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a b s t r a c t 

The efficacy of pEGFP (plasmid expressing enhanced green fluorescent protein)-encapsulated PEGylated 

(meaning polyethylene glycol coated) magnesium phosphate nanoparticles (referred to as MgPi-pEGFP 

nanoparticles) for the induction of immune responses was investigated in a mouse model. MgPi-pEGFP 

nanoparticles induced enhanced serum antibody and antigen-specific T-lymphocyte responses, as well as in- 

creased IFN- γ and IL-12 levels compared to naked pEGFP when administered via intravenous, intraperitoneal 

or intramuscular routes. A significant macrophage response, both in size and activity, was also observed when 

mice were immunized with the nanoparticle formulation. The response was highly specific for the antigen, 

as the increase in interaction between macrophages and lymphocytes as well as lymphocyte proliferation 

took place only when they were re-stimulated with recombinant green fluorescence protein (rGFP). Thus 

the nanoparticle formulation elicited both humoral as well as cellular responses. Cytokine profiling revealed 

the induction of Th-1 type responses. The results suggest DNA-encapsulated magnesium phosphate (MgPi) 

nanoparticles may constitute a safer, more stable and cost-efficient DNA vaccine formulation. 
c © 2014 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http: // creativecommons.org / licenses / by-nc-nd / 3.0 / ). 
 

. Introduction 

DNA vaccines are promising vehicles for immunization against a 

ariety of human pathogens, including HIV [ 1 ], Mycobacterium tuber- 

ulosis [ 2 ] and malarial parasites [ 3 ]. Such immunization with DNA 

an elicit both cellular and humoral immune responses [ 4 , 5 ], and can 

e administered repeatedly without inducing any anti-vector immu- 

ity. Other benefits of a DNA based vaccine include its ability to polar- 

ze T-cells, especially to a Th1 immunological response. DNA vaccine 

ormulations are generally more stable and possess longer shelf-life, 

hich in turn facilitates their cheaper manufacturing, storage, and 

hipping compared to that of protein-based vaccines. Nonetheless, 

he immunogenicity of DNA vaccines has been limited by several 

roblems associated with their delivery, such as poor cellular uptake 

f DNA, degradation of the DNA by DNases and lysosomes, and tran- 

ient DNA expression. A number of strategies have been used to im- 

rove their potency, including, electroporation, infusion, sonication 

nd the gene gun [ 6 , 7 ]. Microparticles and nanoparticles that have 
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been exploited as carriers for such DNAs include polylactidecoglycol- 

ide (PLGA) [ 8 , 9 ], alginate microparticles [ 10 ], chitosan nanoparticles 

[ 11 , 12 ], liposomes [ 13 , 14 ], and virosomes [ 15 ]. These methods are,

however, not acceptable in practice because of a number of crucial 

limitations, including the requirement for large amounts of DNA, as 

well as their low expression levels and cytotoxicity. As a result, current 

non-viral genetic vaccine systems do not efficiently activate antigen- 

presenting cells (APCs) [ 16 ], and so lack the equivalent potency of 

viral vectors. 

It has been suggested that the use of inorganic nanoparticles, 

such as phosphates of Ca 2 + , Mg 2 + , Mn 

2 + , Ba 2 + , Sr 2 + , might elim- 

inate these limitations, yet they remain largely unexplored. Bulk- 

precipitated complexes using these ions have been shown to stimu- 

late varying degrees of DNA transfer efficiency across the cell mem- 

brane [ 17 ]. Calcium phosphate (CaPi) nanoparticles of average diam- 

eters greater than 400 nm have already been reported to serve as 

non-toxic, biocompatible carriers for DNA delivery [ 18 , 19 ] notwith- 

standing these particles are too large for efficient intracellular up- 

take. Our group has previously demonstrated the potential of ultra 

low size ( < 100 nm diameter) CaPi nanoparticles as efficient vectors 

for gene delivery in vitro [ 20 –22 ]. Moreover, in relation to the induc- 

tion of immune responses, it has been observed that smaller particles 

( < 300 nm), when complexed with DNA, induced better immune re- 

sponses than did larger microparticles ( ∼1 μm) [ 23 ]; this could be 
 open access article under the CC BY-NC-ND license ( http: // creativecommons.org / 
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partially attributed to the ability of smaller particles to be taken up

more readily by APCs. There is also evidence that particle size plays a

critical role in the transfer of nanoparticles in the lymphatic system

[ 24 , 25 ]. Our observations of the greater transfection efficiency, in vitro

as well as in vivo , of DNA-encapsulated ultra-low size magnesium

phosphate nanoparticles [ 26 , 27 ] prompted us to further investigate

the potential of these nanoparticles as DNA vaccine carriers. 

