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Background: Tumors often progress to a more aggressive phenotype to resist drugs.
Multiple dysregulated pathways are behind this tumor behavior which is known as cancer
chemoresistance. Thus, there is an emerging need to discover pivotal signaling pathways
involved in the resistance to chemotherapeutic agents and cancer immunotherapy.
Reports indicate the critical role of the toll-like receptor (TLR)/nuclear factor-kB (NF-kB)/
Nod-like receptor pyrin domain-containing (NLRP) pathway in cancer initiation,
progression, and development. Therefore, targeting TLR/NF-kB/NLRP signaling is a
promising strategy to augment cancer chemotherapy and immunotherapy and to
combat chemoresistance. Considering the potential of phytochemicals in the regulation
of multiple dysregulated pathways during cancer initiation, promotion, and progression,
such compounds could be suitable candidates against cancer chemoresistance.

Objectives: This is the first comprehensive and systematic review regarding the role of
phytochemicals in the mitigation of chemoresistance by regulating the TLR/NF-kB/NLRP
signaling pathway in chemotherapy and immunotherapy.

Methods: A comprehensive and systematic review was designed based on Web of
Science, PubMed, Scopus, and Cochrane electronic databases. The Preferred Reporting
Items for Systematic Reviews and Meta-Analyses guidelines were followed to include
papers on TLR/NF-kB/NLRP and chemotherapy/immunotherapy/chemoresistance by
phytochemicals.

Results: Phytochemicals are promising multi-targeting candidates against the TLR/NF-
kB/NLRP signaling pathway and interconnected mediators. Employing phenolic
compounds, alkaloids, terpenoids, and sulfur compounds could be a promising
strategy for managing cancer chemoresistance through the modulation of the TLR/NF-
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kB/NLRP signaling pathway. Novel delivery systems of phytochemicals in cancer
chemotherapy/immunotherapy are also highlighted.

Conclusion: Targeting TLR/NF-kB/NLRP signaling with bioactive phytocompounds
reverses chemoresistance and improves the outcome for chemotherapy and
immunotherapy in both preclinical and clinical stages.
Keywords: TLR - toll-like receptor, NF-kB – nuclear factor-kappa B, NLRP, phytochemicals, chemotherapy,
immunotherapy, signaling pathways, molecular pharmacology
INTRODUCTION

Chemoresistance occurs when tumors mutate in response to
cancer chemotherapy, yielding a more aggressive phenotype that
results in chemotherapy failure (1). This has been a major obstacle
in cancer chemotherapy and immunotherapy. Despite various
attempts to overcome drug resistance and restore the sensitivity
of chemotherapeutic drugs, the results thus far have been
unsatisfactory (2). Several pathophysiological mechanisms and
multiple dysregulated pathways are responsible for chemotherapy
and immunotherapy resistance. Thus, revealing the critical
dysregulated pathways in cancer chemoresistance would improve
clinical outcomes and prevent/manage the development of
chemoresistance, therefore limiting the progression and invasion
of cancer (3). Amongst the dysregulated mediators, toll-like
receptor (TLR) (4), nuclear factor-kB (NF-kB), and Nod-like
receptor pyrin domain-containing (NLRP) (5), as well as the
associated TLR/NF-kB/NLRP pathway, have been shown to
contribute to cancer chemoresistance. In recent years, researchers
have been seeking novel alternative agents with multiple targets,
higher efficacy, and less side effects that can combat
cancer chemoresistance.

Plant secondary metabolites are multi-targeting anticancer
agents that target the cancer-associated pathways, including
cellular senescence (6), Hippo signaling (7), Wnt/b-catenin (8),
Janus kinase (JAK)/signal transducer and activator of
transcription (STAT) (9), phosphoinositide 3-kinases (PI3K)/
Akt/mammalian target of rapamycin (mTOR) (10), hypoxia-
inducible factor-1a (HIF-1a) (11), and activator protein 1 (AP-
1) (12). Phenolic compounds, alkaloids, terpenes/terpenoids, and
sulfur-containing compounds demonstrated anticancer potential
by modulating tumorigenic signaling pathways (6, 13). Emerging
evidence has shown the influence of chemoresistance on cancer
therapy (5, 14, 15). Although phytochemicals have exhibited
critical regulatory roles in the modulation of TLR, NF-kB, and
NLRP in combating cancer (16–18), there is no review report on
the potential of phytochemicals in targeting TLR/NF-kB/NLRP
pathway and pivotally interconnected pathways during
chemoresistance. Thus, there is an imperative need to discover
the precise dysregulated pathways involved in chemoresistance
as well as to develop new strategies and alternative therapies to
combat cancer chemoresistance. This is the first systematic and
comprehensive review regarding crucial chemoresistance
mechanisms and the therapeutic potential of plant secondary
metabolites in combating cancer chemoresistance by targeting
the TLR/NF-kB pathway and interconnected mediators.
2

The need to develop novel phytocompound delivery systems to
fight cancer chemoresistance is also highlighted.
RESISTANCE MECHANISMS IN CANCER
CHEMOTHERAPY

Chemoresistance is one of the critical obstacles that affects the
efficacy of anticancer drugs. Several factors contribute to the
development of cancer chemoresistance. The most common
cause of resistance to anticancer agents is the overexpression of
energy-dependent transporters that export anticancer agents
from the cancer cells (1). Consequently, decreased drug
accumulation is another manner of chemotherapeutic
resistance, which prevents drug-induced DNA damage and
cancer cell apoptosis. Reduced sensitivity to drug-associated
apoptosis plays a vital role in the resistance to anticancer drugs
(19). Chemotherapy failure can be contributed in part to specific
genetic and epigenetic alterations in addition to host factors.
Cancer cells have a variety of genetic alterations depending on
the tissue and patterns of oncogene activation and tumor
suppressor gene inactivation. The use of powerful anticancer
agents on cancer cells with these genetic factors leads to the
development of drug-resistance mechanisms and the rapid
achievement of chemoresistance in various cancer types. Host
elements, such as rapid metabolism, poor absorption, and drug
excretion, cause low serum levels of the drugs and thus a
disposition towards chemoresistance. Host factors also reduce
drug delivery to the tumor site, especially in solid bulky tumors
with low cell penetration and high molecular weight. Additional
mechanisms of cancer cell chemoresistance include receptor loss
and mutations in the drug binding site (20).

The administration of various drugs has shown promising
effects on chemotherapy with high cure rates by targeting
multiple mechanisms of cell entrance. However, cancer cells
may develop adaptations to resist these chemotherapeutic drugs,
termed multidrug resistance (MDR). MDR strategies include
reduced drug accumulation within the cancer cells, decreased
uptake, increased efflux, and changes in the membrane lipid
properties. These MDR mechanisms limit the apoptosis in
cancer cells that are typically induced by anticancer agents,
reduce DNA repair mechanisms, and dysregulate the cell cycle
and checkpoints in cancer cells. An alternative method to
overcome MDR is the use of combination therapy (21).
Multidrug resistance proteins (MRPs) decrease the efficacy of
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anticancer drugs and decrease drug penetration in cancer cells.
An additional therapeutic approach involves identifying MDR
biomarkers before or during the treatment program (22, 23).

Reduced drug uptake and cell surface molecule mutations are
other drug resistance mechanisms. Methods of drug entry into
cells includes endocytosis and receptor binding followed by
internalization of the drug. An example of the later strategy
includes immunotoxins. Cancer cells with defective endocytosis
are resistant to immunotoxins and toxins (24, 25).

Drug efflux from cancer cells is accomplished through various
pumps. For example, ATP-binding cassette (ABC) transporters
[e.g., P-glycoprotein (P-gp)] play an essential role in drug-related
clinical resistance. P-gp levels are increased in several cancers
through typical molecular mechanisms and directly correlate
with chemotherapy resistance (26). Thus, P-gp expressing cells
deve lop in tumors fo l lowing in v ivo exposure to
chemotherapeutic agents. In certain cancer types, elevated P-gp
resulted in clinical relapse and decreased P-gp showed
therapeutic potential. Accordingly, drugs transported by P-gp
have a low chemotherapy response. Therefore, P-gp inhibitors
have therapeutic potential in chemotherapy. Despite the high
expression of P-gp in solid tumors (e.g., colon and renal cancer),
no chemoresistance was shown, implying other methods of drug
resistance are at work. Recent research has demonstrated the
involvement of the ABC transporter multixenobiotic resistance
(MXR) and MRPs in drug resistance. These results express the
need to consider treatment with nonspecific inhibitors of ABC
transporters or a cocktail of specific inhibitors with the broadest
spectrum effect (27).

Another mechanism of chemoresistance is reduced
intracellular drug activation and improved drug inactivation by
phase I and/or II enzymes in the intestine, liver, and tumor (28).
Cytochrome P450s (CYPs) are critical phase I metabolism
enzymes that act as an oxidation catalyzer in many anticancer
drugs. Genetic mutations in CYPs have shown significant effects
on the toxicity and efficacy of anticancer agents that are primarily
metabolized by CYPs. Carboxylesterase, deoxycytidine, cytidine
deaminase, kinase, and epoxide hydrolase are enzymes involved
in the detoxification and/or activation of some anticancer drugs.
Mutations in these enzymes may alter their activity and play a
role in the chemoresistance process. Cancer cells can become
drug-resistant by decreasing drug activation through the
reduction or mutation of kinases (29). The aforementioned
dysregulated mechanisms that contribute to chemoresistance
lead to rapid metabolism/excretion, poor tolerance and
downstream oxidative stress, apoptosis/autophagy, and
inflammation. Figure 1 summarizes the major factors involved
in cancer chemoresistance.

In addition to the above mechanisms, evasion of apoptosis/
autophagy/necrosis is critical to tumor resistance. In any
pathological condition, programmed cell death pathways,
including apoptosis, and autophagy are the cause of death
through intracellular pathways. Such cell death programs may
cooperatively determine the fate of malignant neoplasms.
Programmed necrosis and apoptosis always contribute to cell
death, however, autophagy can play either pro-death or pro-
Frontiers in Oncology | www.frontiersin.org 3
survival roles (30). The mitochondrial (intrinsic) pathway and
death receptor (extrinsic) pathway are two methods of apoptosis.
Initiation of both pathways ultimately proceeds through caspase-
related cascades. A group of cysteine proteases plays an
important role in inflammation and apoptosis by cleaving a
variety of nuclear and cytoplasmic mediators. Apoptotic caspases
can be either initiator or executioner caspases. These include
initiator caspase-2, caspase-8, caspase-9, and caspase-10 and
executioner caspase-3, caspase-6, and caspase-7. In regard to
the initiator caspases, CD95 (APO-1/Fas) and tumor necrosis
factor (TNF)-related apoptosis-inducing ligand (TRAIL) are
members of the TNF receptor superfamily of death receptors
which recruits caspase-8, forming a multimeric complex at the
plasma membrane that subsequently activates caspase-3.
Caspase-8 causes the release of cytochrome c by increasing the
permeability of the outer mitochondrial membrane through
cleavage of Bid, a BH3-only protein, and translocation to the
mitochondria (31, 32). Mitochondrial apoptosis-induced
channel (MAC) also increases the release of cytochrome c,
which activates caspase-3 through the creation of pro-caspase-
9, apoptotic protease activating factor 1 (Apaf-1), and the
apoptosome. The apoptosome converts pro-caspase-9 to its
active form, caspase-9, which then activates caspase-3 (31).
Apaf-1 forms an oligomeric apoptosome which determines the
apoptotic pathway upon binding with ATP and cytochrome c.
Such apoptotic pathways are controlled by various negative and
pos i t ive regu la tors , which p lay a cr i t i ca l ro le in
chemoresistance (33).

The B-cell lymphoma 2 (Bcl-2) family of proteins consists of
anti-apoptotic and pro-apoptotic proteins. The former includes
B-cell lymphoma-extra-large (Bcl-xL), Bcl-2, and myeloid-cell
leukemia 1 (Mcl-1), while the latter includes Bcl-2-associated X
protein (Bax), Bcl-2 homologous antagonist/killer (Bak), and
BH3. Bak and Bax enhance the formation of MAC, while Mcl-1,
Bcl-2, and Bcl-xL inhibit its formation (34). Apart from the
established roles of Bak and Bax in apoptosis, the ratio of pro-
apoptotic/anti-apoptotic proteins is what governs apoptosis,
rather than individual protein expression. In cancer cells, the
upregulation of anti-apoptotic mediators allows cells to evade
apoptosis. This also allows cancer cells to escape apoptosis even
when exposed to chemotherapeutic drugs, which would
otherwise induce apoptosis in susceptible cells (35). Thus,
dysregulation of the pro-apoptotic/anti-apoptotic protein ratio
is another mechanism of chemotherapy resistance due to
decreased apoptosis of cancer cells.

In cancer cells, the activities of both pro- and anti-apoptotic
mediators are controlled by Jun amino terminal kinase (JNK)
and p38-mitogen-activated protein kinase (MAPK). The latter
increases p53 and apoptosis in chemoresistant cells through the
protein kinase B (Akt)/Forkhead box O3 (FoxO) pathway.
Insulin-like growth factor 1 suppresses apoptosis via casein
kinase 2 and PI3K/Akt pathways, which in turn arrests Smac/
DIABLO release and suppresses caspase activity (36). In
addition, p53 mutations reduce chemoresistance through
modulatory roles on mitochondrial function, leading to
increased chemosensitivity. The overexpression of tissue
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inhibitor of metalloproteinase-1 (TIMP) compromises
chemotherapy response via NF-kB and PI3K/Akt signaling
pathways (37). The actin-bundling protein, fascin, plays an
important role in breast cancer chemoresistance by increasing
the level of anti-apoptotic proteins and blocking the entry of the
pro-apoptotic proteins caspase-3 and caspase-9 (37). Notch-1
and survivin are other signaling pathways that contribute to
chemoresistance by activating targets involved in cell survival,
thereby inhibiting apoptosis in tumor cells (38).

