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Alternative pre-mRNA splicing in higher eukaryotes
enhances transcriptome complexity and proteome diversity.
Its regulation is mediated by a complex RNA-protein network
that is essential for the maintenance of cellular and tissue
homeostasis. Disruptions to this regulatory network underlie
a host of human diseases and contribute to cancer
development and progression. The splicing kinases are an
important family of pre-mRNA splicing regulators, , which
includes the CDC-like kinases (CLKs), the SRSF protein kinases
(SRPKs) and pre-mRNA splicing 4 kinase (PRP4K/PRPF4B).
These splicing kinases regulate pre-mRNA splicing via
phosphorylation of spliceosomal components and serine-
arginine (SR) proteins, affecting both their nuclear localization
within nuclear speckle domains as well as their nucleo-
cytoplasmic shuttling. Here we summarize the emerging
evidence that splicing kinases are dysregulated in cancer and
play important roles in both tumorigenesis as well as
therapeutic response to radiation and chemotherapy.

Introduction

Increased complexity of alternative splicing during evolution
and the expansion of the SR-protein kinases

When comparing single-cell eukaryotes like the yeast S. cerevi-
sae (»6,000 genes),1 to metazoans of increasing complexity,
there appears to be a general relationship between increased com-
plexity of the organism and the number of genes. After the
human genome was sequenced in 2001, it was found that our
genome contains approximately 23,000 genes, a much lower

number than expected.2 The human genome is larger than the
genome of the fly D. melanogaster (»14,000 genes) and compa-
rable to the genome of the worm C. elegans (»20,000 genes).3,4

At the same time, it was discovered that genes containing
introns encode many possible transcripts, which arise by alter-
native mRNA splicing and allow organisms with a similar
number of genes to have more complex and diverse proteomes
as a result of mRNA splicing. The potential of alternative
mRNA splicing to increase protein diversity is most clearly
illustrated by the extreme example of the fly axonal guidance
gene Down syndrome cell adhesion molecule 1 (Dscam1),
which is predicted to produce up to »38,000 possible alterna-
tive transcripts.5

Pre-mRNA splicing allows increased protein diversity and cel-
lular complexity between species and also provides the plasticity
for one cell to alter its protein complement dynamically in
response to cellular stress or developmental cues. As one would
expect, the mechanisms of pre-mRNA splicing are tightly regu-
lated to maintain cellular and tissue homeostasis, and errors in
splicing underlie a host of genetic diseases and can contribute to
cancer development and progression. In fact, it is estimated that
22% of disease causing mutations affect splicing6 (for review of
splicing defects resulting in disease, see:7-9). Although there are
many dozens of splicing factors, many of which are serine argi-
nine (SR)-rich, ostensibly their functions in splicing are regulated
by several serine/threonine kinases. These kinases share a general
preference for phosphorylating SR-rich proteins and collectively
are referred to as SR protein specific kinases, or simply splicing
kinases. Therefore, it is perhaps not surprising to note that during
evolution there appears to be a concomitant increase in the diver-
sity and number of isoforms of these kinases. This occurs in lock-
step with increasing gene complexity in terms of alternative splic-
ing between single-cell eukaryotes like S. cerevisiae, which encode
very few intron-containing genes and a single bona fide SR-pro-
tein kinase Sky1, to complex metazoans like humans, whose
genome encodes many intron containing genes and multiple
paralogs of at least 3 classes of splicing kinases (Fig. 1). In
humans, the 3 classes of splicing kinases include the serine-
arginine protein kinases (SRPK1/2/3), the CDC-like kinases
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(CLK1/2/3/4), and the pre-mRNA processing factor 4 kinase
(PRP4K). Each class of splicing kinase has a distinct cellular
localization, which may be based in part on their different roles
in splicing regulation (Fig. 2).