Here, we report an investigation of the levels of immunogenic-

ity triggered by either a naked pEGFP, or MgPi-pEGFP nanoparticles,

via intramuscular (i.m.), intraperitoneal (i.p.) or intravenous adminis-

trations (i.v.) in BALB / c mice. The immune response to the expressed

antigen was studied through a combination of antibody (IgG) titration,

cytokine profile measurement, macrophage (antigen-presenting cell)

activation, and lymphocyte proliferation upon in vitro re-stimulation

with recombinant green fluorescence protein (rGFP). The immune re-

sponse so induced was markedly superior to that triggered by either

naked pEGFP. 

2. Materials and methods 

2.1. Materials 

All reagents and chemicals were purchased from Sigma unless oth-

erwise stated. Anti-mouse IgG antibody was obtained from Bangalore

Genei, India. Interleukin-12 (IL-12) and Interferon- γ (IFN- γ) were

procured from Promega, USA. pEGFP was a gift of Prof. Debi P. Sarcar,

Department of Biochemistry, University of Delhi, India. Recombinant

green fluorescence protein was a gift of Prof. Anirban Maitra, Depart-

ment of Pathology, Johns Hopkins Medical Institute, Baltimore, USA. 

2.2. Mice 

Inbred strains of pathogen-free female BALB / c mice (6–8 weeks

old; 20–25 g) were obtained from the Animal House Facility, Depart-

ment of Zoology, University of Delhi, India. The animals were reared in

uniform hygienic conditions under a controlled environment (at 20–

25 ◦C and 12 h dark / light cycle) following the guidelines of the Animal

Ethics Committee, University of Delhi, India. The animal experiments

were also executed in strict accordance to guidelines approved by the

Animal Ethics Committee of the university. 

2.3. Preparation of pEGFP-encapsulated MgPi nanoparticles 

pEGFP-encapsulated MgPi nanoparticles were prepared using a

water-in-oil microemulsion method exactly as reported in our pre-

vious work [ 26 , 27 ]. Briefly, 25 ml of an AOT (Aerosol OT or sodium

bis(2-ethylhexyl) sulfosuccinate) in hexane solution (0.1 M) was pre-

pared, into which 70 μl of an aqueous solution of magnesium chloride

(1.0 M) and 2.94 μg of pEGFP were dissolved by continuous stirring

for 12 h to form microemulsion A. In another 25 ml of AOT in hex-

ane solution, 70 μl of aqueous solution of (NH 4 ) 2 HPO 4 (1.0 M) and

2.94 μg of pEGFP, were dissolved by continuous stirring for 12 h to

form microemulsion B. Additional buffer (0.1 M Tris HCl buffer, pH 8)

was added to both microemulsions before stirring so that the aqueous

volume in each microemulsion could reach 450 μl so as to adjust the

W o (the molar ratio of water to AOT) of each microemulsion to 10. W o

governs the size of aqueous core in such microemulsion systems and

thus govern the size of the particle formed in these microemulsions.

Both the microemulsions were optically clear solutions after 12 h

stirring. Microemulsion B was then slowly added to microemulsion

A at a rate of 4 ml / h with continuous stirring at 4 ◦C. The result-

ing solution was further stirred for another 12 h. The development

of translucency indicated magnesium phosphate nanoparticle forma-

tion within its aqueous core. Dry ethanol (2 ml) was then added to

break the microemulsion. The mixture was centrifuged for 30 min at

13,000 rpm at 4 ◦C. The pelleted nanoparticles were washed (4 × )
with 15 ml n-hexane and the particles dispersed in PBS (pH 7.2) by

vortexing. The dispersed nanoparticles were dialyzed for 12 h in a

12 kD cut-off dialysis membrane bag to yield a clear dispersion. The

dispersed nanoparticles were characterized by particle size determi-

nation. The void (placebo) nanoparticles were also prepared using

exactly the same protocol without adding pEGFP solution. 