Other mechanisms of tumor resistance are related to
dysregulated autophagy. Autophagy allows cells to regain ATP
and vital biosynthetic factors in tumor microenvironments that
are hypoxic and starved, promoting cancer cell survival.
Autophagy acts as a critical modulator of intracellular
hemostasis, tumor suppression, aging, cell death, and tumor
chemoresistance (39). However, autophagy acts as a double-
edged sword, as it also plays a role in the initiation, growth,
development, and invasion of tumor cells. Accordingly, the
PI3K/Akt/mTOR signaling pathway plays a crucial role in
Frontiers in Oncology | www.frontiersin.org 4
autophagy by modulating cell growth, cell survival, protein
synthesis, motility, cell metabolism, cell death, and
chemoresistance (39). This also downregulates the pro-
apoptotic mediators Bim and Bad (40). Apoptotic mediators
and autophagy are also regulated by upstream JNK and
p38MAPK, thereby playing a vital role in modulating
chemoresistance (41). Many anticancer drugs disrupt the
balance between autophagy and apoptosis by altering the
genetic/epigenetic phenotype and inhibiting PI3K/Akt/mTOR
in cancer cells, thereby leading to the development of
chemoresistance (41).
RESISTANCE MECHANISMS IN CANCER
IMMUNOTHERAPY

Immunotherapy resistance is a primary and/or acquired
resistance of tumor cells to immunotherapy (42). The
inhibitors of programmed cell death-1/programmed cell death-
FIGURE 1 | Representation of major factors involved in chemoresistance. ABC, ATP-binding cassette; APC, antigen-presenting cell; CTL, cytotoxic T lymphocytes;
DCs, Dendritic cells; MDR, multidrug resistance; MHC, major histocompatibility complex; NKs, natural killer cells; P-gp, P-glycoproyein; PD1/PD-L1, programmed cell
death-1/programmed cell death-ligand 1; TH, T helper; Treg, T regulatory.
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ligand 1 (PD-1/PD-L1) increase the release of interferon g (IFN-
g) and upregulate the JAK/STAT signaling pathway. This
act ivates IFN regulatory factor 8 (IRF8) , caus ing
hyperprogression (HPD) (43). HPD is a primary form of drug
resistance (44) associated with mutations of epidermal growth
factor receptor (EGFR) [33], murine double minute (MDM)
gene (43), and chromosome 11 region 13 (43).

Attenuation of immune checkpoints potentially stimulates
regulatory T cells (Tregs), creating an immunosuppressive
microenvironment and modulating autoantigenicity antigen
shedding or endocytic antigens to mediate immune escape
(45) . Such condi t ions t r igger the polar iza t ion of
immunosuppressive cells, such as M2 macrophages, antigen-
presenting cells (APCs), and myelocytes, producing
immunosuppressive cytokines. This also stimulates T helper
type 1 (TH1) and TH17-mediated inflammatory conditions to
upregulate oncogenic pathways and accelerate tumor growth and
immunotherapy resistance (43, 46). Consequently, dendritic cells
(DCs), B lymphocytes, monocyte-macrophages, and other APCs
such as fibroblasts, endothelial cells, mesothelial cells, and
epithelial cells are interconnected with tumor-specific antigen
(TSA)/tumor-associated (TAA), conferring immunogenicity and
T cell infiltration in tumors. Autophagy and the endoplasmic
reticulum (ER) determine the tumor-associated immunogenicity
of cell death (47). Dysregulation of antigen presenting signaling
pathways, including mutations of the proteasome, transporters,
and major histocompatibility complex (MHC), is cross-talked
with T cell activity and tumor immune escape. MHC mutations
are classified into structural defects, changes in the receptor-
binding domain, and epigenetic changes (48). In some cancer
types, tumor cells are able to escape lysis mediated by cytotoxic T
lymphocytes (CTLs) and natural killer cells (NKs) through the
overexpression of MHC-I. This allows tumor cells to escape the
immune system (49).

The dysregulation of emerging signaling pathways in tumor
cells is another mechanism of immunotherapy resistance. For
instance, IFN-g, produced by T cells and APCs, binds to related
receptors to activate JAK2 (50). This leads to interaction with
STAT1, which modulates downstream cascades. IFN-g allows
tumor cells to escape the immune system by increasing the
expression of PD-L1 on the surface of tumor cells (51). IFN-g
also upregulates C-X-C motif chemokine ligand (CXCL)-9 and
CXCL-10 chemokines and promotes antitumor immune cell
effects (51). Additionally, IFN-g exerts pro-apoptotic and
antitumor properties through binding to cell surface receptors
and triggering downstream mediators to suppress tumor cells
(51). In patients receiving immunotherapeutic agents, tumor
cells alter IFN-g and JAK/STAT1 signaling pathways. Tumor
analysis of chemoresistant patients receiving anti-cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4) agents had
mutations in IFN-g pathway genes, JAK1/2, and interferon
regulatory factors (52). This allowed tumor cells to evade T
cells, thus resisting the anti-CTLA-4 treatment. Loss of
polybromo and BRG1-associated factors (PBAF) complex
increased the ability of chromatin to regulate IFN-g as well as
increased production of CXCL-9/CXCL-10 to recruit T cells to
Frontiers in Oncology | www.frontiersin.org 5
tumor tissue (53). In human cancers, expression of Pbrm1 and
Arid2 is correlated with the presentation of T cell cytotoxicity
genes, leading to immunotherapy resistance (53).

Spranger et al. (54) demonstrated that the infiltration of T
cells and recruitment of DCs into the total mesorectal excision
(TME) could be suppressed by tumor-intrinsic b-catenin
activation via decreased expression of CCL4. Because DCs
prevent migration into epithelial-to-mesenchymal transition
(EMT), no antigen can be presented to T cells, halting their
cytotoxic effects. From another mechanistic point, upregulation
of MAPK signaling damages the function and infiltration of
tumor-infiltrating lymphocytes through the expression of
vascular endothelial growth factor (VEGF) and cytokines such
as interleukin-8 (IL-8) (55). Under these conditions, induction of
Tregs ultimately leads to tumor immune evasion. Loss of tumor
suppressor phosphatase and tensin homolog (PTEN) leads to
activation of PI3K signaling, which is associated with increased
anti-inflammatory cytokines, such as VEGF and C–C motif
chemokine ligand 2 (CCL2), reduced infiltration of CD8+ T
cells into tumors, and decreased IFN-g expression, conferring
resistance of PD-1 blockade therapy against tumors (56).

Tumor cells develop immunotherapy resistance by altering
tumor cell metabolism through multiple metabolic changes,
termed tumor metabolic reprogramming (57). One such
mechanism utilizes aerobic glycolysis to create a hypoxic acidic
environment which prevents normal metabolism of immune
cells and impairs T cell function and infiltration (58).
Furthermore, glucose consumed by tumor cells may restrict T
cell metabolism, which leads to inhibition of mTOR, decreased
glycolytic capacity in T cells, and production of intracellular
IFN-g (59).
TLR/NF-kB/NLRP SIGNALING PATHWAY
IN CANCER INITIATION AND
PROGRESSION AND CHEMORESISTANCE

TLRs are members of the type I transmembrane proteins and are
conserved pattern-recognition receptors (PRRs) that are
activated by various pathogen-associated molecular patterns
(PAMPs). These membrane proteins are heavily expressed on
the surface of several cells, including monocytes, macrophages,
and DCs. The three constructional domains of TLRs’ include a
leucine-rich repeats (LRRs) motif, a transmembrane domain,
and a cytoplasmic domain. Each of these domains have a specific
function. For example, pathogen recognition is performed by the
LRR motif, while signal initiation is performed by interaction of
the TIR domain with the signal transduction adaptors. This
receptor family is extremely important for pathogen recognition
by the innate immune system (60, 61). Recently, several reports
have indicated the association between cancer and TLRs.
Specifically, the TLR4 signaling pathway is the most tightly
linked with inflammatory response and cancer initiation and
progression (16).

TLRs are involved in tumor progression, however they
may display either anti- or pro-tumor metastasis and growth
March 2022 | Volume 12 | Article 834072
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features (62). Activation of TLR4 increased IL-6 and IL-8
production in breast cancer (63). In some cancers, TLR4
induced the production of nitric oxide and IL-6 (64). In
prostate cancer cells, TLR4 activation enhanced the expression
of transforming growth factor-b1 (TGF-b1) and VEGF, which
promoted tumor progression (65). Some studies have shown
poorer outcomes for breast, colon, and pancreatic cancers when
TLR4 is overexpressed (63, 64). The myeloid differentiation
factor 88 (MyD88) pathway of TLR4 has been shown to
improve carcinogenesis. Yusef et al. (66) found that TLR4
demonstrated antitumor activity in skin cancer. The role of
TLR4 should be further evaluated in various cancer types.
Overall, these results suggest that the release of various
inflammatory mediators, cytokines, and chemokines activates
TLR4 and may participate in cancer formation.

TLRs are strong actuators of the inflammatory response,
activation of which triggers the production of interferons,
chemokines, cytokines, and NF-kB. The NF-kB pathway plays a
crucial role in various diseases through regulation of cell
proliferation, differentiation, immunity, and apoptosis (67). The
NF-kB family consists of five crucial parts: p50, p52, p65/RelA, c-
Rel, andRelA.NF-kBacts as a transcription factorbybindingDNA,
which activates gene transcription. Several genes involved in the
progression and development of cancer are regulated by NF-kB,
such as those involved in proliferation, apoptosis, and migration.
Improper or constitutiveNF-kB activation has been found inmany
malignant human tumors (68).

Typically, NF-kB is bound to IkB (IkB) in the cytoplasm. In
times of stress, reactive oxygen species (ROS) and inflammatory
stimuli degrade the IkB complex to activate NF-kB, releasing
inflammatory cytokines such as tumor necrosis factor-alpha
(TNF-a), IL-1, IL-6, and IL-2. This inflammatory cascade
suppresses apoptosis and induces cellular invasion,
proliferation, and metastasis, aiding in chemoresistance [52].
Prevailing reports have shown that activation of NF-kB by
tumors assists in the development of chemotherapy resistance.
NF-kB activation plays a key role in hindering the effectiveness of
chemotherapeut ic agents . Tumor ce l l s exposed to
chemotherapeutic drugs or radiation showed increased
activation of NF-kB, which enforced the expression of MDR P-
gp. Meanwhile, NF-kB suppression improved the apoptotic
response to radiation therapy (69).

Members of the NLR family play an essential role in the
signaling pathways of the innate immune system by activating or
inhibiting inflammasomes. Damage-associated molecular
patterns (DAMPs) and PAMPs activate NLRs and absent in
melanoma 2 (AIM-2)-like receptors (ALRs), which bind to
associated cytosolic domains to activate caspases. As a result,
caspases upregulate IL-18 and IL-1b, which results in apoptosis
and pyroptosis (70). On the other hand, dysregulation of NLR
contributes to various autoimmune and inflammatory diseases.
Thus, NLR can play a role in tumor suppression or tumor
promotion in the initiation, development, and regression of
cancer (71). Therefore, targeting the TLR/NF-kB/NLRP
signaling pathway may facilitate improvement in the regulation
of cancer initiation/progression and associated chemoresistance.
Frontiers in Oncology | www.frontiersin.org 6
TLR/NF-kB/NLRP SIGNALING PATHWAY
IN CANCER IMMUNOTHERAPY

TLRs are part of a family of recognition receptors which play a
pivotal role in the host immune system (72–74). TLRs are expressed
by B cells, macrophages, monocytes, NK cells, mast cells,
neutrophils, and basophils. TLRs stimulate pro-inflammatory
chemokines and cytokines to activate the innate and adaptive
immune systems. The activation of TLR4 can induce associated
adaptor proteins, including MyD88, TIR domain-containing
adapter molecule 1 (TICAM1), TIR domain-containing adapter
molecule 2 (TICAM2), and TIR domain-containing adaptor
protein (TIRAP). Some ligands (e.g., lipopolysaccharides and
toxins) bind TLRs to activate the immune response. According to
Nagai et al. (75), the co-receptor myeloid differentiation factor-2
(MD-2) increased the translocation of TLR4 to form a heterotrimer
of CD14/TLR4/MD-2 (76). This may lead to two distinct signaling
pathways, the MyD88 pathway and the toll/IL-1R domain-
containing adapter-inducing IFN-b (TRIF) pathway. Tumor
necrosis factor receptor-associated factor 6 (TRAF6) activates
extracellular signal-regulated kinase (ERK), MAPKs, and the p38
signaling pathway. Alternatively, TLR4 activates the MyD88-
independent pathway to upregulate NF-kB and suppress IkB
kinase epsilon (IKK). MyD88-dependent and MyD88-
independent pathways also contribute to host defense and engage
the immune response. In addition, TLRs activate IRFs, which
increase the transcription of interferon-a (IFN-a) and interferon-
b (IFN-b) (77).NLRP is the downstreammediator ofNF-kB,which
is interconnected with the inflammasomes. Inflammasomes are
receptors/sensors of the innate immune system that regulate
caspase-1 activation in response to host-derived proteins.
Accordingly, NLRP activates apoptosis cascades which
contributes to cancer chemoresistance. Overall, TLR/NF-kB/
NLRP play critical roles in the development of cancer
chemoresistance mediated by the attenuation of apoptosis,
inflammation, oxidative stress, and autophagy. As shown in
Figure 2, the immune system is also cross-talked with
dysregulated major signaling pathways of chemoresistance.
METHODOLOGY FOR LITERATURE
SEARCH ON THE EFFECT OF
PHYTOCHEMICALS ON CHEMOTHERAPY
AND IMMUNOTHERAPY RESISTANCE

We have performed a systematic review on vital mechanisms and
the therapeutic potential of plant secondary metabolites in
combating cancer chemoresistance utilizing the PRISMA
guideline. Scholarly electronic databases, including Scopus,
Science Direct, Cochrane, and PubMed, were used for the
literature search. The search included all English language
articles through October 30, 2021. The following keywords were
used for the search: chemoresistance [full text] OR (cancer OR
malignancy OR neoplasm OR melanoma OR leukemia OR
carcinoma) [title/abstract] AND (nuclear factor kappa* OR
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NF-kB OR toll-like* OR nod-like receptor* OR NLRP) AND
(chemotherapy OR chemoresistance OR immunotherapy OR
chemo-therapy OR chemo-resistance OR immune-therapy)
[title/abstract] AND (herb OR plant OR natural product OR
secondary metabolite OR polyphenol* OR terpen* OR alkaloid*
OR flavonoid* OR glucosinolate* OR coumarin*). Two
independent authors (S.F. and S.Z.M.) designed and applied the
search strategy, which was finalized by the senior author (A.B.).