One of the first splicing kinases to be described in the litera-
ture is the SRSF protein kinase 1 (SRPK1), which was identified
by Gui et al. in 1994 when the authors purified and cloned a cell
cycle regulated kinase which was responsible for redistribution of
SR proteins from a nuclear speckle localization in interphase
cells, to a more ubiquitous nucleoplasm localization in mitotic

cells.10,11 SRPK2 and SRPK3 were later identified based on
sequence homology with SRPK1.12,13 SRPK2, much like
SRPK1, was shown to regulate splicing through SR protein phos-
phorylation12 while SRPK3 was identified for its role in normal
muscle growth and homeostasis.13

CDC-like kinase 1 (CLK1) was identified as a splicing kinase
in 1996 when a yeast 2 hybrid screen using Clk/sty (Clk1) kinase
as bait identified 5 SR proteins as binding partners.14 The
authors went on to show that one of the interacting SR proteins,
ASF/SF2 (SRSF1), was phosphorylated within its RS domain by
Clk/sty, and that overexpression of Clk/sty, much like SRPK1,
caused a redistribution of SR proteins from nuclear speckles, to a
ubiquitous nucleoplasm localization.14

Pre-mRNA processing factor 4 kinase (PRP4K)(also known as
PRPF4B), a lesser-known splicing kinase, was first linked to splic-
ing in 1991 when a temperature sensitive library of Schizosacchar-
omyces pombe mutants were screened for splicing defects.15 At the
restrictive temperature, yeast carrying a temperature sensitive
mutation in prp4 accumulated un-spliced pre-mRNA. Subse-
quent characterization of the prp4 gene revealed that the splicing
factor encoded by the gene contained the characteristic sequence
that defines a serine/threonine protein kinase, making prp4 the
first kinase shown to play a role in splicing.16 The mammalian
homolog of prp4 (PRP4K) has been shown to interact with pre-
mRNA splicing factors PRP6 and Suppressor-of-White-Apricot
(SFSWAP/SRSF8) and copurify with the U5 snRNP.17 Further-
more, PRP4K has been shown to be a key regulator of U4/U6-
U5 tri-snRNP assembly through the phosphorylation of PRP6
and PRP31.18

In humans, pre-mRNA splicing and the expression of the
splicing kinases are perturbed in cancer. In this review, we will
discuss the conserved roles of these kinases in pre-mRNA splicing
and their emerging roles in tumorigenesis and treatment
response.

Figure 1. Splicing kinase diversity across species. A table of the known and putative splicing kinases in baker’s yeast (S. cerevisiae (Sc)), fission yeast
(S. pombe (Sb), the worm C. elegans (Ce), the fly D. melanogaster (Dm) and humans (Hs), is shown on the left. On the right, a phylogenetic tree showing
the evolutionary relationships between the various splicing kinase families and their homologs in yeast, worms, flies and in humans. The phylogenetic
tree was created based on amino acid composition of the splicing homologs using the web resource: phylogeny.limrr.fr.

Figure 2. Splicing kinase cellular localization. Human osteosarcoma
U2OS cells were analyzed by immunofluorescence confocal microscopy
using an anti-SRPK1, anti-PRP4K or anti-CLK antibody (green). Nuclei
were stained with DAPI (blue). Scale bar D 5 microns.
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Splicing kinases in spliceosomal
assembly and mRNA splicing

Transcribed pre-mRNA must be
spliced to remove introns prior to
nuclear export and translation. This pro-
cess is carried out by the spliceosome; a
large macromolecular machine com-
posed of 5 small nuclear ribonucleic pro-
teins (snRNPs) and numerous protein
cofactors.19 Spliceosome assembly is a
complex, multistep process as illustrated
in Figure 3. The first step involves rec-
ognition of the 50 and 30 splice sites
located on adjacent exons by U1 and U2
snRNP respectively; a process which is
mediated by the C-terminal domain of
polymerase II. Binding of the U1
snRNP to the 50 splice site is mediated
by SRSF1, but only when the RS-
domain of SRSF1 is hyper-phosphory-
lated by CLK1 and SRPK1.20,21 Once
U1 and U2 snRNP have bound their
target splice site, they interact with each
other to form the pre-spliceosome (com-
plex A). The next step in assembly
involves the binding of pre-assembled
U4/U6-U5 tri-snRNP to the pre-spli-
ceosome to form complex B; a reaction
catalyzed by pre-mRNA processing factors PRP28, PRP6 and
PRP31, among others. PRP28 association with the tri-snRNP is
dependent on its phosphorylation by SRPK222 while PRP6 and
PRP31 association is dependent on their phosphorylation by
PRP4K.17,18 Loss of these phosphorylation events have been
shown to inhibit association of the pre-mRNA processing factor
with the tri-snRNP and, ultimately, tri-snRNP association with
complex A.18 Complex B next undergoes a series of rearrange-
ments resulting in the release of U1 and U4 snRNPs, creating a
catalytically active complex B. Once catalytically active, the com-
plex carries out the first of 2 splicing reactions, to form complex
C containing free exon from the 50 splice site, and the intron-
exon lariat intermediate from the 30 splice site. Complex C, after
a series of rearrangements, carries out the second splicing reaction
resulting in a post-spliceosomal complex containing the 2 spliced
exons and the lariat intron. Finally, the remaining U2, U5 and
U6 snRNPs are released from the transcript to be re-used in addi-
tional rounds of splicing.