2.4. Tagging of methoxy-PEGamine to pEGFP-encapsulated MgPi 

nanoparticles 

In order to render the pEGFP-encapsulated MgPi nanoparticles

long circulating inside the body upon their administration via the dif-

ferent routes, their surfaces were modified to acquire polyethylene

glycol (PEG) terminals. This process is referred to as “PEGylation” of

the surface. To obtain PEGylated nanoparticles, both void as well as

pEGFP-encapsulated MgPi nanoparticles were first coated with the

highly adhesive polymer, polyacrylic acid (PAA). Acid-coated MgPi

nanoparticles were then conjugated with methoxy PEG-amine (Mol

Wt 5000) to create the PEGylated nanoparticles. Briefly, a 10 ml dis-

persion of MgPi nanoparticles in PBS (pH 7.4) obtained from the above

process was incubated with 10 μl of acid neutralized (pH 8) PAA

(5 kD, 0.5% V / V) for 2–3 h with stirring, followed by a dialysis (12 kD

membrane) to remove excess polymer. The carboxylate groups of

PAA were conjugated to amine groups of methoxy PEG-amine using

EDCI (1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochlo-

ride). Methoxy PEG-amine (50 μl of 40 mg / ml) was added to the

nanoparticle suspension with continuous stirring and to this, 50 μl of

EDCI (20 mg / ml) was added. Stirring was continued for 8 h, followed

by 2–3 h of dialysis to remove all the unconjugated molecules. The

particle size of these PEGylated nanoparticles was again measured

by DLS to reconfirm whether the PEGylation process had caused any

change in the nanoparticles sizes. Lyophilized product was stored

at 4 ◦C until further use. The PEGylated nanoparticle formulation

was readily dispersible in an appropriate injectable volume of PBS

(pH 7.4). We refer pEGFP-encapsulated PEGylated MgPi nanoparti-

cles to as MgPi-pEGFP nanoparticles in this study. 

2.5. Determination of the size of the nanoparticles 

The particle sizes of both the void as well as the pEGFP-

encapsulated nanoparticles in water-in-oil microemulsions as well

as in aqueous solutions were determined by a dynamic light scat-

tering (DLS) technique. Briefly, the measurements were done with a

Brookhaven BI8000 instrument fitted with a BI200SM goniometer. An

argon-ion air-cooled laser was operated at 488 nm as the light source

and the intensity of scattered light were recorded on a scattering

angle of 90 ◦. The time-dependent autocorrelation function was de-

rived using a 136-channel digital photon correlator. The particle size

was calculated from the auto correlation function using the Stokes–

Einstein equation: d = kt / 3 πηD , where D is the translational diffusion

coefficient, d is the particle diameter, η is the viscosity of the liquid

in which particles are suspended, k is Boltzmann ’ s constant and T is

absolute temperature. 

2.6. Entrapment efficiency (E%) 

The pEGFP-encapsulated nanoparticles in AOT microemulsion

were separated after ultracentrifugation (40,000 rpm for 4 h at 4 ◦C)

and the pellet, after washing with hexane, was dissolved in acidic

buffer (pH 3). The amount of DNA released from the nanoparticles,

[DNA] r , was estimated spectrophotometrically by measuring the op-

tical density at λ260nm 

. The entrapment efficiency ( E ) was then calcu-

lated from the amount of DNA originally added to the microemulsion

([DNA] 0 ) using the equation E % = [DNA] r / [DNA] 0 × 100. 



48 G. Bhakta et al. / Results in Immunology 4 (2014) 46–53 

2

p

s

t

a

p

o

fi

n

o

o

s

v

c

2

1

c

S

s

T

t

f

f

(

t

t

o

2

p

a

i

w

6

(

i

d

2

s

a

t

2

a

l

o

2

u

B

w

s

t

P

p

 

.7. Agarose gel electrophoresis of free, encapsulated, and adsorbed 

EGFP 

Agarose gels were used for electrophoresis. In order to demon- 

trate the encapsulation of pEGFP inside particles and its protec- 

ion from external DNase, MgPi-pEGFP nanoparticles were run onto 

garose gels (1%). Briefly, 10 μl of an aqueous dispersion of MgPi- 

EGFP nanoparticles (5 mg / 100 μl) solution was incubated with 5 μl 

f DNase1 (5 mg / ml in Tris buffer) for 15–20 min at 4–8 ◦C and was 

nally loaded onto a gel. As a control, the same volume of untreated 

anoparticles containing the same amount of pEGFP was also loaded 

nto the gel. Naked pEGFP (2 μl of 0.5 μg / μl) was either loaded fresh 

r after incubation with placebo MgPi for adsorption onto particle 

urfaces overnight at 4–8 ◦C. In both cases, control experiments in- 

olving treatment with DNase1 for 30 min prior to loading were also 

onducted. 

.8. In vivo gene expression 

Two groups of young BALB / c mice ( n = 6) were injected with either 

.8 μg of naked pEGFP or 1.8 μg of pEGFP delivered via nanoparti- 

le formulation. Both groups of mice were injected intraperitoneally. 

even days post-injection, mice were sacrificed and their lungs, livers, 

pleens and lymph nodes were harvested under aseptic conditions. 

he tissue extracts were prepared in PBS by homogenization and cen- 

rifugation (12,000 rpm / 4 ◦C). The tissue homogenates were assayed 

or total protein using Lowry ’ s method. Each tissue was normalized 

or protein and assayed for the expressed green fluorescence protein 

GFP) using fluorimeter (excitation filter 365 nm and emission fil- 

er 510 nm). The background fluorescence (RFU) obtained from the 

issue homogenates of untreated mice was subtracted from the RFU 

btained from each of the tissue homogenates of pEGFP treated mice. 