Of the initial 1392 articles, 205 articles were excluded due to
duplicated results, 297 articles were excluded as they were review
articles, 691 articles were excluded according to their title/
abstract, 229 articles were excluded according to their full text
information, and 4 articles were omitted since they were not in
English. Ultimately, 267 articles were included in this systematic
review. Figure 3 depicts the PRISMA flowchart, which displays
the literature search process and selection of relevant studies.
MULTI-TARGETING PHYTOCHEMICALS
IN CANCER THERAPY

Plant secondary metabolites are potential modulators of multiple
dysregulated pathways due to their various pharmacological
properties, including antioxidant, anti-inflammatory, and
Frontiers in Oncology | www.frontiersin.org 7
anticancer effects (78, 79). An increasing number of pre-clinical
and clinical studies have shown that chemopreventive agents may
regulate the aforementioned dysregulated signaling pathways,
such as TLR, NF-kB, and NLRP, thereby preventing or treating
multiple cancer complications (16). Considering the critical role of
TLR/NF-kB/NLRP in the progression of chemotherapy and
immunotherapy resistance, discovering multi-targeting
therapeutic agents could assist in combating cancer
chemoresistance and immunoresistance. Several reports have
addressed the potential of phytochemicals in the attenuation of
TLR/NF-kB/NLRP. Therefore, phenolic compounds, alkaloids,
terpenes/terpenoids, and sulfur compounds have been proposed
as potential agents in the prevention and treatment of
chemoresistance and immunoresistance.
PHYTOCHEMICALS AUGMENT
CHEMOTHERAPY AND
IMMUNOTHERAPY THROUGH
TLR/NF-kB/NLRP PATHWAY

Phytochemicals may be used as alternative anticancer agents to
prevent chemoresistance. This is made possible by surpassing the
FIGURE 2 | Major dysregulated pathways in cancer chemoresistance. Atg, autophagy-related; CAT, catalase; COX-2, cyclooxygenase; ERK, extracellular-regulated
kinase; GSH, glutathione; HO-1, heme oxygenase 1; ILs, interleukins; iNOS, inducible nitric oxide synthase; JNK, c-Jun N-terminal kinase; LC3, microtubule-
associated protein 1A/1B-light chain 3; MAPK, mitogen-activated protein kinase; MMP, matrix-metalloproteinase; mTOR, mammalian target of rapamycin; NLRP,
nod-like receptor pyrin domain-containing; Nrf-2, nuclear factor-erythroid factor 2-related factor 2; PI3K, phosphoinositide 3-kinases; ROS, reactive oxygen species;
SOD, superoxide dismutase; TNF-a, tumor necrosis factor-a.
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resistance barrier in multiple pathways, leading to increased
effectiveness. Another benefit of utilizing phytochemicals is
that they lower the dose frequency and thus the toxicity of
chemotherapeutic agents. The principal mechanism of these
phytochemical effects is through the inhibit ion or
overexpression of certain proteins, enzymes, and other cancer
cell metabolites.

Phenolic Compounds
Natural polyphenols are an important class of plant secondary
metabolites that play an active role against different types of
stress. The considerable volume of reported data proposed that
diets rich in phenolic compounds could decrease the incidence of
several cancers. Curcumin (Figure 4) is a well-known
Frontiers in Oncology | www.frontiersin.org 8
phytochemical with several important biological activities,
including anticarcinogenic, neuroprotective, anti-inflammatory,
and anti-SARS-CoV-2 effects (6, 13, 80–85). Curcumin
suppressed the proliferation of MHCC97H liver cancer cells in
vitro by promoting the formation of intracellular ROS, increasing
apoptosis, and activating caspase-3, caspase-8, and TLR4/MyD-
88 signaling (86). Furthermore, suppression of HSP70/TLR4
signaling was reported as another anticancer mechanism of
curcumin in liver cancer (87). Curcumin also inhibited the
growth of liver cancer in vivo and in vitro via diminished
expression of inflammatory factors, such as cyclooxygenase-2
(COX-2), prostaglandin E2, IL-1b, and IL-6, as well as inhibition
of the TLR4/NF-kB signaling pathway. Moreover, curcumin
reduced VEGF, granulocyte-colony-stimulating factor (G-CSF),
FIGURE 3 | PRISMA flowchart on the process of literature search and selection of relevant studies.
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and granulocyte−macrophage colony-stimulating factor (GM-
CSF) (88). Additionally, curcumin decreased the migration and
proliferation of non-small-cell lung cancer cell (NSCLC) cells via
interfering with EGFR and TLR4/MyD88 pathways and
increasing cell cycle arrest in the G2/M phase (89). Treatment
Frontiers in Oncology | www.frontiersin.org 9
with curcumin has also decreased the viability of MCF-7 and
MDA-MB-231 breast cancer cells, activated TLR4/TRIF/IRF-3
signaling through the inhibition of IFN-a/b, and reduced the
expression of TLR4 and IRF-3 (90). In a similar study, curcumin
reduced cell proliferation, inhibited NF-kB, downregulated
FIGURE 4 | Chemical structures of selected phenolic compounds that modulate the TLR/NF-kB/NLRP signaling in cancer.
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cyclin D1, and modulated expression of TLR3 in head and neck
squamous cell carcinomas (HNSCC) (91). Other reported
antitumor mechanisms of curcumin include inhibition of NF-
kB, cell cycle arrest, upregulation of E-cadherin, and modulation
of Wnt/b-catenin signaling (92, 93). Deng et al. investigated the
synergistic inflammatory and immunomodulatory activity of
curcumin in combination with total ginsenosides for the
treatment of HepG2 liver cancer cells in a BALB/c mice
model. The results demonstrated that combination treatment
inhibited the growth of liver cancer, reduced the expression
of PD-L1, and suppressed the TLR4/NF-kB and NF-kB/
matrix metalloproteinase-9 (MMP-9) signaling pathways (94).
Curcumin exerts antineoplastic effects on various in vitro and in
vivo cancer models, including lung (95), colorectal (96–98),
bladder (99, 100), pancreatic (101, 102), and breast (103)
cancers via interfering with the expression of TNF-a, HIF-1a,
COX-2, VEGF, NF-kB, Axin2, IL-10, IL-8, and IL-6 and
participating in the PI3K/Akt/mTOR/NF-kB/Wnt pathway.
Additionally, curcumin promoted apoptosis, inhibited NF-kB,
MMP-9, MMP-2, and MAPK, and activated sirtuin 1 (SIRT1) in
HNSCC, osteoclastoma, and monocytic leukemia SHI-1 cancer
cells (104–107). The known plant flavonoid quercetin is widely
distributed in many vegetables, seeds, leaves, and grains and
shows promising biological properties. Quercetin (Figure 4) and
curcumin act synergistically together to promote apoptosis in
K562 leukemia cells by interfering with the p53, TGF-a, and NF-
kB pathways (108).

Resveratrol belongs to the stilbenoid group of polyphenols
that exhibit high antioxidant and antitumor potential, which can
be found in more than 70 plant species, particularly in grapes’
seeds and skin. Resveratrol (Figure 4) and quercetin potentiated
the antineoplastic activity of curcumin in myeloid,
adenocarcinoma, and HNSCC cells (109–111). Resveratrol
reduced dimethylbenz(a)anthracene (DMBA) induced
cutaneous carcinogenesis both in vitro and in vivo via
inhibition of angiogenesis. It was reported that TLR4 is a
significant mediator involved in the chemoprevention achieved
by resveratrol (112). Moreover, resveratrol diminished the
inflammatory responses induced by lipopolysaccharide in
SW480 and Caco-2 colon cancer cell lines by reducing the
activation, expression, and production of inducible NO
synthase (iNOS), mRNA, TLR4, and NF-kB (113).
Furthermore, resveratrol suppressed the activity of COX,
AMP-activated protein kinase (AMPK), PI3K/Akt/NF-kB
pathway, DNA methyltransferase, and CYP1A1 in acute
myeloid leukemia (AML), colon, and pancreatic cancer cells
(114–116). In similar studies, resveratrol exerted substantial
antineoplastic activity against multiple cancer cell lines,
including melanoma (117), lung (118, 119), glioblastoma (120),
head, neck (109), hepatocellular (121), colorectal (122), and
breast (123) cancer cells by interfering with dicer-like 1
(DCL1)/translationally controlled tumor protein (TCTP), Akt/
NF-kB, retinoblastoma protein (pRB), VEGF, AMPK, and
p21Waf1/Cip1 signaling pathways. Luteoloside (known as
Cynaroside), 7-O-glucoside of luteolin, is a flavone agent that
inhibited metastasis and proliferation of SNU-449, Hep3B, and
Frontiers in Oncology | www.frontiersin.org 10
mouse lung cancer cells through inhibition of caspase-1, NLRP3,
and IL-1b (124).

Gallic acid is a natural antioxidant found in various fruits and
tea leaves that belongs to the polyphenolic class of secondary
metabolites. Various pharmacological effects of gallic acid
include antioxidant, anti-inflammatory, and antineoplastic
activities. There have been multiple studies which report that
gallic acid (Figure 4) inhibited the progression of T24 and AGS
gastric cancer cells via suppression of PI3K/Akt/NF-kB signaling
and promotion of mitochondrial dysfunction (125, 126).
Furthermore, quercetin inhibited the invasion and migration of
Caco-2 cells via regulation of the TLR4/NF-kB pathway and
decreasing MMP-2 and MMP-9 (127). In a similar study,
inhibition of NF-kB, p53 induction, apoptosis, and cell cycle
arrest were reported as the primary anticancer mechanisms of
quercetin against the HeLa cervical cancer cell line (128).
Additionally, quercetin showed antitumor activity against lung
(A549 and H460) (129, 130), prostate (PC3 and LNCaP) (131),
breast (MCF-7) (132), and oral SCC (133) cancer cells via
induction of apoptosis and downregulation of IL-6/STAT-3
and NF-kB. The results demonstrated that combination of
quercetin with chrysin suppressed the migration and invasion
of nickel via downregulation of TLR4/NF-kB signaling in human
lung cancer cells in vitro (134). Octyl gallate exerted significant
efficacy against heat shock protein 90a (HSP90a) levels,
eHSP90a–TLR4 ligation, M2-macrophages, and tumor growth
in a pancreatic ductal adenocarcinoma mouse model (135).

Moreover, several studies have been performed to investigate
the various biological effects of epigallocatechin 3-gallate
(EGCG), a powerful polyphenolic isolated from green tea.
EGCG showed significant anti-inflammatory, antioxidant,
anticancer, and neuroprotective potential in different studies.
Treatment with EGCG (Figure 4) downregulated the expression
of NLRP1, caspase-1, and IL-1b in the melanoma cell lines
HS294T and 1205Lu (136). The main antineoplastic
mechanisms of EGCG includes inhibition of TNF-a and tissue
factor expression (137), activation of forkhead box O3 (138),
downregulation of Her-2/Neu signaling (139), decreased
expression of IL-1RI (140), and modulation of MMP-2 activity
(141). Furthermore, EGCG induced apoptosis and suppressed
cancer cell proliferation in nasopharyngeal (142), bladder (143),
hepatocellular (144), breast (145), and colon (146) cancers.

Similarly, apigenin is another polyphenolic substance with
significant anticancer potential via modulating different
signaling pathways in vitro and in vivo. Treatment with
apigenin induced apoptosis, suppressed glycogen synthase
kinase-3 (GSK-3)/NF-kB, and downregulated Bcl-xL, CCL2,
CXCL-8, IL1A, Bcl-2, and VEGF in pancreatic (PANC-1 and
BxPC-3) (147), prostate (PC-3) (148, 149), and breast (MDA-
MB-231) cancer cells (150), as well as the athymic nu/nu nude
(151) and TRAMP mice (152) cancer models. In addition to
apigenin, luteolin (Figure 4) has significant anticancer
properties. Luteolin interfered with the PI3K/Akt/NF-kB/Snail
and MAPK pathways in the gastric adenocarcinoma cell line
CRL-1739, the lung cancer cell line A549, and the AML cell line
THP-1 (153–155). Additionally, luteolin 8-C-b-fucopyranoside
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suppressed secretion of MMP-9, IL-8, ERK/NF-kB, and ERK/
AP-1 signaling in MCF-7 cancer cells in vitro (156). The in silico
evaluations also showed that luteolin and other plant-derived
secondary metabolites (e.g., myricetin, quercetin, apigenin, and
baicalein) displayed anticancer properties via the estrogen
receptor-a (157).