Splicing kinases in SR protein shuttling
SR proteins are a family of RNA binding proteins containing

a characteristic arginine/serine rich domain (RS domain).23,24

The first SR proteins (SRSF1 and SRSF2) were identified as
essential regulators of constitutive splicing for their ability to pro-
mote U1 and U2 snRNP binding to the 50 and 30 splice site,
respectively.25-29 In addition to their role in constitutive splicing,
SR-proteins play an essential role in the regulation of alternative
splicing by promoting splice site selection through the binding of

cis-acting splicing regulatory elements (SREs). SREs are classified
as exonic splicing enhancers (ESEs), exonic splicing silencers
(ESSs), intronic splicing enhancers (ISEs) or intronic splicing
silencers (ISSs). These designations depend on where in the pre-
mRNA the SR protein is binding (exon or intron), and what the
net effect of binding is on splicing (enhance or inhibit) (reviewed
in 30-32). Adding even further to the complexity of splicing regu-
lation, binding of SR proteins to SREs can be antagonized by the
heterogeneous nuclear ribonucleoparticles (hnRNP) A/B family
of proteins.33 As a result, disruptions in the molar ratio of SR
protein to hnRNP antagonist in the nucleus can have profound
effects on splicing.34-36

In addition to regulating U1 snRNP binding to the 50 splice site
and tri-snRNP assembly, splicing kinases are able to regulate splic-
ing through the phosphorylation dependent shuttling of SR-pro-
teins (Fig. 4). Unphosphorylated SR proteins in the cytoplasm are
phosphorylated by SRPK1 and targeted for nuclear import via the
SR protein import receptor, transportin-SR (TRN-SR; also known
as transportin-SR2 (TRN-SR2) and transportin 3 (TNPO3)).37,38

Once in the nucleus phosphorylated SR proteins become enriched
in interchromatin granules called splicing speckle domains. To be
recruited from speckles to nascent pre-mRNA, where they act to
regulate splicing, SR proteins require additional phosphorylation
events39 which are mediated by the splicing kinase CLK1.40 Studies
suggest that the extent to which SR proteins are phosphorylated can
impact their cellular function. For example, hypo-phosphorylation
of the RS domain of SRSF1 promotes interaction with its own
RNA recognition domain (RRM), while hyper-phosphorylation

Figure 3. The role of splicing kinases in spliceosome assembly and pre-mRNA splicing. Splicing kin-
ases are involved in 2 distinct steps in spliceosome assembly. First, CLK1 and SRPK1 are required to
hyper-phosphorylate SRSF1. This is essential for SRSF1 binding to the 50 splice site which, in turn,
recruits the U1 snRNP. Second, SRPK2 and PRP4K are required to phosphorylate PRP28 and PRP31/
PRP6 respectively. These phosphorylation events are required to mediate tri-snRNP association with
complex A.
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releases the RS domain and promotes RRM binding with the
U1snRNP, promoting spliceosomal assembly.21 Therefore, step-
wise phosphorylation mediated by SRPK1 and CLK1 is essential in
the regulation of splicing. Once splicing is complete hyper-phos-
phorylated SR proteins bound to mRNA are dephosphorylated by
nuclear phosphatases (protein phosphatase 1 (PP1) and 2A
(PP2A)) and either recycled to the cytoplasm as a chaperone for
mRNA export41,42 where they also play a role in regulating transla-
tion of specific transcripts43 or re-phosphorylated and returned to
speckles to await the next round of splicing. Thus, the splicing kin-
ases connect the cell biology of splicing speckles domains to the bio-
chemistry of pre-mRNA splicing by providing a mechanism for the
shuttling of splicing factors to and from these domains to sites of
splicing through reversible phosphorylation events.