.9. Immunization 

BALB / c mice were immunized three times each with the MgPi- 

EGFP nanoparticle as well as with control particles and naked pEGFP 

t weeks 0, 2 and 4. Immunizations were carried out via three routes –

ntravenous, intraperitoneal or intramuscular. A total of 36 animals 

ere immunized (12 animals per route; 6 with naked pEGFP and 

 with MgPi-pEGFP nanoparticles). The nanoparticle formulations 

MgPi-pEGFP) were dispersed in phosphate buffer saline (pH 7.4) and 

njected (100 μl containing 0.6 μg pEGFP) into each mouse (total 

ose of 1.8 μg of pEGFP / animal with three injections at weeks 0, 

 and 4). Equivalent amounts of naked pEGFP were also injected in 

imilar ways into animals as positive controls. A group of 6 mice were 

lso injected in a similar way with void PEGylated MgPi nanoparticles 

o study the effect of nanoparticles themselves on mice. 

.10. Sera and tissue collection 

Mice were bled through the retro-orbital plexus and the sera sep- 

rated by centrifugation for immunoglobulin assessment. The liver, 

ung, thymus and spleen of these animals were carefully dissected 

ut and then washed in sterile PBS for further studies. 

.11. Antibody assays 

Serum anti-GFP antibody (IgG) titers were measured by ELISA 

sing green fluorescence protein (GFP) as the solid phase antigen. 

riefly, ELISA plates (96-well U bottom, Tarson, India) were coated 

ith recombinant GFP overnight (200 μl of 5 μg / ml) and non-specific 

ites blocked with 5% bovine serum albumin in PBS. After washing 

wice with PBS / 0.5% Tween-20, 100 μl of serum samples diluted in 

BS were added to the wells. After overnight incubation at 4 ◦C, the 

lates were successively washed with Tween-20 / PBS and incubated 
with 1:2000 dilutions of alkaline HRP-conjugated goat anti-mouse IgG 

antibodies(100 μl) for 2 h at room temperature. Plates were washed 

again and orthophenylenediamine dihydrochloride (OPD) in 0.05 M 

citrate buffer (pH 5.0, 100 μl of 1 mg / ml) and 2 μl 30% H 2 O 2 were

added. Absorbance at 490 nm was recorded after the addition of oxalic 

acid (10 μl) as stop solution. 

2.12. Macrophage (antigen presenting cells) activation 

Splenocytes, consisting of both macrophages and lymphocytes, 

were prepared from all the experimental mice using the standard 

protocol. Briefly, the spleens were dissected out and minced in PBS 

on a stainless steel mesh ( ∼ 4 μm) to make single cell suspensions and 

then, upon centrifugation, the cells were collected and resuspended in 

complete RPMI media containing antibiotics (streptomycin and peni- 

cillin). The collected cells were then used to analyze the changes in 

the number of macrophages and their activations after the differing 

immunization protocols. For determining the change in the number 

of macrophages in spleens, 1 × 10 7 splenocytes were plated into 

100 mm culture plates in complete RPMI and incubated at 37 ◦C. Af- 

ter 2 h of incubation, non-adherent cells were washed 3 times with 

PBS and the adherent cells (about 98% cells were macrophages based 

both on their morphology and non-specific esterase staining) were 

detached and counted using hemocytometer. To measure the differ- 

ence in the activation of macrophages with differing immunization 

routes, we incubated the 1 × 10 6 splenocytes with or with rGFP 

for 24 h at 37 ◦C in a CO 2 incubator. After 24 h, the non-adherent 

cells were washed and the adherent macrophages were analyzed for 

change in morphology and phagocytic activity. 

2.13. Lymphocyte proliferation assay 

Lymphocyte proliferation of the immunized mice was carried out 

using MTT colorimetric assay as previously described [ 28 ]. Splenic 

lymphocytes were prepared from all experimental mice using the 

standard protocol. Briefly, the spleens were dissected out and minced 

in PBS on a stainless steel mesh ( ∼ 4 μm) to make a single cell sus- 

pension. The erythrocytes were lysed by 0.54% NH 4 Cl (pH 7.4). After 

centrifugation, the cells were re-suspended in complete RPMI me- 

dia supplemented with antibiotics (streptomycin and penicillin) and 

1 × 10 6 cells were seeded into each well of 96-well culture plates. 

rGFP (5 μg / ml) was used as a specific stimulating antigen. Wells 

without stimulating antigen were used as negative control. All the 

cells were cultured at 5% CO 2 and 37 ◦C for 72 h. Two hour prior to 

termination, 20 μl MTT (5 mg / ml) was added into each well. After 

the appearance of purple formazan crystal, the culture plate was cen- 

trifuged. The supernatant was removed and the crystals solubilized in 

100 μl of dimethyl sulphoxide (DMSO) and the absorbance measured 

at 570 nm to determine the stimulation index. All experiments were 

done in triplicate and repeated twice with 3 animals each. 

