with a Daicel Chiralpak IA, IB, IC, or
AD-H column.

4.2. Materials

Materials 1a–1p were prepared according to the literature reported by Wang et al. [35]
and 2a–2g were prepared according to the literature [36]. The chiral organocatalysts were
prepared following the procedures reported [37–40].

4.3. Procedure for the Asymmetric Synthesis of Compounds 3

In a small dried bottle, 1 (0.10 mmol), 2 (0.12 mmol), chiral organocatalyst C3 (6.0 mg,
0.01 mmol, 10 mol%) and DCM (1.0 mL) were added. The mixture was stirred at −16 ◦C
for 24 h. After completion of the reaction, the residue was purified by flash column
chromatography on silica gel to obtain the pure products 3 as solids. Racemates were
prepared following a similar procedure with Et3N (20 mol%).

(3aS,9S,9aR)-9a-Ethyl-3a-hydroxy-9-(nitromethyl)-2-phenyl-9,9a-dihydrochromeno [2,3-
c]pyrrole-1,3(2H,3aH)-dione (3aa). From 1a (21.6 mg, 0.10 mmol) and 2a (19.8 mg, 0.12 mmol),
purified by silica gel (200–300 mesh) column chromatography using ethyl acetate/petroleum
ether (1:8) as eluent to obtain 33.6 mg (88% yield) compound 3aa as a white solid, m.p.
215–218 ◦C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol = 95:5, flow rate 1.0 mL/min,
detection at 254 nm): tR = 32.9 min (major), tR = 35.3 min (minor); 96% ee. [α]D

25 = +10.8
(c = 1.68, CH2Cl2). 1H NMR (400 MHz, CDCl3): 7.38–7.36 (m, 3H, ArH), 7.29 (dd, J1 = 1.2 Hz,
J2 = 7.8 Hz, 1H, ArH), 7.18 (m, J1 = 1.2 Hz, J2 = 7.4 Hz, 1H, ArH), 7.06 (td, J1 = 7.2 Hz,
J2 = 1.2 Hz, 1H, ArH), 6.99 (d, J = 8.0 Hz, 1H, ArH), 6.90–6.87 (m, 2H, ArH), 4.85–4.71 (m,
3H, CH2 + OH), 4.24 (dd, J1 = 4.4 Hz, J2 = 10.8 Hz, 1H, CH), 2.20–2.01 (m, 2H, CH2), 1.12 (t,
J = 7.4 Hz, 3H, CH3) ppm. 13C NMR (100 MHz, acetone-d6): 174.1, 171.9, 150.6, 130.5, 130.3,
129.6, 129.4, 129.3, 125.9, 124.5, 124.1, 118.0, 98.1, 74.4, 55.0, 39.7, 24.8, 9.4 ppm. HRMS (ESI):
m/z calcd. for C20H19N2O6 [M + H]+ 383.1238, found 383.1233.

(3aS,9S,9aR)-9a-Ethyl-3a-hydroxy-2-(4-methoxyphenyl)-9-(nitromethyl)-9,9a-
dihydrochromeno[2,3-c]pyrrole-1,3(2H,3aH)-dione (3ba). From 1b (24.6 mg, 0.10 mmol)
and 2a (19.8 mg, 0.12 mmol), purified by silica gel (200–300 mesh) column chromatography
using ethyl acetate/petroleum ether (1:8) as eluent to obtain 33.0 mg (80% yield) compound
3ba as a white solid, m.p. 184–186 ◦C. HPLC (Daicel Chiralpak IA, n-hexane/2-propanol
= 90:10, flow rate 1.0 mL/min, detection at 254 nm): tR = 20.0 min (minor), tR = 22.0 min
(major); 86% ee. [α]D

25 = +80.9 (c = 1.65, CH2Cl2). 1H NMR (400 MHz, acetone-d6): 8.12 (s,
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1H, OH), 7.32 (td, J1 = 7.6 Hz, J2 = 2.0 Hz, 1H, ArH), 7.14 (dd, J1 = 1.8 Hz, J2 = 7.4 Hz,
1H, ArH), 7.08–7.04 (m, 1H, ArH), 7.00 (d, J = 8.0 Hz, 1H, ArH), 6.95–6.92 (m, 2H, ArH),
6.82–6.78 (m, 2H, ArH), 5.22 (dd, J1 = 4.4 Hz, J2 = 12.8 Hz, 1H, CH2), 4.79 (dd, J1 = 11.6 Hz,
J2 = 12.8 Hz, 1H, CH), 4.16 (dd, J1 = 4.4 Hz, J2 = 11.6 Hz, 1H, CH2), 3.79 (s, 3H, CH3),
2.30–2.21 (m, 1H, CH2), 2.13–2.07 (m, 1H, CH2), 1.11 (t, J = 7.4 Hz, 3H, CH3) ppm. 13C NMR
(100 MHz, acetone-d6): 176.4, 173.4, 161.8, 153.2, 132.1, 131.3, 129.4, 126.7, 125.6, 125.5, 119.7,
116.2, 101.0, 76.5, 56.84, 56.79, 41.7, 26.3, 10.7 ppm. HRMS (ESI): m/z calcd. for C21H21N2O7
[M + H]+ 413.1343, found 413.1331.

(3aS,9S,9aR)-9a-Ethyl-3a-hydroxy-9-(nitromethyl)-2-(p-tolyl)-9,9a-dihydrochromeno[2,3-
c]pyrrole-1,3(2H,3aH)-dione (3ca). From 1c (23.0 mg, 0.10 mmol) and 2a (19.8 mg, 0.12 mmol),
purified by silica gel (200–300 mesh) column chromatography using ethyl acetate/petroleum
ether (1:8) as eluent to obtain 32.6 mg (82% yield) compound 3ca as a white solid, m.p.
183–185 ◦C. HPLC (Daicel Chiralpak IA, n-hexane/2-propanol = 94:6, flow rate 1.0 mL/min,
detection at 254 nm): tR = 22.8 min (minor), tR = 25.0 min (major); 90% ee. [α]D