Isorhamnetin (Figure 4) is another polyphenolic
compound that induced apoptosis and inhibited proliferation
of lung (158) and breast (159) cancer cells by interfering with IL-
13, NF-kB, MAPK, and Akt signaling. Similarly, wogonin
(Figure 4) promoted apoptosis and suppressed the invasion
and proliferation of chronic lymphocytic leukemia and the
liver cancer cell lines Bel7402 and HepG2 by interfering with
ERK/AKT, NF-kB/Bcl−2, and EGFR signaling pathways (160,
161). Another polyphenolic structure, xanthohumol (Figure 4),
appears to have anticancer properties via significantly
suppressing the angiogenesis, proliferation, and production of
inflammatory mediators in breast cancer xenografts (162).
Xanthohumol also reduced the expression of CXCR4 and
inhibited cancer cel l invasion (163) . Similar ly , p-
hydroxycinnamic acid facilitated cell cycle arrest and
suppressed the growth and migration of MDA-MB-231 cells
via downregulation of NF-kB (164). The flavonoid wogonoside
demonstrated anticancer effects in vitro against MCF7 and
MDA-MB-231 cancer cells through inhibition of migration,
invasion, and TRAF-2/TRAF-4 expression (165). In similar
studies, inhibiting COX-2, EGFR, NF-kB, and the ERK
pathway is the main anticancer mechanism of scutellarein in
A549 cells (166). Likewise, hydroxysafflor yellow A (167),
rosmarinic acid (168, 169), and magnolol (170) diminished the
progression of hepatocellular carcinoma in vitro and in vivo by
suppressing ERK/MAPK, ERK/NF-kB, and NF-kB signaling.
Lung cancer cells treated with hexamethoxy flavanone-o-
[rhamnopyranosyl-(1!4)-rhamnopyranoside, a flavonoid
glycoside compound isolated from Murraya paniculata (171),
hesperetin (172), honokiol (Figure 4) (173, 174), and inotilone
(174) had higher levels of apoptosis-related mediators and
attenuated activity of EGFR, PI3K/Akt/MAPK, and STAT3/
NF-kB/COX-2 signaling pathways. Investigation into the
effects of eupatilin (175, 176), polysaccharide krestin (177),
tilianin (178), silibinin (179–181), chrysin (Figure 4) (182–
186), (6)-gingerol (Figure 4) (187), and butein (Figure 4)
(188) against gastric, breast, ovarian, pharyngeal squamous,
prostate, renal, myeloid leukemia, and T cell leukemia/
lymphoma cancer cells in vitro and in vivo demonstrated that
these polyphenolics exert significant effects via attenuation of
angiogenesis, Akt, tumor growth, AP-1, NF-kB, and TLR4.

Fisetin (Figure 4) (189–194), gallotannin (195), astragalin
(196–198), ellagic acid (Figure 4) (199–201), morin (Figure 4)
(202, 203), flavopiridol (Figure 4) (204), puerarin (Figure 4)
(205), icariin (206), acteoside (207), and acacetin (208, 209) are
some of the other polyphenolic agents that inhibited the
proliferation and invasion of breast, prostate, hepatocellular,
myeloma, and colon cancer cells via increased apoptosis and
inhibition of TNF-a, iNOS, NF-kB, COX-2, JAK/STAT3, Akt,
and IL-6 mediators and signaling pathways.
Frontiers in Oncology | www.frontiersin.org 11
In further studies, eriodictyol (210, 211), calycosin (212),
cudraflavone B (213), protocatechualdehyde (214), and
naringin (215) exerted significant antitumor effects against
several cancers including breast (MDA-MB-231), glioblastoma
(A172, CHG-5, and U87 MG), ovarian (SKOV3), and liver
(HepG2) cancer cells by promoting senescence, apoptosis, and
interfering with GSK-3b, TGF-b1, SMAD2/3, SLUG, vimentin,
b-catenin, NF-kB, COX-2, and cyclin D1, amongst other
enzymes and signaling pathways.

In summary, polyphenols play a significant role in the
prevention and treatment of cancer. Curcumin, apigenin,
quercetin, and resveratrol are the most important polyphenols
with reported information on their mechanisms of action and
clinical trials. In several reported studies, polyphenols can interfere
with a variety of anticancer pathways, including TLR/NF-kB/
NLRP and interconnected pathways. Consequently, polyphenols
could be considered promising treatment options in conjunction
with other cancer treatment strategies. Table 1 provides the
various anticancer phenolic compounds that interfere with the
TLR/NF-kB/NLRP pathway to combat chemoresistance.

Terpenes and Terpenoids
Terpenes and terpenoids represent large classes of natural products
isolated frommultiple vegetative sources. These phytochemicals exert
several therapeutic effects, including anticancer, cardioprotective,
neuroprotective, and hepatoprotective activities. Each terpene/
terpenoid compound is composed of several isoprenes (a five-
carbon unit) that are assembled in thousands of ways. Zerumbone
(Figure 5), an important sesquiterpene isolated from ginger,
suppressed lung and colon tumors in mice via induction of
apoptosis and inhibition of proliferation, heme oxygenase 1 (HO-
1), and NF-kB expression (216). Andrographolide (Figure 5) is a
bioactive phytochemical obtained from Andrographis paniculata that
belongs to the diterpenoid compounds. Likewise, andrographolide
showed antitumor activity against B16 melanoma cells, C57BL/6J
mice (217), and RIP1-Tag2 mice (218) via suppression of TLR4/NF-
kB signaling, thereby reducing the expression of CXCR4 and Bcl-6.
Additionally, treatment with andrographolide inhibited the
proliferation of SW620 colon cancer cells in vitro via interfering
with the TLR4/NF-kB/MMP-9 signaling pathway (219).

Carnosic acid (Figure 5), one of the principal phenolic
diterpenes isolated from rosmarinus officinalis, possesses
antimicrobial, antioxidative, and anti-carcinogenic properties.
Carnosic acid nanoparticles induced apoptosis in Bel7402 and
MHCC97-H hepatic carcinoma cell lines in vitro via suppression
of NF-kB, caspase-3, TLR4, MyD88, TRAF-6, interleukin 1
receptor associated kinase 1 (IRAK-1), and IRAK-4 (220).
Similarly, triptolide (Figure 5) is an active natural phytochemical
isolated from Tripterygium wilfordii Hook F that exhibits a wide
range of pharmacological effects, including anti-diabetic,
neuroprotective, anti-inflammatory, and antitumor activities.
Triptolide is a well-known diterpenoid that blocks the NF-kB
survival pathways and activates ERK1/2 and p38a in PC3 cancer
cells (221). Additionally, triptolide decreased the expression of
MMP-9, AP-1, and NF-kB signaling pathways in MCF-7 cells
(222) and attenuated the angiogenesis and invasion of thyroid
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TABLE 1 | Anticancer phenolic compounds interfering with the TLR/NF-kB/NLRP pathway and cross-talked mediators against chemoresistance.

Compound Types
of study

Cell line(s)/tumor model(s) Mechanisms of action References

Curcumin In vitro Hepatocellular carcinoma cells (MHCC97H) ↑ROS/TLR4/caspase pathway; ↓cell proliferation;
↑apoptosis; ↑ROS formation; ↑caspase-8; ↑caspase-3

(86)

In vitro Hepatocellular carcinoma cells (HepG2) ↓TLR4; ↓proliferation; ↓invasion; ⟂ S phase cell cycle;
↑apoptosis; ↓HSP70; ↓EHSP70

(87)

In vitro
and in
vivo

Human liver cancer cells (HepG2, MHCC−97H, and huh−7);
Xenograft model mice

↓TLR4/NF−kB; ↓VEGF; ↓COX-2; ↓PGE2; ↓IL−1b; ↓IL−6 (88)

In vitro Lung adenocarcinoma cells (H226, NSCLC, NCI−A549, NCI
−H226)

↓TLR4/MyD88; ↓migration; ↓proliferation; ↓EGFR; ⟂G2/
M phase cell cycle

(89)

In vitro Breast cancer cells (MDA-MB-231, MCF-7) ↑TLR4/TRIF/IRF-3; ↓IFN-a/b; ↓TLR4; ↓IRF-3 (90)
In vitro Head and neck squamous cell carcinomas (HNSCC) ↓NF-kB; ↓TLR3; ↓proliferation; ↓cyclin D1 (91)
In vitro Nasopharyngeal carcinoma cells (HK1 and HONE1) ↓NF-kB; ↑E-Cadherin (93)
In vitro Human mantle cell lymphoma ↓NF-kB; ⟂G1/S phases cell cycle; ↓IKK;

↓phosphorylation of IkBa and p65
(92)

In vitro
and in
vivo

Human liver cancer cell (HepG2); Male nude mice models of
liver cancer

↓TLR4/NF-kB; ↓Tregs; ↓MMP-9; ↓PD-L1; ↓NF-kB/
MMP-9

(94)

In vitro
and in
vivo

Lung cancer cell (A549); BALB/c nude mice ↓NF-kB; ↓tumor growth; ↓Notch-1; ↓HIF-1; ↓VEGF (95)

In vivo C57BL/6 male mice ↓Wnt/b−catenin; ↓Axin2; ↓tumor number; ↓Tumor size;
↓b−catenin; ↓cell proliferation

(97)

In vivo A/J mice model ↓NF-kB; ↓Cell proliferation; ↓PI3K/Akt/mTOR; ↓AMPK (96)
In vitro Colorectal carcinoma cell (HCT−116) ↓NF-kB (98)
In vitro Albino rats’ model of bladder cancer ↓NF-kB; ↓Bcl-2; ↓IL-6; ↓P65 (99)
In vitro
and in
vivo

Human bladder cancer cell (T24, UMUC3); Male nude mice ↓NF-kB p65; ↓IKKk/NF-kB/COX-2; ↓COX-2 expression;
⟂ G2/M phase cell cycle; ↓CDK1; ↓cyclin A; ↓cyclin B;
↓cyclin D1;

(100)

Clinical
trials

Patients with advanced pancreatic cancer ↓NF-kB; ↓COX-2; ↓pSTAT 3 (102)

In vitro Pancreatic cancer cells (Su86.86, PL8, Panc1, BxPC3,
MiaPaca2, E3LZ10.7, and Capan1, PL5)

↓NF-kB; ↑apoptosis; ↓IL-6; ↓IL-8; ↓TNF-a (101)

In vitro Breast cancer cell (MCF-7) ↓NF-kB; ↓MMP; ↓AP-1; ↓PKCa; ↓MAPK (103)
In vitro HNSCC cell (FaDu and Cal27) ↓NF-kB; ↑caspase-9; ↑caspase-8; ↑ATM/CHK2 (105)
In vitro Monocytic leukemia cell (SHI-1) ↓NF-kB; ↓Bcl-2; ↓ERK; ↑p38 MAPK; ↑JNK; ↑caspase-

3; ↓MMP-2; ↓MMP-9
(106)

In vitro
and in
vivo

SCID mice; Acute monocytic leukemia SHI-1 cells ↓NF-kB and ERK; ↓PCNA; ↑cleaved caspase-3; ↑p38
and JNK; ↓MMP-2 and MMP-9

(107)

In vitro Human osteoclastoma cell (GCT cells) ↑Apoptosis; ↓NF-kB; ↑caspase-3; ↓MMP-9; ↑JNK (104)
Curcumin & Quercetin In vitro Chronic myeloid leukemia (CML) (K562) ↓NF-kB; ↑apoptosis; ↓IFN-c; ↓AKT1; ↓CDKN1B; ↑p21

Waf1/cip1; ↑FasL; ↑Fas
(108)

Curcumin & Quercetin In vitro CML cell (K562/CCL-243) ↑BTG2; ↑CDKN1A; ↑FAS; ↓CDKN1B; ↓AKT1; ↓IFN-c;
↑p21 Waf1/cip1

(111)

Curcumin & Quercetin In vitro Human melanoma cell (A375) ↓Cell proliferation; ↓Wnt/b-catenin; ↓DVL2; ↓cyclin D1;
↓COX2; ↓Axin2; ↓BCL2; ↑caspase 3/7; ↑PARP cleavage

(110)

Curcumin &
Resveratrol

In vitro
and in
vivo

HNSCC; BALB/c mice ↓NF-kB; ↑PARP-1 cleavage; ↑Bax/Bcl-2 ratio; ↓ERK1;
↓ERK2 phosphorylation

(109)

Resveratrol In vivo Female C3H/HeN mice ↓Angiogenesis; ↓MMP-2; ↓MMP-9; ↑IL-12 (112)
In vitro Human colon adenocarcinoma cells (SW480, Caco-2) ↓NF-kB; ↓TLR4 expression; ↓NO; ↓iNOS; (113)
In vitro Colon cancer cell (HCT-116 and SW-480) ↓NF-kB; ↓CYP1A1 activity; ↓DNA methyltransferase;

↓COX; ↓cytokine production; ↓AMPK
(116)

In vitro Pancreatic cancer cell (BxPC-3 and Panc-1) ↓PI3K/Akt/NF-kB; ↓cell proliferation; ↓cell migration;
↓cell invasion; ↓p-Akt; ↓p-NF-kB

(115)

In vitro Acute myeloid leukemia cell (OCI/AML3, OCIM2) ↓NF-kB; ↓cell proliferation; ⟂S phase cell cycle;
↑apoptosis

(114)

In vitro Melanoma cell line (LU1205, LU1205, 1205lu, FEMX,
WM35, WM793, HHMSX, OM431, WM9, LOX)

↓NF-kB; ↓STAT3; ↓cFLIP; ↓Bcl-XL (117)

In vitro Human lung carcinoma (A549, HCC-15) ↓NF-kB; ↓p-Akt; ↓Bcl-2; ↓Bcl-XL (119)
In vitro Human lung carcinoma (A549) ↓NF-kB; ↓pRB; ↓p21Waf1/Cip1; ↑Apoptosis; (118)
In vitro Glioblastoma cell (T98G) ↓NF-kB; ↓MGMT (120)

(Continued)
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TABLE 1 | Continued

Compound Types
of study

Cell line(s)/tumor model(s) Mechanisms of action References

In vitro
and in
vivo

BALB/c mice; HNSCC (CAL-27, SCC-15) ↓NF-kB; ↑PARP-1 cleavage; ↑Bax/Bcl-2 ratio; ↓ERK1;
↓ERK2 phosphorylation

(109)

In vitro
and in
vivo

Hepatocellular carcinoma cells HepG2 cells; Xenograft
models

↓NF-kB; ↓VEGF (121)

In vitro Colorectal cancer cell (HCT116/L-OHP) ↓NF-kB; ↓cAMP; ↓MDR1; ↓NF-kB; ↓p-IkBa; ↓MDR1;
↑pAMPK

(122)

In vitro Human liver cancer cell (HepG2); Breast cancer cell (MDA-
MB-231)

↓JNK/NF-kB; ↑DLC1 and ↓TCTP; ↓N-WASP; ↑Cdc42 (123)

Luteoloside In vitro
and in
vivo

Mouse lung metastasis model; Hepatocellular carcinoma
cell (SNU-449, Hep3B)