2.14. Assays for IFN- γ and IL-12 

Splenocytes prepared from mice were seeded into 96-well culture 

plates (1 × 10 6 cells / well) in complete RPMI media supplemented 

with antibiotics. The splenocytes were cultured in the presence of 

rGFP for 24 h. The culture medium was collected and assayed for the 

presence of IFN- γ and IL-12 by Sandwich ELISA, as per the protocol 

provided for each cytokine by BD Pharmingen (CA, USA). 

2.15. Statistical analysis 

The statistical significance of the different data points between 

naked pEGFP treated and MgPi-pEGFP nanoparticles treated mouse 

groups was determined using One-way ANOVA with Tukey post-hoc 

testing. This analysis was performed with SPSS software (version 13.0, 
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Fig. 1. Representative particle size distribution or dynamic light scattering of MgPi- 

pEGFP nanoparticles in (A) water-in-oil microemulsion and (B) aqueous buffer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

SPSS Inc., Chicago, IL). In all cases, values represent mean ± S.D. ( n = 6)

and differences were considered significant at p < 0.05. 

3. Results 

3.1. Preparation and characterization of the nanoparticles 

Void and pEGFP-encapsulated MgPi nanoparticles were formed in

the aqueous core of the AOT / hexane microemulsion. The strategy in-

volved the precipitation of the phosphate salts of magnesium in the

absence or presence of pEGFP to obtain void or pEGFP-encapsulated

MgPi nanoparticles respectively. The nanoparticle pellet obtained

upon centrifugation of the microemulsion was easily dispersible in

aqueous solution. The calculated loading / encapsulation efficiency

( E %) as defined earlier was found to be nearly 99%. The mean size

distributions of the MgPi-pEGFP nanoparticles was in the range of

30–50 nm in water-in-oil microemulsion and 110–130 nm in aque-

ous dispersion. The increase in sizes of nanoparticles in aqueous so-

lution can be attributed to the slight aggregation of nanoparticles in

aqueous media. A representative size distribution profile of MgPi-

pEGFP nanoparticles is shown in Fig. 1 . No differences between the

sizes of the void and pEGFP-encapsulated MgPi nanoparticles were

observed, indicating that DNA incorporation does not lead to an in-

crease in particle size. These observations are also corroborated by

our previous publication [ 26 ], so confirming the reproducibility of

our fabrication and characterization methods. The PEGylation pro-

cess did not contribute to any change in the particle sizes of void and

pEGFP-encapsulated MgPi nanoparticles either (data not shown). 

3.2. Intracellular protection of pEGFP by nanoparticle matrices 

To test whether the MgPi nanoparticles could protect encapsu-

lated pEGFP from nuclease digestion, MgPi particles with encapsu-

lated pEGFP were subjected to extensive DNase treatment before un-

dergoing gel electrophoresis ( Fig. 2 ). It was found that while naked

pEGFP migrated to its usual position (lane 2), pEGFP encapsulated

inside the nanoparticles remained at the top, and hardly entered into

the gel (lane 4). Although DNase 1 completely digested the naked

pEGFP, as demonstrated in lane 3, the pEGFP in MgPi nanoparticles

was totally protected, as seen in lane 5. However, when the pEGFP

was adsorbed only onto the surface of void nanoparticles, it migrated

under the applied current almost like naked pEGFP (lane 6), becoming

completely degraded by DNase as seen in lane 7. This was expected,

as nanoparticle surfaces clearly do not offer enough protection in and

of themselves. These results clearly demonstrate that DNA that is

completely encapsulated within the rigid matrix of the magnesium

phosphate nanoparticles is offered significant protection. This result

confirms our previous results, obtained both with this nanoparticle

[ 26 ] as well as with CaPi nanoparticles [ 21 , 22 ]. 

3.3. In vivo green fluorescence protein (GFP) expression 

To test the utility of MgPi nanoparticle-mediated gene delivery

in vivo , both generally and to specific organs in particular, immature

BALB / c mice were injected with MgPi-pEGFP nanoparticles and the

expression of green fluorescence protein within different body tis-

sues measured ( Fig. 3 ). GFP expression was observed in all the major

tissues of the body, but especially in the immunologically-key spleen

and lymph nodes. The level of GFP expression for all tissues exam-

ined was greater for nanoparticle-mediated delivery than after naked

pEGFP administration, probably due to the protection from DNase

degradation. Interestingly, the nanoparticle-mediated GFP expression

was significantly higher ( p < 0.05) in spleen, lungs, and lymph nodes.