25 = +58.6
(c = 1.63, CH2Cl2). 1H NMR (400 MHz, acetone-d6): 8.12, 2.80 (s, 1H, OH), 7.33 (td, J1 = 8.0 Hz,
J2 = 1.6 Hz, 1H, ArH), 7.21 (d, J = 8.4 Hz, 2H, ArH), 7.14 (dd, 1H, J1 = 1.6 Hz, J2 = 7.2 Hz, ArH),
7.06 (td, J1 = 7.6 Hz, J2 = 0.8 Hz, 1H, ArH), 7.02–6.99 (m, 1H, ArH), 6.78 (d, J = 8.0 Hz, 2H, ArH),
5.22 (dd, J1 = 4.4 Hz, J2 = 12.8 Hz, 1H, CH2), 4.79 (dd, J1 = 11.4 Hz, J2 = 12.6 Hz, 1H, CH), 4.17
(dd, J1 = 4.2 Hz, J2 = 11.4 Hz, 1H, CH2), 2.32 (s, 3H, CH3), 2.29–2.21 (m, 1H, CH2), 2.15–2.08
(m, 1H, CH2), 1.11 (t, J = 7.4 Hz, 3H, CH3) ppm. 13C NMR (100 MHz, acetone-d6): 176.2, 173.3,
153.2, 140.9, 132.1, 131.5, 131.4, 130.4, 128.0, 126.7, 125.7, 119.7, 101.1, 76.5, 56.8, 41.7, 26.3, 22.1,
10.7 ppm. HRMS (ESI): m/z calcd. for C21H21N2O6 [M + H]+ 397.1394, found 397.1385.

(3aS,9S,9aR)-9a-Ethyl-2-(4-fluorophenyl)-3a-hydroxy-9-(nitromethyl)-9,9a-
dihydrochromeno[2,3-c]pyrrole-1,3(2H,3aH)-dione (3da). From 1d (23.5 mg, 0.10 mmol)
and 2a (19.8 mg, 0.12 mmol), purified by silica gel (200–300 mesh) column chromatography
using ethyl acetate/petroleum ether (1:8) as eluent to obtain 32.9 mg (82% yield) compound
3da as a white solid, m.p. 205–206 ◦C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol
= 90:10, flow rate 1.0 mL/min, detection at 254 nm): tR = 17.0 min (major), tR = 19.2 min
(minor); 88% ee. [α]D

25 = +84.8 (c = 1.65, CH2Cl2). 1H NMR (400 MHz, acetone-d6): 8.28,
2.93 (s, 1H, OH), 7.33 (td, J1 = 7.6 Hz, J2 = 1.7 Hz, 1H, ArH), 7.23–7.18 (m, 2H, ArH), 7.15 (dd,
J1 = 1.8 Hz, J2 = 7.4 Hz, 1H, ArH), 7.07 (td, J1 = 7.6 Hz, J2 = 0.8 Hz, 1H, ArH), 7.02–6.95 (m,
3H, ArH), 5.23 (dd, J1 = 4.4 Hz, J2 = 12.8 Hz, 1H, CH2), 4.80 (dd, J1 = 11.6 Hz, J2 = 12.8 Hz,
1H, CH), 4.18 (dd, J1 = 4.4 Hz, J2 = 11.6 Hz, 1H, CH2), 2.93 (s, OH), 2.29–2.22 (m, 1H, CH2),
2.17–2.09 (m, 1H, CH2), 1.12 (t, J = 7.6 Hz, 3H, CH3) ppm. 13C NMR (100 MHz, methanol-
d4): δ 176.3, 173.1, 163.9 (d, 1JC-F = 246.3 Hz), 152.8, 131.4, 130.7, 129.6 (d, 3JC-F = 9.0 Hz),
128.3 (d, 4JC-F = 3.3 Hz), 126.2, 124.9, 119.1, 117.2 (d, 2JC-F = 23.3 Hz), 100.5, 75.6, 55.5, 41.4,
25.8, 9.8 ppm. HRMS (ESI): m/z calcd. for C20H18FN2O6 [M + H]+ 401.1143, found 401.1140.

(3aS,9S,9aR)-2-(4-Chlorophenyl)-9a-ethyl-3a-hydroxy-9-(nitromethyl)-9,9a-
dihydrochromeno[2,3-c]pyrrole-1,3(2H,3aH)-dione (3ea). From 1e (25.0 mg, 0.10 mmol)
and 2a (19.8 mg, 0.12 mmol), purified by silica gel (200–300 mesh) column chromatography
using ethyl acetate/petroleum ether (1:8) as eluent to obtain 33.4 mg (80% yield) compound
3ea as a white solid, m.p. 196–197 ◦C. HPLC (Daicel Chiralpak IB, n-hexane/ethyl acetate
= 90:10, flow rate 1.0 mL/min, detection at 254 nm): tR = 9.0 min (minor), tR = 11.2 min
(major); 96% ee. [α]D

25 = +31.7 (c = 1.67, CH2Cl2). 1H NMR (400 MHz, acetone-d6): 8.22
(s, 1H, OH), 7.49–7.45 (m, 2H, ArH), 7.32 (td, J1 = 7.8 Hz, J2 = 1.6 Hz, 1H, ArH), 7.15 (dd,
J1 = 1.6 Hz, J2 = 7.6 Hz, 1H, ArH), 7.07 (td, J1 = 7.6 Hz, J2 = 1.2 Hz, 1H, ArH), 7.01–6.96
(m, 3H, ArH), 5.23 (dd, J1 = 4.4 Hz, J2 = 12.8 Hz, 1H, CH2), 4.83–4.77 (dd, J1 = 11.6 Hz, J2
= 12.8 Hz, 1H, CH), 4.19 (dd, J1 = 4.4 Hz, J2 = 11.6 Hz, 1H, CH2), 2.30–2.22 (m, 1H, CH2),
2.17–2.10 (m, 1H, CH2), 1.12 (t, J = 7.6 Hz, 3H, CH3) ppm. 13C NMR (100 MHz, acetone-d6):
δ 176.0, 172.9, 153.1, 136.1, 132.2, 131.7, 131.4, 131.2, 129.8, 126.6, 125.7, 119.7, 101.1, 76.4,
56.9, 41.4, 26.2, 10.5 ppm. HRMS (ESI): m/z calcd. for C20H18ClN2O6 [M + H]+ 417.0848,
found 417.0849.