↓NLRP3; ↓cleavage of caspase-1; ↓IL-1b (124)

Gallic Acid In vitro Human bladder cancer cells (T24) ↓PI3K/Akt/NF-kB; ↑apoptosis; ↑cleaved caspase-3;
↑Bax, P53; ↑cyt c; ↓Bcl-2; ↓p-PI3K; ↓pAkt; ↓p-IkBa; ↓p-
IKKa; ↓p-NF-kB p65

(126)

In vitro Human gastric cancer cell (AGS) ↓NF-kB; ↓MMP-2/9 (125)
Quercetin In vitro Human colon adenocarcinoma cell (Caco-2) ↓TLR4/NF-kB; ↓migration; ↓Invasion; ↓MMP−2; ↓MMP

−9
(127)

In vitro Human cervical cancer cell (HeLa) ↓NF-kB; ↑p53; ↑apoptosis; ⟂ G2/M cell cycle arrest;
↑Bcl-2; ↑cyt c; ↑Apaf-1

(128)

In vitro Lung cancer cell (A549) ↓NF-kB; ↓IL-6/STAT-3; ↓IL-6; ↑Apoptosis (130)
In vitro Lung cancer cells (H460) ↓NF-kB; ↑apoptosis; ↑TRAILR; ↑caspase-10; ↑DFF45;

↑TNFR 1; ↑FAS; ↑DNA damage
(129)

In vitro Breast cancer cells (MDA-MB-231, MCF-7) ↑Apoptosis; ↓Hsp27, Hsp70 and Hsp90; (132)
In vitro Oral squamous cell carcinoma (OSCC) ↓NF-kB; ↓tumor incidence; ↑apoptosis; ↓Bcl-2; ↓Bax (133)
In vitro Prostate cancer cells (PC3, LNCaP) ↓NF-kB; ↓PI3K/Akt; ↓MAPK/ERK; ↑apoptosis; ⟂G1

phase cell cycle arrest; ↓P38; ↓ABCG2
(131)

Quercetin and chrysin In vitro Human lung adenocarcinoma cell (A549) ↓TLR4/NF-kB (134)
Octyl Gallate In vitro

and in
vivo

Adenocarcinoma cell (AsPC-1, Panc 02); Monocytic
leukemia cell (THP-1); Male C57BL/6 mice

↓EHSP90a–TLR4 ligation; ↓HSP90a level; ↓M2-
macrophages; ↓tumor growth

(135)

EGCG In vitro Human melanoma cell (1205Lu and HS294T) ↓NLRP1; ↓caspase-1; ↓IL-1b (136)
In vitro Monocytic leukemia cell (THP-1) ↓TLR4; ↓NF-kB; ↓tissue factor; ↓TNF-a; ↓p-p38;

↓ERK1/2; ↓JNK
(137)

In vitro Breast cancer cell (NF639) ↓NF-kB; ↓colony growth; ↓Cell invasion; ↓protein kinase
CK2

(138)

In vitro Breast cancer cell (SMF, NF639) ↓NF-kB; ↓Her-2/Neu signaling; ↓Cell growth; ↓PI3K;
↓Akt; ↓cell proliferation

(139)

In vitro Pancreatic adenocarcinoma cell (Colo357) ↓NF-kB; ↓IL-1RI; ↑apoptosis (140)
In vitro
and in
vivo

Breast cancer cell (MCF-7) ↓NF-kB; ↓MMP-2; ↓FAK; ↓MT1-MMP; ↓VEGF (141)

In vitro
and in
vivo

Bladder cancer cells (SW780); Xenograft mice ↓NF-kB; ↓MMP-9 (143)

In vitro
and in
vivo

Nude mice; Hepatocellular carcinoma cells (HepG2, Huh-7,
PLC/PRF/5)

↓NF-kB; ↓Bcl-2; ↓Bcl-XL (144)

In vitro
and in
vivo

Breast cancer cell (4T1); BALB/c mice ↓MDSCs; ↓Arg-1/iNOS/Nox2/NF-kB/STAT3 (145)

In vitro Human colorectal cancer cells (RKO, HT-29, HCT-116) ↑NF-kB-p65; ⟂ G2/M and G1 phases cell cycle; ↑p21;
↑p53; ↓Survivin

(146)

Apigenin In vitro Human pancreatic cancer cell (PANC-1, BxPC-3) ↑Apoptosis; ↓GSK-3/NF-kB; ⟂G2/M phase cell cycle (147)
In vitro Cancer stem cells; Prostate cancer cell (PC3) ↓PI3K/Akt/NF-kB; ↑p21; ↑p27; ↑caspases-8, caspase-

3; ↑TNF-a; ↑Bax; ↑cyt c; ↓MMP-2, -9; p105/p50; ↓PI3K
(149)

In vitro Prostate carcinoma cell (PC-3) ↓NF-kB; ↑apoptosis (148)
In vitro Breast cancer cell (MDA-MB-231) ↓CCL2; ↓CXCL-8; ↓IL1A (150)
In vivo Xenograft athymic nu/nu nude mice ↓Cell proliferation; ↓Her2/neu; ↓VEGF (151)
In vivo TRAMP mice ↓NF-kB; ↓tumor volumes; ↓Phosphorylation IkBa; ↓IKK;

↓Bcl2; ↓Bcl-XL; ↓cyclin D1; ↓COX-2; ↓VEGF
(152)
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TABLE 1 | Continued

Compound Types
of study

Cell line(s)/tumor model(s) Mechanisms of action References

Luteolin In vitro Lung adenocarcinoma cell (A549) ↓NF-kB–Snail; ↓E-cadherin; ↓PI3K/Akt/IkBa– (153)
In vitro Monocytic leukemia cell (THP-1) ↓NF-kB; ↓MAPK; ↑HO-1; ↑pAkt; ↓IL-6; ↓IL-8; ↓SICAM-

1; ↓MCP-1
(154)

In vitro Gastric cancer cell (CRL−1739) ↑NF−kB; ↑IL−8; ↑IL−10 (155)
Luteolin 8-C-b-
fucopyranoside

In vitro Breast cancer cell (MCF7) ↓ERK/NF-kB; ↓MMP-9; ↓IL-8; ↓ERK/AP-1 (156)

Isorhamnetin In vitro Lung adenocarcinoma cell (A549) ↓NF-kBp65; ↑apoptosis (158)
In vitro Breast cancer cell (MCF7 or MDA-MB-468) ↓Cell proliferation; ↑Apoptosis; ↓Akt/mTOR; ↓MEK/ERK

phosphorylation
(159)

Wogonin In vitro
and in
vivo

C57BL/6 mice; Lymphocytic leukemia cell (TCL1) ↓NF-kB (161)

In vitro Human hepatocellular cancer cells (Bel7402, HepG2) ↓NF−kB/Bcl−2; ↓cell proliferation; ↓cell invasion;
↑Apoptosis; ↓EGFR; ↓ERK/AKT; ↓cyclin D1

(160)

Xanthohumol In vitro
and in
vivo

Breast cancer cell (MCF-7); Xenografts nude mice ↓NF-kB; ↓angiogenesis; ↓Cell proliferation (162)

In vitro Breast cancer cells (MDA-MB-231, MCF-7); Colorectal
cancer cells (HCT8, HCT116); Pancreatic carcinoma cell
(Panc-1)

↓CXCR4; ↓cell invasion (163)

P-hydroxycinnamic
acid

In vitro Breast cancer cells (MDA-MB-231) ↓NF-kB; ⟂G1 phase cell cycle; ⟂G2/M phase cell cycle (164)

Wogonoside In vitro Breast cancer cells (MDA-MB-231) ↓NF-kB; ↓cell invasion; ↓cell migration; ↓TNF-a; ↓TRAF-
2; ↓TRAF-4; ↓Twist1; ↓MMP-9; ↓MMP-2; ↓vimentin

(165)

Scutellarein In vitro Lung adenocarcinoma cell (A549) ↓NF-kB; ↓COX-2; ↓EGFR; ↓ERK (166)
Hydroxysafflor yellow
A

In vitro
and in
vivo

Murine hepatoma cell (H22); Male Kunming mice ↓NF-kB; ↓Angiogenesis; ↓ERK/MAPK; ↓cyclinD1; ↓c-
myc; ↓c-Fos

(167)

Rosmarinic acid In vitro
and in
vivo

Male Kunming mice; Hepatocellular carcinoma cell (H22) ↓Tumor growth; ↓IL-6; ↓IL-10; ↓STAT3; ↑Bax;
↑caspase-3; ↓Bcl-2

(169)

In vitro Human leukemia cell (U937) ↓NF-kB (168)
Magnolol In vivo BALB/cAnN.Cg-Foxn1nu/CrlNarl mice ↓ERK/NF-kB; ↑apoptosis; ↓tumor progression; ↓ MMP-

9; ↓ VEGF; ↓ XIAP; ↓cyclin D1
(170)

HMFRR In vitro Lung adenocarcinoma cell (A549, PC9) ↓STAT3/NF-kB/COX-2; ↓ EGFR/PI3K/Akt; ↓EGFR (171)
Hesperetin In vivo Swiss albino mice ↓NF-kB; ↑TNF-a; ↓PCNA; ↓CYP1A1 (172)
Honokiol In vitro

and in
vivo

Orthotopic mouse model; Prostate cancer cell (MiaPaCa,
Colo-357)

↓NF-kB; ↓sonic hedgehog; ↓CXCR4 (173)

In vitro Lung adenocarcinoma cell (A549, H460) ↓C-FLIP; ↓cell migration (174)
Inotilone In vitro

and in
vivo

Lung adenocarcinoma cell (A549); Mouse Lewis lung
carcinoma cell lines; C57BL/6 male mice

↓NF-kB; ↓PI3K/Akt/MAPK; ↓MMP-2/9; ↓IL-8; ↓NO;
↓TNF-a; ↓cell migration; ↓PI3K; ↓PAkt

(174)

Eupatilin In vitro Gastric cancer cell (MKN-1) ↓NF-kB; ↓tumor invasion; ↑Caspase-3; ↓MMPs (175)
In vitro Prostate cancer cell (PC3, LNCaP) ↓PTEN and NF-kB; ↑p53; ↑p21; ↑p27; ⟂G1 phases cell

cycle arrest
(176)

Polysaccharide krestin In vivo Tumor-bearing neu transgenic mice ↓Cell growth; ↑T cell; ↑NK cell (177)
Tilianin In vitro Pharyngeal squamous carcinoma cells (FaDu) ↑TLR4/p38/JNK/NF-kB; ↑Apoptosis; ↑TLR4; ↓Bcl-2;

↓Bcl-XL; ↑Bad; ↑Bax; ↑PARP; ↑cyt c; ↑caspase-3
(178)

Silibinin In vitro
and in
vivo

Prostate cancer cells (PC3, WPE-1 NA-22, RWPE-1, WPE-
1 NB-14); C57Bl/6 mice

↓NF-kB; ↓MCP-1; ↓CAF; ↓AP-1 (181)

In vitro Prostate carcinoma cell (DU145) ↓NF-kB (179)
In vitro Hepatocellular cancer cells (HepG2); Prostate cancer cells

(PC-3)
↓NF-kB; ↓Phospholipase A2 (180)

Chrysin In vitro
and in
vivo

Renal cell carcinoma (RCC); Wistar rats ↓NF-kB; ↓COX-2; ↓iNOS (182)

In vivo Swiss albino mice ↓NF-kB; ↓PCNA, ↓COX-2 (185)
In vitro Lung adenocarcinoma cell (A549); Human cervical cancer

cell (HeLa)
↓NF-kB; ↓Mcl-1; ↓pSTAT3; ↓TRAIL; ↑glutathione
depletion; ↓STAT3

(183)

In vivo Wistar rats ↓NF-kB; ↓PCNA; ↓CAT; ↓GPX; ↓SOD (184)

(Continued)
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carcinoma cells in vitro and in vivo (223–226). Ursolic acid
(Figure 5) exerts anti-inflammatory activity via suppression of
the TLR4-MyD88 pathway and decreased production of
inflammatory factors, including IL-1b, TNF-a, and IL-6 in
abelson murine leukemia macrophage (RAW 264.7) cells (227).
In a similar study, ursolic acid demonstrated significant in vitro and
in vivo anticancer activity against DU145 and LNCaP prostate
adenocarcinoma cells, as well as a mouse model via diminished
CXCR4/CXCL-12 signaling axis and reduced activation of NF-kB
(228). Furthermore, ursolic acid induced apoptosis and inhibited
growth in several in vitro pancreatic and colon cancer models by
Frontiers in Oncology | www.frontiersin.org 15
interfering with PI3K/Akt/NF-kB, STAT, GSK, TRAIL, and JNK
pathways (229, 230). In addition to ursolic acid, heteronemin
(Figure 5) showed significant antiproliferative effects against
AML cells via targeting NF-kB, Ras, MAPK, AP-1, and c-myc
(231). Soyasaponins, bioactive phytochemicals found in a
multitude of legumes, downregulated TLR4/MyD88 signaling
and decreased TNF-a, IL-6, COX-2, NO, IL-1b, and iNOS in
inflammatory macrophages (232). Oleanolic acid (Figure 5),
another triterpenoid structure, and its synthetic derivative
SZC014 showed considerable antitumor effects against the
hepatocellular cancer cell lines HepG2, interfering with NF-kB
TABLE 1 | Continued

Compound Types
of study

Cell line(s)/tumor model(s) Mechanisms of action References

In vitro
and in
vivo

Cervical cancer cell (HeLa); BALB/c-nu mice ↓NF-kB/Twist Axis (186)

(6)-Gingerol In vitro
and in
vivo

Myeloid leukemia cells (U937 and K562); Xenograft mice ↓NF-kB; ↑ROS (187)

Butein In vitro
and in
vivo

T cell leukemia/lymphoma (MT-4, HUT-102); Mice harboring
ATLL xenograft

↓NF-kB; ⟂G1 cell cycle arrest; ↓Tumor growth; ↓AP-1;
↓Akt

(188)