The highest GFP expression was observed in liver. 
3.4. Enhanced antibody response to pEGFP delivered via MgPi-pEGFP 

nanoparticles 

Enhanced green fluorescent protein (EGFP) is a marker gene and it

has been previously reported to have immunogenic potential [ 29 , 30 ]

with an advantage of being traced via multiple techniques. Thus in

order to evaluate the efficacy of MgPi as a novel carrier for delivery of

DNA vaccine we opted to use pEGFP. The MgPi-pEGFP nanoparticles

induced significant antibody responses in BALB / c mice when they

were immunized either intravenously, intraperitoneally or intramus-

cularly ( Fig. 4 ). Mice immunized i.p and i.v. produced higher titers of

anti-GFP IgG than those immunized i.m. The MgPi-pEGFP nanoparti-

cles yielded a 1000–5000-fold increase in the antibody titers in the

case of intravenous immunization, and only a 100–500-fold in the

case of intraperitoneal immunization. But, there was little increase be-

tween antibody titers of MgPi-pEGFP nanoparticles and naked pEGFP

when injected into muscle. 
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Fig. 2. Photomicrograph of agarose (1%) gels revealing free, encapsulated and adsorbed 

pEGFP. Lane 1: after digestion with HindIII enzyme. Lane 2: Free pEGFP. Lane 3: pEGFP 

treated with DNase I. Lane 4: MgPi-pEGFP nanoparticles. Lane 5: MgPi-pEGFP nanopar- 

ticles treated with DNase I. Lane 6: pEGFP adsorbed on void magnesium phosphate 

nanoparticles. Lane 7: pEGFP adsorbed on void magnesium phosphate nanoparticles 

and then treated with DNaseI. 

Fig. 3. Expression of green fluorescence protein (GFP) in various body tissues. 

Seven days after intraperitoneal administration of MgPi-pEGFP nanoparticles encap- 

sulating 1.8 μg pEGFP in mice, various body tissues were excised and processed to es- 

timate the amount of GFP expressed. Values represent mean ± S.D. ( n = 6). * P < 0.05, 

significantly different when compared to naked pEGFP. 

Fig. 4. Serum GFP-specific total IgG titer following intravenous, intraperitoneal or 

intramuscular administration of naked pEGFP and MgPi-pEGFP nanoparticles. Values 

represent mean ± S.D. ( n = 6). * P < 0.05, significantly different when compared to 

naked pEGFP. 

Fig. 5. (A) Macrophages (%) in the splenocytes obtained from harvested spleens of con- 

trol, naked pEGFP or MgPi-pEGFP administered mice. Values represent mean ± S.D. 

( n = 6). * P < 0.05, significantly different when compared to naked pEGFP as well as con- 

trol. (B) Photomicrograph for macrophage activation. Macrophages were obtained from 

the spleen of control and pEGFP (naked or MgPi-encapsulated) i.v. immunized mice 

and co-cultured with lymphocytes from the same mice in presence of rGFP. Arrows 

indicating phagocytosis of dead cells (200 × magnification, Nikon 100 microscope). 
3.5. Macrophage activation 

Antigen presenting cells play a pivotal role in induction of im- 

mune response. Since uptake of vaccine and presentation of expressed 

protein is key to the success of immunization. We next examined 

changes in macrophage activity after immunization with the MgPi- 

pEGFP nanoparticles, naked pEGFP and void MgPi vectors. There was 

an increase in the overall number of macrophages (APCs) in spleens 

of mice immunized with the MgPi-pEGFP vector, compared to those 

after immunization with naked pEGFP or those in the unimmunized 

(control with void PEGylated MgPi) mice ( Fig. 5 A). Immunization via 

i.v. and i.p. administration was more efficient than via i.m. adminis- 

tration. Upon i.v. administration, the nanoparticles induced signifi- 

cantly more macrophages ( p < 0.05) than the naked pEGFP or control 

treatments. Upon i.p. administration, the nanoparticles induced sig- 

nificantly more macrophages ( p < 0.05) than that only of the control 

group. As shown in Fig. 5 B the macrophage obtained from mice im- 

munized with MgPi-pEGFP via i.v. route were much enlarged in its 

size, a hallmark of their activation. Additionally, we also observed in- 

creased phagocytic activity in macrophage from MgPi-pEGFP immu- 

nized mice compared to those from immunized with naked pEGFP or 

control mice. 