Regulation of SR Protein Phosphorylation
SR-protein phosphorylation by the splicing kinases plays an

essential role in splice site selection, subcellular localization,
mRNA transport and translation, as described above. Regulation
of these phosphorylation events is mediated in part by the dis-
tinct cellular localization and substrate specificity of the splicing
kinases. For example, the RS domain of SR-protein SRSF1 con-
tains an N-terminal stretch of Arg-Ser repeats (termed “RS1”)
and a C-terminal stretch of Ser-Pro repeats (termed “RS2”).
Cytoplasmic SRPK1 phosphorylates RS1 at multiple sites using a
directional and processive mechanism. An acidic docking grove
distal to the active site of SRPK1 binds RS1 leading to the
“priming” phosphorylation of a single site in RS2. This site then
binds a basic site within SRPK1 which serves to advance the RS
repeat sequence through the docking grove and toward the kinase

domain resulting in sequential phosphorylation events.44 The
phosphorylation of SRSF1 enhances the interaction with TRN-
SR allowing it to transport SRSF1 into the nucleus where it
assembles into nuclear speckles.40,44 Nuclear CLK1 then phos-
phorylates RS2 causing SRSF1 dispersion from speckles and
changes in alternative splicing.14,45 CLK1 substrate specificity
has been shown to be mediated, at least in part, by nature and
extent of CLK1 autophosphorylation. It has been shown that
CLK1 specificity for SRSF1 phosphorylation is sensitive to Tyr,
but not Ser/Thr autophospharylation whereas its specificity for
SC35 displays the opposite pattern.46 In this example, sequential
phosphorylation of SRSF1 by SRPK1 and CLK1 is regulated
both by the cellular localization of the splicing kinases and by the
unique specificity of SRPK1 for structural features within SRSF1
and of CLK1 for Ser-Pro dipeptide phosphorylation.47 Interest-
ingly, PRP4K has also been shown to phosphorylate SRSF1 in
vitro,48 is nuclear and resides predominately in splicing speckle
domains (Fig. 2), suggesting PRP4K may too be involved in the
sequential phosphorylation of SRSF1.

Alternative splicing in tumorigenesis
Alternative splicing occurs in an estimated 95% of human

gene transcripts enhancing transcriptome complexity and prote-
ome diversity in higher eukaryotes.49 The most frequent alterna-
tive splicing event is the choice to include or skip an exon,
termed a cassette exon. Other events involve the inclusion of one
of 2 mutually exclusive exons, the use of alternative 30 and 50

splice sites, intron retention and the use of alternative promoters
or poly(A) sites.50 Alternative splicing also occurs in the 30 and 50

untranslated regions (UTR) of mRNA which can alter mRNA

Figure 4. The role of splicing kinases in SR protein shuttling. Unphosphorylated SR proteins in the cytoplasm are phosphorylated by SRPK1 which pro-
motes shuttling into the nucleus. Additional phosphorylation events mediated by CLK1 promote translocation from splicing speckles to nascent pre-
mRNA.
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stability and/or translation efficiency.51 Dysregulation of alterna-
tive splicing can render an mRNA transcript inactive by intro-
ducing a stop codon, alter the protein-coding function or even
result in the transcript encoding a protein of opposing function.
Given the striking ability through which alternative splicing can
alter the proteome, it is perhaps not surprising that this system is
frequently manipulated throughout the process of tumorigene-
sis.52-54 In fact, changes in alternative splicing have been found
to affect nearly every aspect of tumor biology including metabo-
lism, apoptosis, cell cycle control, invasion, metastasis and angio-
genesis (reviewed in 55-58).