Fisetin In vitro Colorectal cancer cell (HCT116, HT29) ↓Wnt/EGFR/NF-kB; ↑apoptosis; ↓COX2; (190)
In vitro Prostate cancer cell (PC-3) ↓PI3K/Akt and JNK; ↓MMP-2/9; ↓MMP-2 and MMP-9 (191)
In vitro Laryngeal carcinoma cell (TU212) Regulation of Akt/NF-kB/mTOR and ERK1/2 (194)
In vitro Pancreatic cancer cell (AsPC-1) ↓NF-kB; ↓DR3; ↓p-NF-kB/p65 (189)
In vivo Autochthonous Wistar rats ↓NF-kB; apoptosis induction of p53 (192)

Gallotannin In vitro
and in
vivo

Colorectal cancer cell (HCT116, HT29); Xenografts in NOD/
SCID mice

↓NF-kB; ↓IL-6; ↓TNFa; ↓IL-1a; ↓VEGFA (195)

Astragalin In vitro
and in
vivo

Colorectal cancer cell (HCT116); Xenograft in nude mice ↓NF-kB; ↓cell proliferation; ↓cell migration; ⟂G0/G1
phase cell cycle; ↑apoptosis; ↓Bax; ↓Bcl-2; ↓P53;
↓caspase-3,6,7,8,9

(198)

In vitro Lung cancer cell (A549) ↓NF-kB; ↓ERK-1/2; ↓Akt (197)
In vitro
and in
vivo

Stomach cancer cell (MKN45); C57/BL female mouse ↑TLR4 (196)

Ellagic acid In vivo Wistar albino rats ↓NF-kB; ↓TNF-a; ↓IL-6; ↓COX-2; ↓iNOS (199)
In vitro
and in
vivo

Pancreatic carcinoma (PANC-1); Xenografted mice ↓NF-kB; ⟂G1 phase cell cycle; ↓COX-2; ↑E-cadherin
↓Vimentin

(201)

Morin In vivo Wistar albino rats ↓NF-kB; ↓TNF-a; ↓IL-6; ↓COX-2; ↓PGE-2 (203)
In vitro Lung carcinoma cell (A549); Cervical cancer cell (HeLa) ↓NF-kB; ↓cyclin D1; ↓COX-2; ↓MMP-9 (202)

Flavopiridol In vitro Non-small cell lung carcinoma cell (A549), Colon cancer
cells (HCT-116, HCT-15)

↓NF-kB (204)

Puerarin In vitro Bladder cancer cell (T24) ↓NF-kB; ↓proliferation; ↑Apoptosis; ↑miR-16; ↓COX-2 (205)
Icariin In vitro Human myeloma cell (U266) ↓JAK/STAT3; ↓STAT3; ↓VEGF; ↓MMP-9; ↓STAT3 (206)
Acteoside In vitro Hepatocellular carcinoma cell (HepG2, HuH7) ↓NF-kB (207)
Acacetin In vitro

and in
vivo

Xenografted mice; Prostate cancer cell (DU145) ↓NF-kB/Akt; ↓XIAP; ↓COX-2 (209)

In vitro Prostate cancer cell (DU145) ↓NF-kB; ↓p38MAPK; ↓AP-1-binding (208)
Eriodictyol In vitro Glioblastoma cells (A172, U87 MG) ↓Cell proliferation; ↓apoptosis; ↓EMT markers; ↓p38

MAPK/GSK-3b/ZEB1
(211)

In vitro
and in
vivo

Glioblastoma cells (CHG-5, U87 MG); Mouse xenograft
model

↓PI3K/Akt/NF-kB; ↑apoptosis (210)

Calycosin In vitro Hepatocellular carcinoma cell (HepG2) ↓Bcl-2; ↑Bax; ↑Caspase-3; ⟂ G0/G1 phase cell cycle;
↓Akt; ↓TGF-b1; ↓SMAD2/3; ↓SLUG; ↓vimentin

(212)

Cudraflavone B In vitro OSCC ⟂sub-G1 phase cell cycle; ↑p27 (213)
Protocatechualdehyde In vitro Breast cancer cell (MCF-7, MDA-MB-231) ↓NF-kB; ↓GSK-3b; ↓b-catenin; ↓cyclin D1 (214)
Naringin In vitro Ovarian cancer cells (SKOV3/DDP) ↓NF-kB; ↓COX-2 (215)
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and nuclear factor-erythroid factor 2-related factor 2 (Nrf-2)/
antioxidant response element (ARE) signaling (233, 234).
Additionally, inhibition of IkB kinase and suppression of NF-kB
signaling are the primary anticancer mechanisms of lycopene
(Figure 5) in breast and prostate cancer cells (235).

The monoterpene geraniol (Figure 5) is an acyclic isoprenoid
derived from essential oils. Geraniol attenuated tongue
carcinogenesis via decreased activation of NF-kB (236).
Additionally, the NF-kB and STAT3 pathways are the
chemopreventive mechanisms of andrographolide via
inhibition of inflammatory mediators (237). Moreover,
treatment with celastrol (Figure 5) downregulated NF-kB and
Frontiers in Oncology | www.frontiersin.org 16
reduced the expression of IL-6 in prostate and breast cancer cells
(238, 239). In a similar study, actein (Figure 5) strongly
suppressed the growth of MDA-MB-453 cells by enhancing the
cytoplasmic calcium and modulating the MAPK/ERK kinase
(MEK) and NF-kB pathways (240).

Diosgenin (Figure 5), a known steroidal triterpenoid with two
pentacyclic rings, is found in Trigonella foenum graecum (241).
Progesterone, pregnenolone, cortisone, and other steroids can be
synthesized from diosgenin, which comprises more than 60% of
commercial synthetic steroids (242). Diosgenin has shown several
biological activities, including anticancer, antidiabetic, anti-
infectious, anti-inflammatory, and anticoagulant effects (242).
FIGURE 5 | Chemical structures of selected terpenes/terpenoids that modulate the TLR/NF-kB/NLRP signaling in cancer.
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Diosgenin exerted significant antitumor potential via induction of
apoptosis and suppression of inflammation. It also inhibited the
invasion, metastasis, angiogenesis, and proliferation of various
cancer cell lines. Accordingly, targeting inflammation-related
pathways, including NF-kB and STAT3, is one of the main
anticarcinogenic mechanisms of diosgenin (241, 242).
Diosgenin displayed antiproliferative effects in HEp-2 and
M4Beu cell lines via enhancing the production and release of
apoptosis-inducing factors, increasing the Bax/Bcl-2 ratio,
modulating caspase-3, and facilitating the activation of p53
(243). Furthermore, diosgenin induced apoptosis in the colon
cancer cell lines HT-29 and HCT-116 in vitro by interfering with
COX-2 signaling and increasing DNA fragmentation, caspase-3,
and 5-lipoxygenase activity (244). Additionally, diosgenin
sensitized colorectal cancer cells to apoptosis induced by TRAIL
via activation of the p38MAPK pathway, overexpression of death
receptor-5 (DR5), and downregulation of the Akt pathway (245).

Several compounds belonging to the terpenes and terpenoids
classes exhibit antineoplastic properties by affecting various stages
of tumor development, including suppression of the initiation and
progression of tumorigenesis through promoting apoptosis, cell
cycle arrest, inhibition of metastasis, angiogenesis, invasion, and
downregulation of several intracellular signaling pathways,
including TLR4, STAT3, NF-kB, and MMP-9. These compounds
are promising therapeutic agents due to the massive progression in
delineating the details of their anticancer action. Table 2 provides
the various anticancer terpenes/terpenoids that interfere with the
TLR/NF-kB/NLRP pathway to counter chemoresistance.
Alkaloids
Alkaloids are another group of plant secondary metabolites that
hold a substantial role in the defensive and internal immune
processes of plants. Antioxidative, antimicrobial, antiprotozoal,
anti-inflammatory, and anticancer activities are some of the
important biological activities of alkaloids. Vinblastine and
camptothecin are two important compounds belonging to the
alkaloid group that have been properly developed and received
the Food and Drug Administration’s approval for the treatment
of different cancers. Sophoridine (Figure 6) inhibited
macrophage-mediated immunosuppression by interfering with
the TLR4/IRF-3 pathway, downregulating IL-10, CD206, and
arginase 1 (Arg-1), and upregulating IL-12a, IFN-b, and iNOS in
RAW264.7 and MFC cell lines (246). Moreover, matrine
(Figure 6) demonstrated anticancer activity by regulating
immunity, increasing TLR8 and TLR7, and activating MyD88-
dependent signaling (247). Additionally, matrine inhibited the
invasion and proliferation of breast and prostate cancer cells
via downregulation of VEGF/Akt, MMP-2, and MMP-9 through
the NF-kB signaling pathways (248, 249). Furthermore,
hypaconitine (Figure 6), another alkaloidal agent, inhibited the
adhesion, invasion, and migration of the A549 cell line (250). In
addition to hypaconitine, alpinetin showed significant anticancer
properties, diminishing the transcription of HIF-1a, NF-kB, and
the ROS/NF-kB/HIF-1a axis in breast cancer cells (251). In a
similar study, berberine (Figure 6), a well-known alkaloid,
inhibited the proliferation of lung cancer cells and induced
Frontiers in Oncology | www.frontiersin.org 17
apoptosis through upregulation of Bcl-2/Bax, NF-kB, COX-2,
MMP-2, and Akt/ERK pathways (252–254). Likewise, berberine
suppressed the NLRP3 inflammasome in MDA-MB-231 cells in
vitro (255). Treatment with berberine inhibited MMP-2, MMP-
9, NF-kB, focal adhesion kinase (FAK), urokinase-type
plasminogen activator (u-PA), and IKK in SCC-4 cancer cells
(256). Additionally, berberine prevented DMBA-induced breast
carcinogenesis in Sprague Dawley rats (257) and inhibited the
growth of MDA-MB-231 cells via decreased IL-6, TNF-a, and
NF-kB (258). Furthermore, berberine exerted anticancer activity
via targeting variant pathways, such as NF-kB/COX-2, p38/JNK,
AP-2/telomerase reverse transcriptase (hTERT), cytochrome-c/
caspase, and HIF-1a/VEGF signaling in human gastric and
NSCLC cell lines (259, 260). The alkaloid anisodamine
(Figure 6) is another anticancer compound that inhibited the
growth, invasion, and proliferation of HepG2 cells and
suppressed the expression and activation of IFN-g, IL-27,
NLRP3, IL-4, and TNF-a (261). In a similar study, a steroidal
alkaloid, cyclopamine (Figure 6), induced apoptosis and
suppressed the proliferation of HEL and TF1a cells via
induction of PKC, COX-2 overexpression, PARP cleavage, and
modulation of MAPK/Akt signaling (262). The main anticancer
mechanisms of cepharanthine and tetrandrine (Figure 6) against
Jurkat T leukemia cells (263) are the modulation of PI3K/Akt/
mTOR signaling, induction of apoptosis, cell cycle arrest, and
phosphorylation of JNK and p38. Another alkaloid structure,
piperlongumine (Figure 6), appears to have anticancer
properties via downregulating c-Met expression and NF-kB
activity in renal, colon, lung, and prostate carcinoma cells
(264–268). Harmine (269), fangchinoline (270), sinapine (271),
gramine (272), cepharanthine (273), piperine (274, 275),
lamellarin D (276), ipobscurine (277), chelerythrine (278),
dihydrochelerythrine (279), tryptanthrin (280), and neferine
(Figure 6) (281) are some of the other alkaloid agents that
exert significant anticancer activity through modulation of
VEGF, AP-1, fibroblast growth factor receptor 4 (FGFR4)/
fibroblast growth factor receptor substrate 2a (FRS2a)-ERK1/
2, NF-kB, Nrf-2/Kelch-like ECH-associated protein 1 (Keap-1),
MMP-2, MMP-9, and STAT3.

Overall, alkaloids are phytochemicals with significant potential
to suppress the in vitro and in vivo growth/invasion of various
cancers. By interfering with TLR/NF-kB/NLRP, alkaloids,
especially berberine, matrine, and evodiamine, diminish cancer
chemoresistance and facilitate the induction of apoptosis,
inflammation, oxidative stress, and autophagy in cancer cells.
Table 3 provides various anticancer alkaloids that interfere with
the TLR/NF-kB/NLRP pathway against chemoresistance.
Sulfur-Containing Compounds and
Miscellaneous Agents
Sulforaphane (Figure 7) suppressed TLR3-mediated NF-kB in
PCI15A SCC cells (282). In addition, sulforaphane inhibited the
expression of MMP-9, phosphorylation of IkB, and activation of
NF-kB in MCF-7 cells (283). Another sulfur-containing
compound, shikonin (Figure 7), appears to have anticancer
properties via suppressing the migration, adhesion, viability,
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and invasion of gastric (MGC-803) and hepatocellular (Huh7and
BEL7402) cancer cells in vitro via the TLR2/NF-kB and receptor-
interacting protein 1 (RIP1)/NF-kB pathways (284, 285). In a
similar study, phenethyl isothiocyanate (Figure 7) in
combination with xanthohumol activated Nrf-2 and
suppressed NF-kB in pancreatic cancer cells (286) and B-cell
acute lymphocytic leukemia (287). Moreover, inhibition of NF-
kB and MAPK signaling is the main anticancer mechanism of
phenethyl isothiocyanate against AGS cell lines (288). The
indolequinazoline alkaloid evodiamine is widely present in
many medicinal plants belonging to the tetradium family.
Evodiamine (Figure 7) and its derivatives targeted the c-Met,
NF-kB, Smad2/3, and TGF-b/hepatocyte growth factor pathways
in prostate, hepatocellular, lung, and melanoma carcinoma cells
(289–292). It was reported that microsclerodermin A inhibited
NF-kB, promoted apoptosis, and diminished cytokine release in
pancreatic and breast cancer cells (293, 294). Additionally,
treatment of prostate, lung, and pancreatic cancer cells (295–
Frontiers in Oncology | www.frontiersin.org 18
298) with matrine and oxymatrine inhibited angiogenesis, VEGF,
NF-kB, andCXCR4.Nobiletin (Figure 7) is a citrusflavonoidwith
several pharmacological activities, including anticarcinogenic,
antioxidative, neuroprotective, and anti-inflammatory effects.
Nobiletin modulated the activity of the Cd36/STAT3/NF-kB
pathway and inhibited the growth and migration of breast
cancer cell lines MCF-7 and MDA-MB-231 (299). Similarly, it
leads to the downregulation of Akt, HIF-1a, NF-kB, andVEGF in
OVCAR-3 ovarian cancer cells and suppression of TRIF/receptor
interacting serine/threonine kinase 1 (RIPK1)/Fas associated via
death domain (FADD), TRIF protein, caspase-8, and TLR3/IRF-3
in LNCaP and PC-3 cell lines (300, 301). Additionally, nobiletin
diminished the invasion and migration of AGS cells and
downregulated FAK/PI3K/Akt, c-Raf, Rac-1, cell division
control protein 42 homolog (Cdc42), as well as the NF-kB,
MMP-2, and MMP-9 signaling pathways (302).