3.6. Lymphocyte proliferation 

To check the specificity of the immune response generated in the 

mice, we re-stimulated the lymphocytes collected from immunized 

mice with rGFP in vitro and looked for increases in their prolifera- 

tion. Fig. 6 reveals a significantly ( p < 0.05) enhanced proliferation 

of splenic lymphocytes obtained from mice immunized with MgPi- 

pEGFP vector upon re-stimulation with rGFP as compared to those 

obtained from mice immunized with naked pEGFP or from unimmu- 

nized control mice. Immunization with MgPi-pEGFP nanoparticles led 

to greater lymphocyte proliferation via all routes of immunization, al- 

beit not so pronounced as in the case of the i.m. route. 
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Fig. 6. Analysis of cell proliferation upon re-challenge with recombinant GFP of lym- 

phocytes obtained from control, naked pEGFP or MgPi-pEGFP administered mice. Val- 

ues represent mean ± S.D. ( n = 6). * P < 0.05, significantly different when compared 

to naked pEGFP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. In vitro release of (A) IFN- γ and (B) IL-12 by stimulated splenocytes. Spleno- 

cytes isolated from experimental animals (control, pEGFP, or MgPi-pEGFP injected) 

were stimulated with recombinant green fluorescence protein (rGFP) antigen for 24 h. 

Culture supernatants were collected and assayed for presence of (A) IFN- γ and (B) IL- 

12 using sandwich ELISA kit from BD Pharmingen, USA. Values represent mean ± S.D. 

( n = 6). * P < 0.05, significantly different when compared to naked pEGFP as well as 

control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.7. Cytokine production 

The production of the cytokines IFN- γ and IL-1 by in vitro spleno-

cytes isolated from immunized mice that had been re-stimulated with

recombinant green fluorescence protein (rGFP) antigen are shown in

Fig. 7 . The nanoparticles delivered i.v. and i.p. triggered significantly

( p < 0.05) more IFN- γ and IL-12 than immunization with naked

pEGFP or the control mice. However, no appreciable production of

either of these cytokines was observed when the nanoparticles were

delivered i.m. However, when administered i.m., the naked pEGFP

resulted in more cytokines than the nanoparticles. 

4. Discussion 

This study serves to demonstrate that inorganic phosphate

nanoparticles such as magnesium phosphate can serve not only as

an efficient DNA delivery system, but also act as potent adjuvants for

the induction of effective DNA vaccine immune responses. Although

an array of microparticles and nanoparticles have shown potential as

pDNA delivery systems for the boosting of immune responses, MgPi

nanoparticles appear to offer significant advantages from the point

of view of both efficacy and toxicity. In a previous study, we have

shown these nanoparticles demonstrate high transfection efficiency

[ 26 ], and did not show any cytotoxicity in cell culture assays [ 27 ]. They

triggered no observable adverse effects when injected into mice. As an

important constituent of viable bone substitutes, as well as an impor-

tant and normal normal tissue constituent in vivo [ 31 , 32 ], magnesium

hydroxyapatite has long been shown to be biocompatible, and is re-

garded as very safe for human use. Magnesium phosphate is also in

the FDA ’ s GRAS list [ 33 ]. 

Due to the low transfection rates elicited by other particulate car-

riers, high doses of DNA have usually been required to trigger suf-

ficient immunization. Effective induction of robust T-cell responses

are generally only achieved with a minimum of 50–200 μg doses of

DNA [ 34 , 35 ], as seen in the recent study by Meerak et al., wherein

they immunized Balb / c mice with 50 μg DNA together with chitosan

nanoparticles [ 35 ]. However here, in the case of magnesium phos-

phate nanoparticles, the total effective doses of DNA administered to

animals were as small as 1–2 μg, most probably due to the very high

transfection efficiency, which was comparable to that of Polyfect 
®

[ 26 ]. 

This study also provides several other improvements and advan-

tages for genetic immunization: the MgPi-pEGFP nanoparticles are

smaller in size than particles used in previous studies, which were

either larger than 300 nm [ 35 ] or in the micron range [ 23 ]. The av-

erage diameter of the nanoparticles in this study was considerably

less than 150 nm, and was thus ideal for engaging the clathrin-coated
pit pathway for entry into the cytosol and endosomal compartments

[ 36 –44 ]. 

These nanoparticles were also able to provide a very high level of

protection for DNA from degradation ( Fig. 2 ), which is crucial for ef-

ficacious genetic therapy. Naked DNA is highly prone to extracellular

and intracellular nuclease attack, a major challenge for efficient DNA

transfection both in vitro and in vivo . Lechardeur et al. [ 45 ] showed

that naked DNA microinjected into the cytoplasm of HeLa and COS-

cells is degraded by cytosolic nucleases. Co-injected TRITC-dextran

spread throughout the cytosol, but naked plasmid DNA progressively

disappeared from the cytoplasm with a half life of 90 min. They con-

cluded that protection of DNA from endonucleases, either by com-

plexing or encapsulating it was necessary. However all subsequent

vectors have been able to offer only partial in vivo protection. 