(3aS,9S,9aR)-2-(4-Bromophenyl)-9a-ethyl-3a-hydroxy-9-(nitromethyl)-9,9a-
dihydrochromeno[2,3-c]pyrrole-1,3(2H,3aH)-dione (3fa). From 1f (29.4 mg, 0.10 mmol)
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and 2a (19.8 mg, 0.12 mmol), purified by silica gel (200–300 mesh) column chromatography
using ethyl acetate/petroleum ether (1:8) as eluent to obtain 36.4 mg (79% yield) compound
3fa as a white solid, m.p. 209–211 ◦C. HPLC (Daicel Chiralpak IB, n-hexane/2-propanol
= 90:10, flow rate 1.0 mL/min, detection at 254 nm): tR = 9.3 min (minor), tR = 12.1 min
(major); 86% ee. [α]D

25 = +100.7 (c = 1.82, CH2Cl2). 1H NMR (400 MHz, acetone-d6): 8.22
(s, 1H, OH), 7.63–7.60 (m, 2H, ArH), 7.32 (td, J1 = 7.6 Hz, J2 = 1.6 Hz, 1H, ArH), 7.15
(dd, J1 = 7.6 Hz, J2 = 1.6 Hz, 1H, ArH), 7.07 (dd, J1 = 0.8 Hz, J2 = 7.6 Hz, 1H, ArH), 7.00
(d, J = 8.0 Hz, 1H, ArH), 6.93–6.90 (m, 2H, ArH), 5.23 (dd, J1 = 4.4 Hz, J2 = 12.8 Hz, 1H,
CH2), 4.83–4.77 (dd, J1 = 11.6 Hz, J2 = 12.8, 1H, CH), 4.19 (dd, J1 = 4.4 Hz, J2 = 11.6 Hz,
1H, CH2), 2.31–2.22 (m, 1H, CH2), 2.17–2.08 (m, 1H, CH2), 1.11 (t, J = 7.6 Hz, 3H, CH3)
ppm. 13C NMR (100 MHz, acetone-d6): 175.9, 172.8, 153.1, 134.2, 132.14, 132.12, 131.3, 130.0,
126.5, 125.7, 124.1, 119.7, 101.0, 76.4, 56.9, 41.4, 26.2, 10.5 ppm. HRMS (ESI): m/z calcd. for
C20H18

79BrN2O6 [M + H]+ 461.0343, found 461.0341; calcd. for C20H18
81BrN2O6 [M + H]+

463.0323, found 463.0323.
(3aS,9S,9aR)-9a-Ethyl-2-(4-ethylphenyl)-3a-hydroxy-9-(nitromethyl)-9,9a-

dihydrochromeno[2,3-c]pyrrole-1,3(2H,3aH)-dione (3ga). From 1g (24.4 mg, 0.10 mmol)
and 2a (19.8 mg, 0.12 mmol), purified by silica gel (200–300 mesh) column chromatography
using ethyl acetate/petroleum ether (1:8) as eluent to obtain 36.2 mg (88% yield) compound
3ga as a white solid, m.p. 189–190 ◦C. HPLC (Daicel Chiralpak IA, n-hexane/2-propanol
= 90:10, flow rate 1.0 mL/min, detection at 254 nm): tR = 13.5 min (minor), tR = 15.1 min
(major); >99% ee. [α]D

25 = +43.1 (c = 1.81, CH2Cl2). 1H NMR (400 MHz, acetone-d6): 7.33
(td, J1 = 7.6 Hz, J1 = 1.6 Hz, 1H, ArH), 7.25 (d, J = 8.8 Hz, 2H, ArH), 7.14 (dd, J1 = 1.6 Hz,
J2 = 7.6 Hz, 1H, ArH), 7.06 (td, J1 = 7.6 Hz, J2 = 0.8 Hz, 1H, ArH), 7.00 (d, J = 8.0 Hz, 1H,
ArH), 6.80 (d, J = 8.4 Hz, 1H, ArH), 5.22 (dd, J1 = 4.4 Hz, J2 = 12.8 Hz, 1H, CH2), 4.80
(t, J = 12.2 Hz, 1H, CH), 4.16 (dd, J1 = 4.4 Hz, J2 = 11.6 Hz, 1H, CH2), 2.91 (s, 1H, OH), 2.63
(q, J = 7.6 Hz, 2H, CH2), 2.31–2.22 (m, 1H, CH2), 2.15–2.08 (m, 1H, CH), 1.18 (t, J = 7.6 Hz,
3H, CH3), 1.11 (t, J = 7.4 Hz, 3H, CH3) ppm. 13C NMR (100 MHz, acetone-d6): 176.3,
173.3, 153.2, 147.2, 132.1, 131.3, 130.6, 130.3, 128.1, 126.7, 125.6, 119.7, 101.0, 76.4, 56.9, 41.7,
30.0, 26.3, 16.8, 10.7 ppm. HRMS (ESI): m/z calcd. for C22H23N2O6 [M + H]+ 411.1551,
found 411.1544.

(3aS,9S,9aR)-9a-Ethyl-3a-hydroxy-2-(4-isopropylphenyl)-9-(nitromethyl)-9,9a-
dihydrochromeno[2,3-c]pyrrole-1,3(2H,3aH)-dione (3ha). From 1h (26.0 mg, 0.10 mmol)
and 2a (19.8 mg, 0.12 mmol), purified by silica gel (200–300 mesh) column chromatography
using ethyl acetate/petroleum ether (1:8) as eluent to obtain 35.7 mg (84% yield) compound
3ha as a white solid, m.p. 192–193 ◦C. HPLC (Daicel Chiralpak IA, n-hexane/2-propanol
= 95:5, flow rate 1.0 mL/min, detection at 254 nm): tR = 19.8 min (minor), tR = 23.0 min
(major); 70% ee. [α]D