While the molecular mechanism of alternative splicing has
been shown to play a prominent role in tumorigenesis, there is
limited knowledge of the regulation of these alternative splicing
events observed in human cancers. One emerging mechanism of
regulation is through altered expression of the splicing kinases,
stemming from the observation that several of these kinases are
overexpressed in various human cancers (SRPK1: breast,59

colon,59 pancreatic,59 lung,60 melanoma,61 prostate.62 SRPK2:
acute myelogenous leukemia,63 lung.60 CLK1-4: erythroleuke-
mia.64 CLK2: breast65). The remainder of this review will focus
on the 3 families of splicing kinases and the specific roles they
have been identified to play in tumorigenesis and the response to
chemotherapy.

Splicing kinases and their role in tumorigenesis and
therapeutic response to chemotherapy SRPK Family

SRPK1, perhaps the most widely studied splicing kinase, has
been shown to directly regulate pathways essential to the develop-
ment, growth and dissemination of cancer. A number of proteins
have been shown to be directly phosphorylated by SRPK1
including SC35,11 SRp20,11 SRp55,11 SRSF1,11 Tra2b166 and
RBM4.67 Of these, the most well characterized with respect to
tumorigenesis are SRSF1 and RBM4. SRSF1 is a prototypical
member of the SR protein family which, in addition to its role in
splicing regulation, has also been shown to regulate nuclear
export,42 mRNA stability,68 miRNA processing,69 translation,43

and nonsense-mediated mRNA decay.70 While the oncogenic
potential of SRSF1 is likely due to a combination of the above
mentioned functions, it is the splicing function which has been
most extensively studied. Several SRPK1-SRSF1 mediated alter-
native splice events have been linked to tumorigenesis (reviewed
in 71), but for the purpose of this review, we will focus on 3 splice
events each effecting different aspects of tumorigenesis.

Rac1, a member of the Rho GTPase family, is involved in the
regulation of cytoskeletal reorganization and cell motility.72 An
alternative splice variant of Rac1 (Rac1b) was identified in colo-
rectal tumors that contain an alternative exon (3b) and is thought
to maintain the GTPase in an active GTP-bound state.73 Expres-
sion of Rac1b has been shown to induce epithelial-to-mesenchi-
mal transition in cultured cells,74 induce cell cycle progression
and promote survival under conditions of serum-starvation.75

Importantly, SRSF1 has been shown to promote inclusion of
exon 3b in RAC1 pre-mRNA76; an event which requires SRPK1
mediated phosphorylation to shuttle SRSF1 to the nucleus. Con-
sequently, knockdown of SRPK1 has been shown to decrease

SRSF1 shuttling to the nucleus and reduce expression of the
oncogenic Rac1b splice variant.77

SRPK1-SRSF1 mediated alternative splicing has also been
shown to regulate angiogenesis, the formation of new blood ves-
sels, via vascular endothelial growth factor (VEGF) splicing con-
trol. VEGF alternative splicing leads to anti-angiogenic and pro-
angiogenic mRNA isoforms which differ in the 30 splice site of
exon 8. Splicing at the proximal 30 splice site results in pro-angio-
genic splice isoforms (including VEGF165)

78 while splicing at the
distal 30 splice site gives rise to a family of isoforms with anti-
angiogenic properties (including VEGF165b).

79 SRSF1 binds
VEGF pre-mRNA in a region near the proximal 30 splice site of
exon 8, promoting use of this splice site, resulting in increased
production of the pro-angiogenic VEGF splice isoforms.80,81

Much like in Rac1 alternative splicing, SRSF1 binding to VEGF
pre-mRNA is dependent on its nuclear localization, mediated by
SRPK1 phosphorylation. Interestingly, recent studies have taken
this model one step further to show that in Denys Drash Syn-
drome podocytes, mutations in the WT1 tumors suppressor gene
prevents WT1-mediated transcriptional repression of SRPK1.
Up-regulation of SRPK1 led to increased hyper-phosphorylation,
and nuclear translocation, of SRSF1 which pushed the VEGF165/
VEGF165b ratio in favor of the pro-angiogenic VEGF165, result-
ing in the formation of highly vascularized tumors using a colo-
rectal tumor xenograft model.82 Importantly, inhibition of
SRPK1 using the small molecule inhibitors SRPIN340 or
SPHINX increased expression of the anti-angiogenic VEGF165b
isoform in colorectal82 and prostate62 cancer cell lines in vitro,
while SPHINX treatment in a mouse model of prostate cancer
led to smaller tumors with decreased microvessel density.62 These
studies indicate that small molecule inhibition of SRPK1 may
prove to be an effective anti-angiogenic therapy for some cancers.