EGFP is a commonly used reporter protein used in diverse array

of scientific disciplines, for its ease of detection. In addition, previ-

ous studies have identified an immunodominant H2-Kd restricted

CTL epitope present withing EGFP protein recognized by Balb / c mice,

making it a suitable candidate for evaluation of vaccine- induced im-

mune response [ 29 ]. Thus in order evaluate the efficacy of Mg-Pi

nanoparticles as an optimal carrier for DNA vaccine we preferred

pEGFP. In our previous study we have reported that MgPi nanoparti-

cles shows comparable or may be better transfection efficiency in

MCF-7, U87, Hela, COS-7 cells than the commonly used PolyFect

reagent [ 26 , 27 ]. And it also has the advantage of being highly bio-

compatible and non-toxic. 

The surfaces of the MgPi nanoparticles can be easily modified for
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rolonged DNA retention and circulation, and thus expression. The 

FP expression in the various harvested tissues clearly demonstrated 

hat DNA encapsulated in MgPi nanoparticles could efficiently tra- 

erse all paths to reach their respective cellular sites without degra- 

ation. The small size of the particles also facilitated their efficient 

ptake by macrophages, as demonstrated both by the increased ex- 

ression of GFP in the spleen, as well as the increase in the number 

f macrophages in the spleens of mice immunized with MgPi-pEGFP 

 Fig. 3 ). However, the high GFP expression in liver could be due to 

he fact that a large proportion of the particles, as well as the pEGFP, 

as taken up by liver via parenchymal cells rather than macrophages 

 34 ]. 

MgPi nanoparticles are also clearly capable of inducing potent ad- 

uvant effects for antibody induction against encoded protein, so facil- 

tating protection against pathogen challenge. The antibody response 

riggered by the encapsulated pEGFP is many fold-higher than for 

aked pEGFP, especially when administered via i.v and i.p routes. The 

odest cellular and humoral immune response triggered by intra- 

uscularly injected DNA has also been remarked on previously [ 46 ]. 

herif et al. [ 47 ] studied the immunogenicity of novel nanoparticle- 

oated MSP-1 C-terminus malaria DNA vaccine using different routes 

f administration and they also highlighted that the better protection 

as observed in the following order: i.p. > i.v. > s.c. Various studies, 

sing the same formulation, have demonstrated that route of injec- 

ion influenced the immune response. However, in the larger number 

f studies that have evaluated DNA-based immunization, only few 

ave directly compared the immune responses generated by different 

outes of delivery. Although the mechanism is not clearly understood, 

e hypothesize that the better response in case of i.p. and i.v. over i.m. 

mmunization with MgPi-pEGFP could be because, for these routes, 

here is comparatively greater opportunity for the macrophages to 

ngest the MgPi-pEGFP particles. It might also be because of the poor 

istribution, inefficient expression or rapid degradation of intramus- 

ularly injected DNA [ 48 ]. 

The MgPi-pEGFP nanoparticles might also be activating 

acrophages or antigen presenting cells (APCs) upon immunization 

ia the i.v. and i.p. routes. The poor macrophage response in the case 

f the intramuscular route might be due to the poor uptake of the 

anoparticle formulation by the macrophages in this tissue. Further, 

he enhanced lymphocyte proliferation seen upon re-challenge with 

GFP corroborates the idea that the response generated is specific 

gainst the antigen expressed by the pEGFP. Increases in lympho- 

yte proliferation and enhanced APC activity take place only when 

hey are re-stimulated with specific antigen, such as the rGFP here. 

he enhanced cellular response is also documented in the cytokine 

rofiles, which indicated a better induction of Th-1 type responses. 

. Conclusions 

The MgPi-pEGFP vaccine is expressed in all the major tissues of 

he body, but especially in the immunologically relevant spleen and 

hymus. It elicit both humoral (as confirmed by increases in antibody 

iter), as well as cell-mediated responses (as demonstrated by lym- 

hocyte proliferation). The cytokine study suggests a better induc- 

ion of Th-1 type responses upon nanoparticle-mediated delivery of 

NA, and the increased lymphocyte proliferation upon re-challenge 

ith antigen confirmed the specificity of the response. Intravenous 

nd intraperitoneal routes of administration were superior to intra- 

uscular routes, as indicated by immunoglobulin assays, lymphocyte 

roliferation and APC activation studies. Thus, magnesium phosphate 

anoparticles show great promise as efficient carriers for DNA, as well 

s for effective immunization with encoded protein. 
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