25 = +9.3 (c = 1.79, CH2Cl2). 1H NMR (400 MHz, acetone-d6): 8.24 (s,
OH), 7.34–7.27 (m, 3H, ArH), 7.14 (d, J = 7.6 Hz, 1H, ArH), 7.06 (t, J = 7.2 Hz, 1H, ArH), 7.00
(d, J = 8.0 Hz, 1H, ArH), 6.82 (d, J = 7.2 Hz, 2H, ArH), 5.22 (dd, J1 = 3.2 Hz, J2 = 12.8 Hz,
1H, CH2), 4.81 (t, J = 12.2 Hz, 1H, CH), 4.17 (dd, J1 = 3.2 Hz, J2 = 11.6 Hz, 1H, CH2), 3.07
(d, J = 10.4 Hz, 1H, CH), 2.94–2.86 (m, 1H, CH), 2.30–2.22 (m, 1H, CH2), 2.15–2.08 (m, 1H,
CH2), 1.196 (d, J = 6.8 Hz, 3H, CH3), 1.192 (d, J = 6.8 Hz, 3H, CH3), 1.11 (t, J = 6.8 Hz, 3H,
CH3) ppm. 13C NMR (100 MHz, acetone-d6): 176.3, 173.2, 153.2, 151.7, 132.0, 131.3, 130.6,
128.9, 128.0, 126.7, 125.6, 119.6, 101.0, 76.4, 56.8, 41.7, 35.5, 26.3, 25.0, 10.7 ppm. HRMS (ESI):
m/z calcd. for C23H25N2O6 [M + H]+ 425.1707, found 425.1699.

(3aS,9S,9aR)-9a-Ethyl-3a-hydroxy-9-(nitromethyl)-2-(m-tolyl)-9,9a-dihydrochromeno[2,3-
c]pyrrole-1,3(2H,3aH)-dione (3ia). From 1i (23.0 mg, 0.10 mmol) and 2a (19.8 mg, 0.12 mmol),
purified by silica gel (200–300 mesh) column chromatography using ethyl acetate/petroleum
ether (1:8) as eluent to obtain 35.3 mg (89% yield) compound 3ia as a white solid, m.p.
203–204 ◦C. HPLC (Daicel Chiralpak IC, n-hexane/2-propanol = 95:5, flow rate 1.0 mL/min,
detection at 254 nm): tR = 12.2 min (major), tR = 14.3 min (minor); 80% ee. [α]D

25 = +6.0
(c = 1.77, CH2Cl2). 1H NMR (400 MHz, acetone-d6): 8.14 (s, 1H, OH), 7.33 (td, J1 = 7.6 Hz,
J2 = 1.6 Hz, 1H, ArH), 7.28 (t, J = 7.8 Hz, 1H, ArH), 7.21 (d, J = 7.6 Hz, 1H, ArH), 7.14
(dd, J1 = 1.6 Hz, J2 = 7.6 Hz, 1H, ArH), 7.07 (td, J1 = 7.6 Hz, J2 = 0.8 Hz, 1H, ArH), 7.00
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(d, J = 8.0 Hz, 1H, ArH), 6.73 (s, 1H, ArH), 6.66 (d, J = 8.0 Hz, 1H, ArH), 5.22 (dd, J1 = 4.4 Hz,
J2 = 12.8 Hz, 1H, CH2), 4.83–4.78 (m, 1H, CH), 4.17 (dd, J1 = 4.4 Hz, J2 = 11.6 Hz, 1H, CH2),
2.28 (s, 3H, CH3), 2.26–2.22 (m, 1H, CH2), 2.16–2.09 (m, 1H, CH2), 1.12 (t, J = 7.4 Hz, 3H,
CH3), ppm. 13C NMR (100 MHz, acetone-d6): 176.2, 173.2, 153.2, 141.0, 133.0, 132.1, 131.5,
131.4, 130.8, 128.7, 126.7, 125.7, 125.3, 119.7, 101.1, 76.5, 56.8, 41.7, 26.3, 22.1, 10.7 ppm.
HRMS (ESI): m/z calcd. for C21H21N2O6 [M + H]+ 397.1394, found 397.1390.

(3aS,9S,9aR)-2-(3-Chlorophenyl)-9a-ethyl-3a-hydroxy-9-(nitromethyl)-9,9a-
dihydrochromeno[2,3-c]pyrrole-1,3(2H,3aH)-dione (3ja). From 1j (25.1 mg, 0.10 mmol)
and 2a (19.8 mg, 0.12 mmol), purified by silica gel (200–300 mesh) column chromatography
using ethyl acetate/petroleum ether (1:8) as eluent to obtain 33.4 mg (80% yield) compound
3ja as a white solid, m.p. 185–187 ◦C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol
= 95:5, flow rate 1.0 mL/min, detection at 254 nm): tR = 30.1 min (major), tR = 33.5 min (mi-
nor); 79% ee. [α]D

25 = +51.2 (c = 1.67, CH2Cl2). 1H NMR (400 MHz, acetone-d6): 7.46–7.45
(m, 2H, ArH), 7.34 (td, J1 = 7.8 Hz, J2 = 1.6 Hz, 1H, ArH), 7.16 (dd, J1 = 1.6 Hz, J2 = 7.6 Hz,
1H, ArH), 7.08 (t, J = 7.0 Hz, 1H, ArH), 7.03–7.01 (m, 1H, ArH), 6.92–6.89 (m, 1H, ArH), 5.23
(dd, J1 = 4.4 Hz, J2 = 12.8 Hz, 1H, CH2), 4.80 (t, J = 12.2 Hz, 1H, CH), 4.20 (dd, J1 = 4.4 Hz,
J2 = 11.6 Hz, 1H, CH2), 2.97 (s, 1H, OH), 2.32–2.22 (m, 1H, CH2), 2.18–2.11 (m, 1H, CH2),
1.12 (t, J = 7.4 Hz, 3H, CH3) ppm. 13C NMR (100 MHz, acetone-d6): 175.8, 172.7, 153.1, 135.8,
134.1, 132.5, 132.1, 131.3, 131.0, 128.1, 126.8, 126.5, 125.7, 119.7, 101.0, 76.4, 56.9, 41.3, 26.0,
10.5 ppm. HRMS (ESI): m/z calcd. for C20H18ClN2O6 [M + H]+ 417.0848, found 417.0844.