Ulmus davidiana Nakai glycoprotein (303), phenylpropenone
derivatives (304), libanoridin (305), and alisol B 23-acetate (306)
TABLE 2 | Anticancer terpenes/terpenoids interfering with the TLR/NF-kB/NLRP pathway and cross-linked mediators against chemoresistance.

Compound Types of
study

Cell line(s)/tumor model(s) Mechanisms of action References

Zerumbone In vivo Mouse model of colorectal and lung caner ↓NF-kB; ↑Apoptosis; ↓proliferation; ↓HO-1 (216)
Andrographolide In vitro and

in vivo
Murine tumor cell (B16 melanoma); C57BL/6J mice ↓TLR4/NF-kB signaling; ↓CXCR4; ↓Bcl-6 (217)

In vitro and
in vivo

RIP1-Tag2 mice models; Insulinoma cell (b-TC-6) ↓TLR4/NF-kB signaling (218)

In vitro Human colon cancer cell (SW620) ↓TLR4/NF−kB/MMP−9 (219)
Carnosic acid In vitro and

in vivo
Xenograft mice model; BALB/c Akt-knockout mice; Liver cancer cell
(MHCC97-H and Bel7402)

↓NF-kB; ↓TLR4; ↑caspase-3; ↓MyD88; ↓TRAF-
6; ↓IRAK-1; ↓IRAK-4

(220)

Triptolide In vitro and
in vivo

FEN1 E160D mice; Prostate cancer cell (PC3) ↓NF-kB; ↑ERK1/2; ↑p38 (221)

In vitro Breast cancer cell (MCF-7) ↓NF-kB; ↓MMP-9; ↓AP-1 (222)
In vitro and
in vivo

Anaplastic thyroid carcinoma cells (TA-K and 8505C); Nude mice ↓NF-kB; ↓angiogenesis; ↓cell invasion; ↓cyclin
D1; ↓VEGF

(224)

In vitro Hepatocellular carcinoma cell (MHCC-97H) ↓NF-kB; ↓MMP-9; ↓invasion; ↓tumorigenesis (225)
In vitro Gastric adenocarcinoma (AGS) ↓NF-kB signaling (223)
In vitro and
in vivo

Gastric tumor cell (MGC-803 and HGC-27); Xenograft mice ↓Notch1; ↓NF-kB; ↓RBPJ, ↓IKKa, IKKb (226)

Ursolic acid In vitro Abelson murine leukemia macrophage (RAW 264.7) ↓TLR4-MyD88 pathway; ↓IL-1b; ↓TNF-a; ↓IL-6 (227)
In vitro and
in vivo

Prostate cancer cells (DU145, LNCaP); Transgenic mouse model of
prostate adenocarcinoma (TRAMP mice)

↓NF-kB; ↓CXCR4; ↓CXCR4/CXCL-12 signaling (228)

In vitro Colon cancer cell (SW480 and LoVo) ↑Apoptosis; ↓MMP-9; ↓COX-2; ↓p300/NF-kB
signaling

(229)

In vitro Breast cancer cell (T47D, MCF-7, MDA-MB-231 ↓NF−kB; ↓viability; ↑apoptosis; ↓cyclin−D1;
↑caspase−3

(230)

Heteronemin In vitro Acute myeloid leukemia cell (HL-60) ↓NF-kB; ↓Ras; ↓MAPK; ↓AP-1; ↓c-myc (231)
Soyasaponin
A1, A

In vitro Abelson murine leukemia virus-induced tumor macrophage (RAW
264.7)

↓TLR4/MyD88 signaling (232)

Oleanolic Acid In vitro Hepatocellular cancer cells (HepG2) ↓NF-kB; ↓Nrf-2/ARE (233)
In vitro and
in-silico

Hepatocellular cancer cells (HepG2) ↓NF-kB; ↓Nrf-2 (234)

Lycopene In vitro Breast cancer cell (MDA-MB-231); Prostate cancer cell (PC3) ↓NF-kB; ↓IkB kinase; ↓IKKb kinase (235)
Geraniol In vivo Wistar albino rats ↓NF-kB (236)
Andrographolide In vitro Abelson murine leukemia virus-induced tumor macrophage (RAW

264.7)
↓NF-kB; ↓STAT3; ↓iNOS; ↓COX-2 (237)

Celastrol In vitro Prostate carcinoma cell (PC-3) ↓NF-kB; ↓IL-6 (238)
In vitro Breast cancer cells (MDA-MB-468, MDA-MB-231) ↓NF-kB; ↓cell migration; ↓cell invasion; ↓IL-6 (239)

Actein In vitro Breast cancer cells (MDA-MB-453) ↓NF-kB; ↓MEK; ↑cytoplasmic calcium (240)
Diosgenin In vitro Laryngocarcinoma cells (HEp-2); Human melanoma cells (M4Beu) ↑Apoptosis; ↑AIF; ↑Bax/Bcl-2 ratio; ↑ p53 (243)

In vitro Human colorectal cancer cells (HT-29, HCT-116) ↑Apoptosis; ↑COX-2; ↑DNA fragmentation;
↑caspase-3; ↑5-lipoxygenase

(244)

In vitro Human colorectal cancer cells (HT-29) ↑Apoptosis; ↑p38 MAPK; ↑DR5; ↓Akt (245)
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decreased the proliferation and migration of colon carcinoma cells
via inactivation of inflammatory and angiogenic pathways.
Deguelin (Figure 7) downregulated EGFR, c-Myc, pAkt, p-ERK,
p-STAT3, c-met, survivin, and NF-kB in xenograft athymic mice
models of breast cancer cell lines MDA-MB-231, MDA-MB-468,
BT-549, and BT-20 (307).Withaferin A, a steroidal lactone presents
in Withania somnifera, exerts several pharmacological activities
such as anti-inflammatory, anticancer, and cardioprotective effects.
Withaferin A significantly downregulated the liver X receptor-a,
NF-kB, and angiogenesis pathways in the hepatocellular carcinoma
cell line QGY-7703 (308). Furthermore, withaferin A
downregulated caspase-1 and AIM-2 in THP-1 cells (309).
Similarly, Zingerone (vanillylacetone) (Figure 7) is another
known agent with anticancer properties that inhibited NF-kB,
p42/44, and MAPK/AP1signaling and attenuated the migration
and invasion of human hepatocellular carcinoma cells (310).
Moreover, osthole and ophiopogonin D (Figure 7) suppressed
Frontiers in Oncology | www.frontiersin.org 19
the PI3K/Akt, NF-kB, and AP-1 pathways in A549 and H1299 lung
cancer cells (311–314). Embelin (315), plumbagin (316, 317), indole
glucosinolates (318), thymoquinone (319, 320), decursinol angelate
(321), polysaccharide agaricus blazei murill (322), and 19-a-
hydroxyurs-12(13)-ene-28-oic acid-3-O-b-D-glucopyranoside
(HEG) (323) are some of the other miscellaneous agents that
have promising anticancer potential against MDAMB-231,
pancreatic PANC1, Ehrlich ascites carcinoma, fibrosarcoma
HT1080, and chronic myeloid leukemia (CML) KBM-5 cancer
cell lines in vitro and in vivo.

Overall, sulfur-containing compounds demonstrate critical
biological properties and therefore have meaningful potential for
the prevention and treatment of cancers. These phytochemicals
could target multiple signals affecting cancer progression,
especially TLR/NF-kB/NLRP signaling and cross-talked
pathways, to support cancer immunotherapy and chemotherapy.
Table 4 provides the various anticancer sulfur and miscellaneous
FIGURE 6 | Chemical structures of selected alkaloids that modulate the TLR/NF-kB/NLRP signaling in cancer.
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TABLE 3 | Anticancer alkaloids interfering with the TLR/NF-kB/NLRP pathway and interconnected mediators against chemoresistance.

Compound Types
of

study

Cell line(s)/tumor model(s) Mechanisms of action References

Sophoridine In vitro Mouse gastric carcinoma cell (MFC) ↓TLR4/IRF-3 pathway; ↓IL-10; ↓CD206; ↓Arg-
1; ↑IL-12a; ↑IFN-b; ↑INOS

(246)

Matrine In vitro Mouse lung cancer cells ↑TLR7; ↑TLR8; ↑MyD88; ↑TRAF-6; ↑IKK; ↑IL-
12; ↑IL-6; ↑TNF-a

(247)

In vitro Breast cancer cell (MDA-MB-231) ↓NF-kB; ↓ratios of Bcl-2/Bax; ↓p-Akt; ↓MMP-9;
↓MMP-2; ↓EGF; ↓VEGFR1

(248)

In vitro
and in
vivo

Prostate cancer cells (DU145 and PC3); Xenograft Balb/c nude mice
model

↓NF-kB; ↓MMP-9; ↓MMP-2; ↓p-p65 (249)

Hypaconitine In vitro Human lung carcinoma cell (A549) ↓Cell adhesion; ↓cell invasion; ↓Cell migration;
↓TGF-b1; ↓NF-kB

(250)

Alpinetin In vitro
and in
vivo

Breast cancer cells (MCF-7,4T1, MDA-MB-231); BALB/C female mice ↓NF-kB; ↓HIF-1a transcription; ↓ROS/NF-kB/
HIF-1a

(251)

Berberine In vitro Human lung carcinoma cell (A549) ↓JAK2/VEGF/NF-kB/AP-1; ↓cell proliferation;
↑apoptosis; ↓MMP-2; ↓Bcl-2/Bax

(253)

In vitro Human lung cells (H1299 and A549) ↓NF-kB/COX-2; ↓AP-2b/hTERT; ↓Akt/ERK;
↑caspase/cyt c signaling

(252)

In vitro Human lung cell (A549) ↑Apoptosis; ↓cyclins (254)
In vitro Breast cancer cell (MDA-MB-231) ↓NLRP3; ↓IL-1b; ↓IL-1a; ↓P2X7; ↓IL-6; ↓TNF-a (255)
In vitro Tongue SCC cells (SCC-4) ↓NF-kB; ↓cell migration; ↓invasion; ↓FAK; ↓

IKK; ↓ MMP-2; ↓ MMP-9; ↓ u-PA
(256)

In vivo Sprague Dawley rats ↓NF-kB; ↓PCNA; ↓malonaldehyde; ↓IL-1b; ↓IL-
6; ↓TNF-a; ↓SOD; ↓CAT; ↓GSH

(257)

In vitro Breast cancer cell (MDA-MB-231) ↓NF-kB; ↓TNF-a; ↓IL-6 (258)
In vitro Human gastric cancer cell (SNU-1) ↓NF-kB; ↓p38/JNK pathway; ↑Apoptosis;

↑Caspase
(260)

In vitro Human non-small-cell lung cancer cell (NSCLC) ↓p50/p65 NF-kB; ↓AP-2a; ↓AP-2b; ↓pAkt;
↓pERK; ↑cyt c release; ↑cleavage of caspase;
↑cleavage PARP

(259)

Anisodamine In vitro
and in
vivo

Hepatocellular carcinoma cells (HepG2); BALB/C nude mice ↓NLRP3; ↓IFN-g; ↓IL-27; ↓IL-4; ↓TNF-a (261)

Cyclopamine In vitro Human erythroleukemia cells (HEL and TF1a) ↓Cell proliferation; ↑apoptosis; ↑COX-2; ↑PKC;
↑ PARP cleavage; ↓MAPK; ↓Akt

(262)

Cepharanthine &
Tetrandrine

In vitro T cell leukemia (Jurkat) ↑Apoptosis; ↑p-JNK; ↑Phosphorylation of p38;
↑cyclin A2; ↑cyclin B1; ↓cylcin D1; ⟂S phase
cell cycle

(263)

Piperlongumine In vitro Prostate cancer cells (PC-3, LNCaP, DU-145) ↓NF-kB; ↓IL-6; ↓IL-8; ↓MMP-9; ↓ICAM-1 (264)
In vitro Renal cell carcinoma (PNX0010, 786-O) ↓NF-kB; ↓C-Met; ↓Akt/mTOR; ↓Erk/MAPK;

↓STAT3
(266)

In vivo Mouse model of colon cancer ↓NF-kB; ↓COX-2; ↓JAK/STAT (268)
In vitro Human lung cancer cell (A549) ↓NF-kB p65; ↓Akt; ↓Cyclin D1; ↓CDK4;

↓CDK6; ↓p-Rb; ↑pERK1/2
(267)

In vitro Multiple myeloma (U266); Breast cell cancer (MCF-7); T cell leukemia
Jurkat; Lung adenocarcinoma cell (H1299); Squamous cell (SCC4);
CML (KBM-5)

↓NF-kB; ↓cyclin D1; ↓Bcl-2; ↓VEGF; ↓Bcl-XL;
↓c-IAP-2; ↓ICAM-1; ↓survivin; ↓COX-2; ↓IL-6;
↓CXCR-4; ↓c-IAP-1; ↓c-Myc

(265)

Harmine In vitro
and in
vivo

Melanoma cell (B16F-10); C57BL/6 mice ↓VEGF; ↓MMP; ↓TIMP; ↓iNOS; ↓COX-2 (269)

Fangchinoline In vitro Human CML cell (KBM5); Multiple myeloma cell (U266) ↓NF-kB; ↑apoptosis; ↓AP-1 (270)
Sinapine In vitro Breast cancer cell (MCF-7) ↓NF-kB; ↓FGFR4/FRS2a-ERK1/2 (271)
Gramine In vivo Male golden Syrian hamsters ↓NF-kB; ↓cell proliferation; ↓STAT3; ↓ EGFR/

PI3K/Akt/mTOR; ↓JAK/STAT3
(272)

Cepharanthine In vitro
and in
vivo

Human OSCC cells (B88 and HSC3); Athymic nude mice ↓NF-kB; ↓angiogenesis; ↓VEGF; ↓IL-8 (273)

Piperine In vivo Wistar rats’ models of colon cancer ↓NF-kB/Nrf-2/Keap-1/HO-1 (275)
In vitro
and in
vivo

Human cervical cancer cell (HeLa); Mice xenograft models ↓STAT3/NF-kB; ↓Bcl-2; ↓p-STAT3 (274)
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compounds in interfering with the TLR/NF-kB/NLRP pathway
against chemoresistance.
PHYTOCHEMICALS IN COMBINATION
WITH ANTICANCER DRUGS POTENTIATE
CHEMOTHERAPY AND
IMMUNOTHERAPY

Despite the recent progress in designing, synthesizing, and
introducing new pharmaceutical drugs, natural products and
bioactive molecules isolated from plants exert undeniable roles in
the treatment of various cancers. Currently, the most important
treatment option for malignant tumors is chemotherapy, which
may lead to numerous side effects and promote drug resistance in
patients. The use of natural products for the treatment of cancer
is not only economically efficient, but also exerts multiple
prophylactic, protective, and therapeutic roles in the treatment
process that may reduce the side effects of chemotherapy and
radiotherapy and decrease drug resistance (6, 13, 324–326).