The Myeloid Cell Leukemia 1 (MCL1) gene is a member of
the BCL2 family of apoptosis regulating genes and was first iden-
tified in differentiating myeloid leukemia cells.83 MCL1 has 2
alternatively spliced variants, the full-length MCL1L which is
anti-apoptotic, and an exon 2 skipped variant, MCL1S, which
can form a dimer with, and antagonize, the anti-apoptotic effects
of MCL1L.

84 In breast cancer, SRSF1 expression has been shown
to increase stability and translational efficiency of the anti-apo-
ptotic MCL1L isoform.85 While it is likely that SRPK1 is mediat-
ing the nuclear localization of SRSF1and thus promoting splicing
of the anti-apoptotic MCL1L in a manner similar to that seen
during RAC1 and VEGF splicing regulation, another mechanism
of SRPK1 regulation has also been proposed. A recent study has
shown that phosphorylation of RBM4 by SRPK1 targets RNA
binding protein RBM4 to the cytoplasm, inhibiting its binding
to MCL1 and preventing an exon 2 skipping event.86 Therefore,
in the case of MCL1, SRPK1 may promote splicing of the anti-
apoptotic isoform though at least 2 distinct mechanisms.

In addition to playing several roles in tumorigenesis, SRPK1 is
also implicated in the therapeutic response to cisplatin. Cisplatin
is a platinum-based chemotherapy drug, among the most com-
monly used to target human cancers. Intrinsic or acquired cellu-
lar resistance to cisplatin is common, limiting the therapeutic
efficacy and requiring increasing doses of drug to treat recurring
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cancers. Cisplatin resistance is correlated with down-regulated
SRPK1 expression in testicular germ cell tumors and ovarian can-
cers.87,88 Furthermore, silencing of SRPK1 induces cisplatin sen-
sitivity in multiple epithelial cell types including colon, breast,
pancreatic and ovarian cancers and is accompanied by increased
apoptosis, reduced cell proliferation, slower cell cycle progression
and decreased anchorage-dependent growth in vitro.59,89

While SRPK1 has received the most attention for its role in
tumorigenesis, SRPK3 has recently been described to promote
tumorigenicity in rhabdomyosarcoma (RMS) as a regulator of
MEF2C alternative splicing.90 MEF2C, a member of the myo-
cyte enhancer factor 2 (MEF2) family of proteins, plays a key
role in synaptic formation and muscle differentiation.91 MEF2C
has 3 alternative splice variants which appear to perform distinct
functions in myogenesis and neurogenesis.92-94 In particular,
MEF2Ca2, the isoform containing the alternative a2 exon, has
been shown to be required for differentiation of skeletal muscle
cells and is frequently downregulated in RMS cells.95 It has
recently been demonstrated that SRPK3, which has been shown
to be upregulated during myogenesis,13 is required for the iso-
form switch between MEF2Ca1 and MEF2Ca2. In RMS,
SRPK3 is down-regulated preventing the isoform switch and fail-
ure of myogenic precursors to differentiate into normal muscle.90

The body of evidence surrounding the SRPK family of splic-
ing kinases in tumorigenesis has made it clear that alterations in
SR protein phosphorylation can have a significant impact on can-
cer development. As a result, recent studies have begun to focus
on other splicing kinases to determine their possible roles in
tumourigenesis and/or therapeutic response.

CLK Family
The splicing factor 45 (SPF45), first identified as a member of

the spliceosome complex,96 is known to promote exon 6 skipping
in Fas pre-mRNA.97 This exon encodes the transmembrane
domain of the Fas death receptor, and its deletion results in the
formation of a soluble Fas protein molecule.98 Interestingly,
expression of the soluble Fas molecule has been shown to prevent
Fas mediated cell death, presumably by binding to Fas ligand
(FasL), preventing FasL from binding to membrane-bound Fas
and activating the apoptotic pathway. Given that evasion of apo-
ptosis is a hallmark of cancer, it is not surprising that elevated lev-
els of soluble Fas have been found in a variety of cancers.99,100 A
recent study has shown that CLK1 directly phosphorylates
SPF45 on 8 serine residues, and that this phosphorylation led to
the stabilization of SPF45 protein levels, and regulated exon 6
skipping in Fas pre-mRNA.101 Furthermore, SPF45 overexpres-
sion induced cell migration and invasion in ovarian cancer
cells,101 suggesting CLK1 mediated stabilization of SPF45 could
impact multiple aspects of tumor progression.