(3aS,9S,9aR)-2-(3-Bromophenyl)-9a-ethyl-3a-hydroxy-9-(nitromethyl)-9,9a-
dihydrochromeno[2,3-c]pyrrole-1,3(2H,3aH)-dione (3ka). From 1k (29.4 mg, 0.10 mmol)
and 2a (19.8 mg, 0.12 mmol), purified by silica gel (200–300 mesh) column chromatography
using ethyl acetate/petroleum ether (1:9) as eluent to obtain 35.5 mg (77% yield) compound
3ka as a white solid, m.p. 197–198 ◦C. HPLC (Daicel Chiralpak IC, n-hexane/2-propanol
= 97:3, flow rate 1.0 mL/min, detection at 254 nm): tR = 18.6 min (major), tR = 23.2 min
(minor); 80% ee. [α]D

25 = +136.0 (c = 1.78, CH2Cl2). 1H NMR (400 MHz, acetone-d6):
8.34, 3.08 (s, 1H, OH), 7.60–7.57 (m, 1H, ArH), 7.38 (t, J = 8.0 Hz, 1H, ArH), 7.33 (td,
J1 = 8.0 Hz, J2 = 1.6 Hz, 1H, ArH), 7.18–7.15 (m, 2H, ArH), 7.07 (t, J = 7.4 Hz, 1H, ArH),
7.02 (d, J = 8.0 Hz, 1H, ArH), 6.95 (dd, J1 = 8.0 Hz, J2 = 0.8 Hz, 1H), 5.23 (dd, J1 = 4.4 Hz,
J2 = 12.8 Hz, 2H, CH2), 4.81 (t, J = 12.2 Hz, 1H, CH), 4.20 (dd, J1 = 4.4 Hz, J2 = 11.6 Hz, 1H,
CH2), 2.32–2.23 (m, 1H, CH2), 2.18–2.09 (m, 1H, CH2), 1.12 (t, J = 7.4 Hz, 3H, CH3) ppm.
13C NMR (100 MHz, acetone-d6): 175.8, 172.7, 153.0, 134.2, 133.9, 132.7, 132.1, 131.3, 130.9,
127.2, 126.5, 125.7, 123.5, 119.7, 101.0, 76.3, 56.9, 41.3, 26.0, 10.5 ppm. HRMS (ESI): m/z
calcd. for C20H18

79BrN2O6 [M + H]+ 461.0343, found 461.0329; calcd. for C20H18
81BrN2O6

[M + H]+ 463.0323, found 463.0315.
(3aS,9S,9aR)-9a-ethyl-3a-hydroxy-2-(3-methoxyphenyl)-9-(nitromethyl)-9,9a-

dihydrochromeno[2,3-c]pyrrole-1,3(2H,3aH)-dione (3la). From 1l (24.6 mg, 0.10 mmol)
and 2a (19.8 mg, 0.12 mmol), purified by silica gel (200–300 mesh) column chromatography
using ethyl acetate/petroleum ether (1:9) as eluent to obtain 35.1 mg (85% yield) compound
3la as a white solid, m.p. 191–192 ◦C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol
= 95:5, flow rate 1.0 mL/min, detection at 254 nm): tR = 22.3 min (minor), tR = 23.1 min
(major); 89% ee. [α]D

25 = +47.4 (c = 1.76, CH2Cl2). 1H NMR (400 MHz, acetone-d6): 8.25,
2.99 (s, 1H, OH), 7.36–7.29 (m, 2H, ArH), 7.15 (dd, J1 = 1.6 Hz, J2 = 7.6 Hz, 1H, ArH), 7.07
(td, J1 = 7.6 Hz, J2 = 1.2 Hz, 1H, ArH), 7.02 (d, J = 8.0 Hz, 1H, ArH), 6.98–6.95 (m, 1H, ArH),
6.48–6.46 (m, 1H, ArH), 6.38 (t, J = 2.2 Hz, 1H, ArH), 5.22 (dd, J1 = 4.4 Hz, J2 = 12.8 Hz, 1H,
CH2), 4.80 (dd, J1 = 11.6 Hz, J2 = 12.8 Hz, 1H, CH), 4.18 (dd, J1 = 4.4 Hz, J2 = 11.6 Hz, 1H,
CH2), 3.73 (s, 1H, CH3), 2.30–2.22 (m, 1H, CH2), 2.15–2.08 (m, 1H, CH2), 1.12 (t, J = 7.4 Hz,
3H, CH3) ppm. 13C NMR (100 MHz, acetone-d6): 176.1, 173.0, 162.0, 153.2, 134.0, 132.1,
131.8, 131.4, 126.8, 125.7, 120.3, 119.7, 116.1, 114.3, 101.0, 76.4, 56.9, 56.8, 41.7, 26.2, 10.6 ppm.
HRMS (ESI): m/z calcd. for C21H21N2O7 [M + H]+ 413.1343, found 413.1339.

(3aS,9S,9aR)-2-(3,5-Dimethylphenyl)-9a-ethyl-3a-hydroxy-9-(nitromethyl)-9,9a-
dihydrochromeno[2,3-c]pyrrole-1,3(2H,3aH)-dione (3ma). From 1m (24.6 mg, 0.10 mmol)
and 2a (19.8 mg, 0.12 mmol), purified by silica gel (200–300 mesh) column chromatography
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using ethyl acetate/petroleum ether (1:7) as eluent to obtain 34.9 mg (85% yield) compound
3ma as a white solid, m.p. 176–178 ◦C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-
propanol = 95:5, flow rate 1.0 mL/min, detection at 254 nm): tR = 17.7 min (minor),
tR = 19.8 min (major); 82% ee. [α]D

25 = +16.7 (c = 1.75, CH2Cl2). 1H NMR (400 MHz,
acetone-d6): 8.13 (s, 1H, OH), 7.33 (td, J1 = 7.6 Hz, J2 = 1.6 Hz, 1H, ArH), 7.14 (dd, J1 = 1.6 Hz,
J2 = 7.6 Hz, 1H, ArH), 7.07 (td, J1 = 7.6 Hz, J2 = 0.8 Hz, 1H, ArH), 7.00 (d, J = 8.4 Hz, 2H,
ArH), 6.48 (s, 2H, ArH), 5.21 (dd, J1 = 4.4 Hz, J2 = 12.8 Hz, 1H, CH2), 4.79 (t, J = 12.0 Hz, 1H,
CH), 4.17 (dd, J1 = 4.2 Hz, J2 = 11.4 Hz, 1H, CH2), 2.28–2.24 (m, 1H, CH2), 2.22 (s, 6H, CH3),
2.15–2.07 (m, 1H, CH2), 1.11 (t, J = 7.4 Hz, 3H, CH3) ppm. 13C NMR (100 MHz, acetone-d6):
176.2, 173.3, 153.2, 140.7, 133.0, 132.3, 132.0, 131.3, 126.6, 125.8, 125.6, 119.7, 101.0, 76.5, 56.8,
41.7, 26.3, 22.0, 10.6 ppm. HRMS (ESI): m/z calcd. for C22H23N2O6 [M + H]+ 411.1551,
found 411.1550.