CLK2, a member of the CLK family of splicing kinases, has
recently been shown to function as an oncogene in breast can-
cer.65 A lentiviral shRNA cell viability screen was carried out that
targeted 26 genes which the authors found to be commonly over-
expressed or amplified in breast tumors or breast cancer cell lines
based on SNP array analysis.65 Of the 26 targets, knock-down of
CLK2 was identified for its ability to inhibit breast cancer cell

growth in vitro, and later confirmed to inhibit tumorigenesis in a
mouse xenograft model. However, the knock-down of CLK2 was
also shown to promote metastasis and invasion of breast cancer
cells in vivo by inducing alternative splice patterns characteristic
of the epithelial-to-mesenchymal transition (EMT). Specifically,
knockdown of CLK2 was shown to regulate the alternative splic-
ing of ENAH, an actin cytoskeletal protein, which contains a
small coding exon (11a) which is included in the mRNA of epi-
thelial cells, but excluded in mesenchymal cells.65 Loss of CLK2
promoted the exclusion of exon 11a. Thus, CLK2 expression lev-
els could represent an important marker for EMT during breast
cancer progression.

PRP4K
PRP4K, the least studied of the 3 splicing kinases, has recently

begun to emerge as an important regulator of therapeutic
response. In addition to its role in splicing, PRP4K has been
implicated in the regulation of mitosis as expression of a domi-
nant truncated form of PRP4K in S. pombe was shown to induce
mitotic aberrations.102 Consequently, mammalian PRP4K was
shown to be a regulator of the mitotic spindle assembly check-
point (SAC) through its ability to recruit checkpoint proteins
MPS1, MAD1 and MAD2 to the kinetochore.103 This finding
has important implications for therapeutic response to taxanes, a
family of anti-cancer agents that depend on SAC activity for cell
killing.104 The taxanes (docetaxel, paclitaxel and cabazitaxel)
function by binding to and stabilizing mictrotubules, resulting in
a disruption of microtubule dynamics. As a cell progresses
through mitosis, taxanes inhibit the ability of sister chromatids to
properly segregate which triggers activation of the SAC and
arrests the cell in prometaphase.105 If the checkpoint cannot be
satisfied, its prolonged activation will result in mitotic cell
death.106 Not surprisingly, disruption of SAC function has been
has been shown to increase cellular resistance to taxanes in a
number of different cancer models.107-112 Consistent with these
models, we have shown that PRP4K functions downstream of
the receptor tyrosine kinase HER2 to regulate paclitaxel response
in breast and ovarian cancer, presumably by altering SAC activ-
ity, and that its expression is decreased in ovarian cancer patients
that have relapsed from taxane treatment.113 Importantly, we
also demonstrated that, among ovarian cancer patients with low
HER2 expressing tumors, PRP4K expression can be used as a
predictive marker to identify patients likely to benefit from tax-
ane therapy.113

In addition to promoting resistance to microtubule targeting
chemotherapeutics, disruptions in the SAC has been suggested to
facilitate tumorigenesis by inducing chromosomal instability
(CIN), a hallmark of human neoplasia.114,115 Under normal con-
ditions, the SAC becomes activated in response to one or more
unattached chromosomes, blocking progression to anaphase.
When checkpoint components are mutated, or expression levels
decreased, un-attached chromosomes are unable to activate the
SAC and become mis-segregated, leading to increased aneu-
ploidy.116-118 While it is still unclear as to whether or not a weak-
ened checkpoint is sufficient to drive tumorigenesis, there is
significant evidence suggesting it can facilitate tumorigenesis,
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especially in collaboration with a weakened tumor suppressor
such as a BRCA2 deficiency.119,120 Therefore, it is tempting to
speculate that loss of PRP4K expression would not only increase
cellular resistance to taxanes, but could also facilitate tumorigene-
sis by inducing CIN.

PRP4K, in addition to its role in regulating taxane response,
has also been shown to regulate the cellular response to ionizing
radiation (IR) and the phytochemical curcumin.121,122 In the
human colorectal carcinoma cell line HCT-15, treatment with
curcumin or IR led to a decrease in PRP4K expression and an
increase in reactive oxygen species (ROS) production; a well-
known mediator of apoptosis (reviewed in 123). Importantly,
overexpression of PRP4K was shown to prevent ROS production
and provide cellular protection from apoptosis in response to
both treatments, possibly through the activation of an anti-oxi-
dant enzyme system.121,122 This data suggests that tumors with
high PRP4K expression may show increased resistance to radia-
tion therapy due to increased ROS scavenging. With both
increased and decreased PRP4K expression shown to be associ-
ated with resistance to different anti-cancer therapies, knowing
PRP4K expression levels at the time of diagnosis may prove to be
useful in choosing an appropriate treatment modality.

Regulation of tumorigenic alternative splice events
by other kinases

While this review focuses on the classic SR-protein kinases, it
is important to note that they are not the only kinases involved
in the regulation of alternative splicing with implications in
tumorigenesis. For example, the RNA binding protein SAM68
(Src-associated in mitosis, with a molecular weight of 68 kD) has
been shown to regulate a number of alternative splice events with
implications in tumor progression and metastasis. This includes
the splicing of cyclin D1 (CCND1), a proto-oncogene frequently
deregulated in human cancers.124,125 Alternative splicing of the
CCND1 gene produces a variant transcript (CyclinD1b) which
retains intron 4.126 CyclinD1b displays increased oncogenic
potential126,127 and its upregulation correlates with poor progno-
sis in multiple types of tumors.128 Retention of intron 4 has been
shown to be mediated by SAM68 which binds the proximal
region of intron 4, inhibiting U1snRNP recruitment.129 Impor-
tantly, the phosphorylation of SAM68 by Erk1/2 increases its
binding affinity to the CCND1 transcript enhancing intron 4
retention.129 SAM68 has also been implicated in the regulation
of EMT through its ability to repress alternative-splicing acti-
vated nonsense-mediated mRNA decay of SRSF1.130 SAM68
promotes the retention of intron 4 in SRSF1 pre-mRNA which
inhibits its degradation by nonsense-mediated decay and
increases SRSF1 protein levels. Increased SRSF1 impacts a num-
ber of tumorigenic alternative splice events, including stimulating
the skipping of exon 11 in the proto-onocgene RON, producing

a constitutively active isoform that promotes an invasive cellular
phenotype.131 While SAM68 phosphorylation by Erk1/2 pro-
vides an example of tumorigenic alternative splicing regulated by
non-classical SR-protein specific kinases, numerous other kinases
have been shown to phosphorylate splice factors with implica-
tions in cancer (reviewed in 132).

Concluding Remarks
In light of recent evidence implicating the splicing kinases as

major regulators of tumorigenic alternative splice events, drugs
which modulate splicing kinase activity are actively being studied
as potential anti-cancer agents. As an example, SRPK1 small mol-
ecule inhibitors have already been shown to promote the splicing
of the anti-angiogenic VEGF isoform in vitro and in vivo in pros-
tate cancer cells which have elevated SRPK1 and SRSF1 expres-
sion.62 It has yet to be determined if SRPK1 inhibition alters
other tumorigenic splice events like Rac1 and MCL¡1, but the
potential for a single drug to target multiple aspects of tumori-
genesis holds promise. Of course, SRPK1-mediated regulation is
not limited to pro-tumorigenic pre-mRNA splicing events, rais-
ing concern over potential “off-target” effects of SRPK1 inhibi-
tion. High throughput next generation sequencing will allow for
a more comprehensive understanding of changes to the transcrip-
tome in response to SRPK1 inhibition, and provide insight into
these potential off-target effects. In fact, an understanding of
transcriptome changes in response to alterations in all splicing
kinases would help identify which kinase, or combination of kin-
ases, represents the best therapeutic target, which kinases to avoid
due to potential off target effects, and the degree of redundancy
between kinases which could be a potential mechanism of resis-
tance for splicing kinase inhibition.
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