(3aS,9S,9aR)-2-(3,5-dimethoxyphenyl)-9a-ethyl-3a-hydroxy-9-(nitromethyl)-9,9a-
dihydrochromeno[2,3-c]pyrrole-1,3(2H,3aH)-dione (3na). From 1n (27.6 mg, 0.10 mmol)
and 2a (19.8 mg, 0.12 mmol), purified by silica gel (200–300 mesh) column chromatography
using ethyl acetate/petroleum ether (1:8) as eluent to obtain 39.4 mg (89% yield) compound
3na as a white solid, m.p. 180–181 ◦C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol
= 85:15, flow rate 1.0 mL/min, detection at 254 nm): tR = 12.9 min (minor), tR = 16.4 min
(major); 73% ee. [α]D

25 = +89.3 (c = 1.97, CH2Cl2). 1H NMR (400 MHz, acetone-d6): 8.23,
2.99 (s, 1H, OH), 7.34 (td, J1 = 7.6 Hz, J2 = 1.6 Hz, 1H, ArH), 7.16 (dd, J1 = 1.6 Hz, J2 = 7.2 Hz,
1H, ArH), 7.10–7.06 (m, 1H, ArH), 7.02 (d, J = 8.0 Hz, 2H, ArH), 6.51 (t, J = 2.2 Hz, 1H,
ArH), 5.97 (d, J = 2.0 Hz, 2H, ArH), 5.21 (dd, J1 = 4.4 Hz, J2 = 12.8 Hz, 1H, CH2), 4.81
(t, J = 12.2 Hz, 1H, CH), 4.18 (dd, J1 = 4.2 Hz, J2 = 11.4 Hz, 1H, CH2), 3.71 (s, 6H, CH3),
2.29–2.20 (m, 1H, CH2), 2.14–2.06 (m, 1H, CH2), 1.11 (t, J = 7.4 Hz, 3H, CH3) ppm. 13C NMR
(100 MHz, acetone-d6): 176.0, 173.0, 163.0, 153.2, 134.5, 132.0, 131.4, 126.9, 125.7, 119.8, 106.7,
102.2, 101.1, 101.0, 76.3, 56.9, 41.9, 26.1, 10.6 ppm. HRMS (ESI): m/z calcd. for C22H23N2O8
[M + H]+ 443.1449, found 443.1448

(3aS,9S,9aR)-9a-Benzyl-3a-hydroxy-9-(nitromethyl)-2-phenyl-9,9a-dihydrochromeno[2,3-
c]pyrrole-1,3(2H,3aH)-dione (3qa). From 1q (28.0 mg, 0.10 mmol) and 2a (19.8 mg, 0.12 mmol),
purified by silica gel (200–300 mesh) column chromatography using ethyl acetate/petroleum
ether (1:10) as eluent to obtain 39.2 mg (88% yield) compound 3qa as a white solid, m.p.
210–211 ◦C. HPLC (Daicel Chiralpak IB, n-hexane/2-propanol = 85:15, flow rate 1.0 mL/min,
detection at 254 nm): tR = 8.3 min (major), tR = 9.3 min (minor); 46% ee. [α]D

25 = +69.9 (c = 1.96,
CH2Cl2). 1H NMR (400 MHz, acetone-d6): 7.41–7.39 (m, 1H, ArH), 7.34–7.21 (m, 7H, ArH),
7.17 (dd, J1 = 1.6 Hz, J2 = 7.6 Hz, 1H, ArH), 7.06 (td, J1 = 7.4 Hz, J2 = 0.8 Hz, 1H, ArH), 6.98 (d,
J = 8.4 Hz, 2H, ArH), 6.19–6.16 (m, 2H, ArH), 5.43 (dd, J1 = 4.4 Hz, J2 = 12.8 Hz, 1H, CH2), 4.94
(t, J = 12.2 Hz, 1H, CH), 4.34 (dd, J1 = 4.4 Hz, J2 = 11.6 Hz, 1H, CH2), 3.84 (d, J = 13.2 Hz, 1H,
CH2), 3.26 (d, J = 13.2 Hz, 1H, CH2), 2.93 (s, 1H, OH) ppm. 13C NMR (100 MHz, acetone-d6):
174.8, 172.4, 153.1, 136.9, 132.7, 132.6, 132.1, 131.4, 130.7, 130.6, 130.3, 129.4, 128.1, 126.6, 125.5,
119.5, 100.6, 76.4, 58.6, 43.3, 39.1 ppm. HRMS (ESI): m/z calcd. for C25H21N2O6 [M + H]+

445.1394, found 445.1393.
(3aS,9S,9aR)-5-Ethoxy-9a-ethyl-3a-hydroxy-9-(nitromethyl)-2-phenyl-9,9a-

dihydrochromeno[2,3-c]pyrrole-1,3(2H,3aH)-dione (3ab). From 1a (21.6 mg, 0.10 mmol)
and 2b (25.0 mg, 0.12 mmol), purified by silica gel (200–300 mesh) column chromatography
using ethyl acetate/petroleum ether (1:8) as eluent to obtain 35.9 mg (84% yield) compound
3ab as a white solid, m.p. 186–187 ◦C. HPLC (Daicel Chiralpak IA, n-hexane/2-propanol =
88:12, flow rate 1.0 mL/min, detection at 254 nm): tR = 17.1 min (major), tR = 20.2 min (mi-
nor); 80% ee. [α]D

25 = +26.6 (c = 1.80, CH2Cl2). 1H NMR (400 MHz, acetone-d6): 7.44–7.39
(m, 3H, ArH), 7.01–6.90 (m, 4H, ArH), 6.69 (dd, J1 = 2.0 Hz, J2 = 6.8 Hz, 1H, ArH), 5.21
(dd, J1 = 4.4 Hz, J2 = 12.6 Hz, 1H, CH2), 4.81 (t, J = 12.0 Hz, 1H, CH), 4.14 (dd, J1 = 4.4 Hz,
J2 = 11.6 Hz, 1H, CH2), 4.08–4.00 (m, 2H, CH2), 2.92 (s, 1H, OH), 2.29–2.24 (m, 1H, CH2),
2.14–2.07 (m, 1H, CH2), 1.30 (t, J = 6.8 Hz, 3H, CH3), 1.11 (t, J = 7.6 Hz, 3H, CH3) ppm. 13C
NMR (100 MHz, acetone-d6): 176.0, 173.0, 150.8, 142.4, 133.1, 131.0, 130.8, 128.2, 128.1, 125.6,
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122.7, 116.3, 101.0, 76.3, 66.4, 56.9, 42.0, 26.2, 16.1, 10.7 ppm. HRMS (ESI): m/z calcd. for
C22H23N2O7 [M + H]+ 427.1500, found 427.1494.

(3aS,9S,9aR)-9a-Ethyl-3a-hydroxy-6-methyl-9-(nitromethyl)-2-phenyl-9,9a-
dihydrochromeno[2,3-c]pyrrole-1,3(2H,3aH)-dione (3ac). From 1a (21.6 mg, 0.10 mmol) and
2c (17.8 mg, 0.12 mmol), purified by silica gel (200–300 mesh) column chromatography
using ethyl acetate/petroleum ether (1:9) as eluent to obtain 34.1 mg (86% yield) compound
3ac as a white solid, m.p. 183–185 ◦C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol
= 85:15, flow rate 1.0 mL/min, detection at 254 nm): tR = 10.1 min (minor), tR = 11.1 min
(major); 89% ee. [α]D

25 = +1.05 (c = 1.71, CH2Cl2). 1H NMR (400 MHz, acetone-d6): 8.21,
2.96 (s, 1H, OH), 7.45–7.39 (m, 3H, ArH), 7.00 (d, J = 7.6 Hz, 1H, ArH), 6.93 (dd, J1 = 1.8 Hz,
J2 = 8.2 Hz, 2H, ArH), 6.87 (d, J = 7.6 Hz, 1H, ArH), 6.83 (s, 1H, ArH), 5.19 (dd, J1 = 4.4 Hz,
J2 = 12.4 Hz, 1H, CH2), 4.77 (t, J = 12.2 Hz, 1H, CH), 4.14 (dd, J1 = 4.4 Hz, J2 = 11.6 Hz, 1H,
CH2), 2.28 (s, 3H, CH3), 2.25–2.20 (m, 1H, CH2), 2.14–2.07 (m, 1H, CH2), 1.11 (t, J = 7.4 Hz,
3H, CH3) ppm. 13C NMR (100 MHz, acetone-d6): 176.2, 173.2, 153.0, 142.4, 133.1, 131.0,
130.8, 128.2, 126.3, 123.4, 120.0, 100.9, 76.6, 56.8, 41.2, 28.5, 26.3, 22.1, 10.6 ppm. HRMS (ESI):
m/z calcd. for C21H21N2O6 [M + H]+ 397.1394 found 397.1388.

(3aS,9S,9aR)-9a-Ethyl-3a-hydroxy-7-methyl-9-(nitromethyl)-2-phenyl-9,9a-
dihydrochromeno[2,3-c]pyrrole-1,3(2H,3aH)-dione (3ad). From 1a (21.6 mg, 0.10 mmol)
and 2d (17.8 mg, 0.12 mmol), purified by silica gel (200–300 mesh) column chromatography
using ethyl acetate/petroleum ether (1:9) as eluent to obtain 34.5 mg (87% yield) compound
3ad as a white solid, m.p. 188–189 ◦C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol
= 90:10, flow rate 1.0 mL/min, detection at 254 nm): tR = 15.8 min (major), tR = 17.6 min (mi-
nor); 86% ee. [α]D

25 = +82.7 (c = 1.73, CH2Cl2). 1H NMR (400 MHz, acetone-d6): 7.45–7.39
(m, 3H, ArH), 7.13 (dd, J1 = 1.6 Hz, J2 = 8.0 Hz, 1H, ArH), 6.94–6.88 (m, 4H, ArH), 5.21
(dd, J1 = 4.4 Hz, J2 = 12.4 Hz, 1H, CH2), 4.78 (dd, J1 = 11.4 Hz, J2 = 12.6 Hz, 1H, CH), 4.12
(dd, J1 = 4.4 Hz, J2 = 11.2 Hz, 1H, CH2), 2.29–2.21 (m, 1H, CH2), 3.84, 2.96 (s, 1H, OH), 2.24
(s, 3H, CH3), 2.15–2.08 (m, 1H, CH2), 1.12 (t, J = 7.4 Hz, 3H, CH3) ppm. 13C NMR (100
MHz, acetone-d6): 176.2, 173.3, 150.9, 135.1, 133.1, 132.5, 131.5, 131.0, 130.8, 128.2, 126.4,
119.4, 100.9, 76.5, 56.8, 41.7, 26.3, 21.6, 10.6 ppm. HRMS (ESI): m/z calcd. for C21H21N2O6
[M + H]+ 397.1394, found 397.1384.

(3aS,9S,9aR)-9a-Ethyl-3a-hydroxy-7-methoxy-9-(nitromethyl)-2-phenyl-9,9a-
dihydrochromeno[2,3-c]pyrrole-1,3(2H,3aH)-dione (3ae). From 1a (21.6 mg, 0.10 mmol)
and 2e (21.4 mg, 0.12 mmol), purified by silica gel (200–300 mesh) column chromatography
using ethyl acetate: petroleum ether (1:9) as eluent to obtain 34.7 mg (84% yield) compound
3ae as a white solid, m.p. 197–198 ◦C. HPLC (Daicel Chiralpak IB, n-hexane/2-propanol =
90:10, flow rate 1.0 mL/min, detection at 254 nm): tR = 12.4 min (minor), tR = 14.0 min (ma-
jor); 92% ee. [α]D

25 = +54.7 (c = 1.74, CH2Cl2). 1H NMR (400 MHz, acetone-d6): 8.17, 2.92 (s,
1H, OH), 7.45–7.39 (m, 3H, ArH), 6.96–6.92 (m, 3H, ArH), 6.88 (dd, J1 = 3.2 Hz, J2 = 8.8 Hz,
1H, ArH), 6.71 (d, J = 3.2 Hz, 1H, ArH), 5.22 (dd, J1 = 4.6 Hz, J2 = 13.0 Hz, 1H, CH2),
4.84–4.78 (dd, J1 = 11.6 Hz, J2 = 12.8 Hz, 1H, CH), 4.13 (dd, J1 = 4.4 Hz, J2 = 11.6 Hz, 1H,
CH2), 3.73 (s, 3H, CH3), 2.30–2.20 (m, 1H, CH2), 2.14–2.08 (m, 1H, CH2), 1.12 (t, J = 7.4 Hz,
3H, CH3) ppm. 13C NMR (100 MHz, acetone-d6): 176.2, 173.3, 157.7, 146.6, 133.1, 131.0,
130.8, 128.3, 127.9, 120.5, 117.1, 116.2, 101.0, 76.3, 56.92, 56.85, 42.2, 26.2, 10.7 ppm. HRMS
(ESI): m/z calcd. for C21H21N2O7 [M + H]+ 413.1343, found 413.1345.

(3aS,9S,9aR)-7-Chloro-9a-ethyl-3a-hydroxy-9-(nitromethyl)-2-phenyl-9,9a-
dihydrochromeno[2,3-c]pyrrole-1,3(2H,3aH)-dione (3ag). From 1a (21.6 mg, 0.10 mmol)
and 2g (20.0 mg, 0.12 mmol), purified by silica gel (200–300 mesh) column chromatography
using ethyl acetate: petroleum ether (1:9) as eluent to obtain 37.1 mg (89% yield) compound
3ag as a white solid, m.p. 208–210 ◦C. HPLC (Daicel Chiralpak AD-H, n-hexane/2-propanol
= 85:15, flow rate 1.0 mL/min, detection at 254 nm): tR = 11.0 min (major), tR = 12.5 min (mi-
nor); 90% ee. [α]D

25 = +34.1 (c = 1.86, CH2Cl2). 1H NMR (400 MHz, acetone-d6): 7.47–7.41
(m, 3H, ArH), 7.36 (dd, J1 = 2.4 Hz, J2 = 8.8 Hz, 1H, ArH), 7.22 (d, J = 2.4 Hz, 1H, ArH), 7.06
(d, J = 8.8 Hz, 1H, ArH), 6.98 (dd, J1 = 1.6 Hz, J2 = 8.0 Hz, 1H, ArH), 5.26 (dd, J1 = 4.4 Hz,
J2 = 13.2 Hz, 1H, CH2), 4.81 (t, J = 12.2 Hz, 1H, CH), 4.20 (dd, J1 = 4.4 Hz, J2 = 11.2 Hz, 1H,
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CH2), 2.93 (s, 1H, OH), 2.32–2.23 (m, 1H, CH2), 2.18–2.09 (m, 1H, CH2), 1.12 (t, J = 7.4 Hz,
3H, CH3) ppm. 13C NMR (100 MHz, acetone-d6): 175.9, 172.8, 152.0, 132.9, 132.1, 131.1,
131.0, 130.0, 128.6, 128.2, 121.5, 101.3, 101.2, 76.0, 56.6, 41.1, 26.3, 10.6 ppm. HRMS (ESI):
m/z calcd. for C20H18ClN2O6 [M + H]+ 417.0848, found 417.0840.

4.4. Procedure for the Scaled-Up Synthesis of Compound 3aa

In a dried bottle, 1a (0.216 g, 1.0 mmol), 2a (0.368 g, 1.2 mmol), chiral organocatalyst
C3 (60.0 mg, 0.1 mmol, 10 mol%) and DCM (10.0 mL) were added. The mixture was stirred
at −16 ◦C for 24 h. After completion of the reaction, the residue was purified by flash
column chromatography on silica gel to obtain the pure product 3aa (0.496 g, 85% yield).

4.5. Procedure for the Synthesis of Compound 4

In a dried bottle, hydroxymaleimide 1b (43.2 mg, 0.20 mmol), β-nitrostyrene 2h
(30.4 mg, 0.24 mmol), chiral organocatalyst C3 (12.0 mg, 0.02 mmol, 10 mol%) and DCM
(2.0 mL) were added. The mixture was stirred at −16 ◦C for 24 h. After completion of
the reaction, the residue was purified by flash column chromatography on silica gel to
afford the pure product 4 (15.1 mg, 20% yield, 2:1 dr) as a white solid, m.p. 182–191 ◦C. 1H
NMR (400 MHz, acetone-d6): 7.40–7.34 (m, 3H, ArH), 7.22–7.17 (m, 2H, ArH), 7.09–7.04 (m,
2.7H, ArH), 6.96 (d, J = 8.8 Hz, 0.66 H, ArH), 6.73 (d, J = 8.8 Hz, 0.66 H, ArH), 5.48–5.41
(m, 1H, CH2), 5.36–5.18 (m, 1H, CH2), 4.22 (dd, J1 = 11.4 Hz, J2 = 4.0 Hz, 1H, CH), 3.85 (s,
2H, OCH3), 3.82 (s, 1H, O CH3), 2.37–2.14 (m, 2H, CH2), 1.10–1.05 (m, 3H, CH3) ppm. 13C
NMR (100 MHz, acetone-d6): 200.4, 198.3, 175.9, 174.9, 162.22, 162.17, 160.6, 160.3, 136.3,
135.9, 131.21, 131.18, 131.0, 130.9, 130.7, 130.5, 129.41, 129.38, 125.0, 124.9, 116.3, 116.1, 76.5,
76.0, 59.2, 59.0, 56.95, 56.91, 49.3, 48.4, 27.2, 27.0, 10.2, 9.6 ppm. HRMS (ESI): m/z calcd. for
C21H21N2O6 [M + H]+ 397.1394, found 397.1419.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27165081/s1, Spectroscopic data (1H and 13C NMR),
X-ray single-crystal data and chiral HPLC chromatograms for all new compounds 3.
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