Numerous studies have investigated the in vitro and in vivo
advantages of adding curcumin to various anticancer treatment
regimens. Liposomal curcumin has sensitized mouse models of
cervical cancer to paclitaxel treatment (327). Curcumin also
facilitated the induction of cell death by paclitaxel in MCF7 and
MDA-MB-234 cell lines (328, 329). It was reported that curcumin
induced cell apoptosis and increased paclitaxel sensitivity in
cervical cancer cells through interfering with NF-kB, p53, and
caspase-3 signaling (330). In similar studies, curcumin
significantly sensitized breast cancer cells to cyclophosphamide
and paclitaxel through modulation of NF-kB, protein kinase C
(PKC), histone deacetylase (HDAC), and telomerase (331).
Combining curcumin with oxaliplatin reversed the acquired
resistance in an in vitro model of colorectal cancer by
interfering with the CXC-chemokine/NF-kB pathway (332). In
addition, curcumin increased the chemosensitivity of several
platinum-based drugs via arresting the cell cycle in the G2/M
phase, inducing apoptosis, and downregulating NF-kB (333).
Similarly, co-delivery of curcumin and dasatinib led to the
Frontiers in Oncology | www.frontiersin.org 21
enhanced antitumor activity of dasatinib against colon cancer
cells via diminished insulin-like growth factor type 1 receptor, c-
Src, and EGFR signaling (334). Moreover, curcumin worked
synergistically with tamoxifen to suppress the growth of MCF-
7/LCC9 and MCF-7/LCC2 cells in an in vitro model of breast
cancer by facilitating cell cycle arrest and inactivating the Akt/
mTOR, Src, and NF-kB pathways (335). Furthermore, curcumin
sensitized MDA-MB-231 cells to retinoic acid (336) and
enhanced the efficacy, as well as diminished the toxicity, of
doxorubicin (337). The anticancer potential of sorafenib against
Huh7 cells and an athymic mice model of hepatocellular
carcinoma was enhanced when combined with curcumin as
evident by decreased expression of MMP-9 and NF-kB/p65
(338). Another well-known polyphenolic compound,
resveratrol, sensitized PC3 and DU145 prostate cancer cells in
vitro to cisplatin-induced apoptosis via inhibition of COX-2 and
NF-kB pathways (339). In a similar study, resveratrol significantly
increased the efficacy of cisplatin in xenografted mice and MDA-
MB-231 cancer cells via decreased activity of p-ERK, TGF-b1,
Smad2, vimentin, p-Akt, NF-kB, p-PI3K, and p-JNK (340).
Furthermore, resveratrol sensitized colorectal cancer cells to 5-
fluorouracil (5-FU) by inducing apoptosis and downregulating
NF-kB (341). Additionally, resveratrol improved the
gemcitabine-induced apoptosis of PaCa cells via inhibition of
NF-kB and diminished expression of cyclin D1, VEGF,
intercellular adhesion molecule-1 (ICAM-1), COX-2, and
MMP-9 (342). Apigenin is another polyphenolic substance that
potentiated the antitumor activity of several antineoplastic agents,
including paclitaxel (343), tamoxifen (344), gemcitabine (345,
346), doxorubicin (347), and cisplatin (348) against various in
vitro and in vivo cancer models. Polyphenol quercetin is another
anticancer compound that works synergistically with paclitaxel
(349, 350), tamoxifen (351), cisplatin (352, 353), adriamycin
(354), and gemcitabine (355) to suppress the growth of various
models of cancer via enhanced ROS production, cell cycle arrest,
ER stress, and apoptosis. Similarly, various studies have reported
the advantages of adding EGCG to enhance the antitumor activity
of sunitinib, irinotecan, doxorubicin, gemcitabine, and cisplatin
against human lung (A549, H460, and H1975) (356, 357),
colorectal (HCT116 and RKO) (358), bladder (SW780 and
TABLE 3 | Continued

Compound Types
of

study

Cell line(s)/tumor model(s) Mechanisms of action References

Lamellarin D In vitro Human leukemia cell (K562) ↑Apoptosis; ⟂G0/G1 cell cycle arrest; ↓CDK1;
↓smad3-5; ↓TGF-b; ↓IL-1b; ↓IL-6; ↓IL-8; ↑p27;
↑p53; ↑STGC3

(276)

Ipobscurine In vitro Melanoma cell (B16F-10); ↓NF-kB; ↑Caspase-3; ↑p53; ↑Bax; ↓Bcl-2;
⟂G1 cell cycle arrest

(277)

Chelerythrine In vitro Prostate cancer cells (DU145, PC-3) ↓MMP-2; ↓MMP-9; ↓uPA; ↓NF-kB; ↓AP-1; ↓p-
p65, c-Fos; ↓c-Jun protein

(278)

Dihydrochelerythrine In vitro Human glioblastoma cells (U251 and GL-15); Murine glioblastoma cell
(C6)

↓NF-kB; ↓cell viability (279)

Tryptanthrin In vitro
and in
vivo

Murine breast cancer model (4T1) Breast cancer cell (MCF-7) ↓NF-kB; ↑E-cadherin; ↓MMP-2; ↓Snail; ↓NOS1;
↓COX-2; ↓IL-2; ↓IL-10; ↓TNF-a

(280)

Neferine In vivo Wistar rats ↓NF-kB; ↓PI3K/AKT/mTOR (281)
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T24) (359), pancreatic (MIA PaCa-2 and Panc-1) (360), and
ovarian (OVCAR3 and SKOV3) (361) cancer cells, respectively.
The results emphasized that EGCG could potentate the
antineoplastic activity of the aforementioned drugs by
Frontiers in Oncology | www.frontiersin.org 22
increasing the sensitivity of the cancer cells, thereby enhancing
their antiproliferative activity, damaging DNA, interfering with
the NF-kB/MDM2/p53 pathway, inhibiting Akt, and elevating
copper transporter 1 (CTR1). Likewise, cotreatment of naringin
FIGURE 7 | Chemical structures of selected sulfur-containing compounds and miscellaneous agents with effect on TLR/NF-kB/NLRP signaling in cancer.
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TABLE 4 | Anticancer sulfur compounds and miscellaneous agents interfering with the TLR/NF-kB/NLRP pathway and interconnected mediators against chemoresistance.

Compound Types of
study

Cell line(s)/tumor model(s) Mechanisms of action References

Sulforaphane In vitro Squamous cell carcinoma (PCI15A) ↓TLR3; ↓NF-kB (282)
In vitro Breast cancer cell (MCF-7) ↓NF-kB; ↓MMP-9; ↓Phosphorylation of IkB; (283)

Shikonin In vitro Human gastric cancer cell (MGC-803) ↓TLR2; ↓NF-kB; ↓Cell invasion; ↓MMP-2; ↓MMP-7; ↓p65
NF-kB

(285)

In vitro
and in
vivo

Hepatocellular carcinoma (Huh7 and BEL7402);
Xenograft mice

↓RIP1/NF-kB; ↓Akt (284)

Xanthohumol &
phenethyl
isothiocyanate

In vitro Pancreatic cancer cell (PANC-1) ↓NF-kB; ↑Nrf-2; ↑GSTP; ↑NQO1; ↑SOD; ↓MMP-2; ↓MMP-
7; ↓MMP-9; ↓FAK

(286)

Xanthohumol In vitro
and in
vivo

B-cell acute lymphocytic leukemia; Xenograft mouse
model

↓NF-kB; ↓FAK; ↓Akt (287)

Phenethyl
isothiocyanate

In vitro Gastric cancer cell (AGS) ↓Cell migration; ↓cell invasion; ↓MAPK; ↓NF-kB (288)

Evodiamine In vitro Prostate cancer (DU145, PC-3) ↓Cellular growth; ↑apoptosis (291)
In vitro Lung cancer cell line (A549) ↓Akt/NF−kB; ↑apoptosis; ↓GSH; ↓SHH/GLI1 (290)
In vitro Melanoma cell (A375-S2) ↓PI3K/Akt/caspase; ↓Fas-L/NF-kB (289)

Evodiamine
derivatives

In vitro
and in
vivo

Hepatocellular carcinoma cells (HepG2, Huh-7, MHCC-
LM9); Nude male mice

↓Topo I; ⟂G2/M cell cycle arrest; ↑Apoptosis; ↓cell
migration; ↓cell invasion; ↓tumor volume; ↓tumor weight

(292)

Marine In vitro Breast cancer cell (MDA-MB-231); Monocytic leukemia
cell (THP-1)

↓NF-kB; ↓cytokine release; ↓phosphorylation of p65;
↓phosphorylation of IkB

(294)

In vitro Pancreatic cancer cells (PANC-1, AsPC-1, MIA PaCa-2,
BxPC-3)

↓NF-kB; ↑Apoptosis (293)

Matrine In vitro Human lung carcinoma cell (A549); Pancreatic cancer
cells (MIA PaCa-2); Prostate cancer cells (DU145)

↓NF-kB; ↓CXCR4; ↓MMP-9, MMP-2 (298)

In vitro Prostate cancer cell (PC-3, DU145) ↓NF-kB (296)
In vitro Prostate cancer cell (DU145) ↓NF-kB; ↓GADD45B; ↓MMP-2; ↓MMP-9 (297)

Oxymatrine In vitro
and in
vivo

Pancreatic cancer cells (PANC-1); BALB/C male mice ↓NF-kB; ↓VEGF (295)

Nobiletin In vitro Breast cancer cells (MDA-MB-231, MCF-7) ↓Cd36/Stat3/NF-kB; ↓angiogenesis; ↓migration; ↓invasion;
↓STAT3; ↓CD36;

(299)

In vitro Ovarian cancer cells (OVCAR-3, A2780/CP70) ↓NF-kB; ↓tumor growth; ↓angiogenesis; ↓Akt; ↓HIF-1a;
↓VEGF

(300)

In vitro Prostate cancer cell (PC-3, LNCaP) ↓TRIF protein; ↓caspase-8; ↓TRIF/RIPK1/FADD; ↓TLR3/
IRF-3

(301)

In vitro Gastric adenocarcinoma (AGS) ↓NF-kB; ↓FAK/PI3K/Akt (302)
UDN glycoprotein In vivo Male mice (ICR) ↓NF-kB (303)
Phenylpropenone
derivatives

In vitro Human colon carcinoma cell (HT-29) ↓NF-kB; ↓PERK; ↓RTKs; ↓VEGF (304)

Libanoridin In vitro Human colon carcinoma cell (HT-29) ↓iNOS; ↓COX-2; ↓TNF-a; ↓IL-1b (305)
Alisol B 23-acetate In vivo Male C57BL/6J mice ↓TLR; ↓NF-kB; ↓MAPK; ↓phosphorylation of p38; ↓PERK;

↓PJNK
(306)

Deguelin In vitro
and in
vivo

Xenograft athymic mice; MDA-MB-231, MDA-MB-468,
BT-549 and BT-20 cells

↓NF-kB; ↓EGFR; ↓c-Myc (307)

Withaferin A In vitro Hepatocellular carcinoma cell (QGY-7703) ↓NF-kB; ↓liver X receptor-a; ↓angiogenesis (308)
In vitro Monocytic leukemia cell (THP-1) ↓Caspase-1; ↓AIM-2; ↓TGF-b (309)

Zingerone In vitro Hepatocellular carcinoma cell (SNU182) ↓Cell migration; ↓cell invasion; ↓MMP-2; MMP-9; ↓Smad2/
3; ↓NF-kB; ↓P42/44 MAPK/AP1

(310)

Ophiopogonin D In vitro Lung cancer cell (A549) ↓NF-kB; ↓cell proliferation; ↓PI3K/Akt; ↓AP-1 (314)
Osthole In vitro Lung cancer cell (A549) ↓NF-kB (312)

In vitro Lung adenocarcinoma cells (H1299 and A549) ↓NF-kB; ↓MMP-9 (311)
In vitro Cervical cancer cells (HeLa, SiHa, C−33A and CaSki) ↓ATM/NF−kB; ↑E−cadherin; ↓vimentin; ↑DNA damage;

↓NF-kB
(313)

Embelin In vitro
and in
vivo

Breast cancer cell (MDA-MB-231) ↓NF-kB; ↓Cell invasion; ↓Cell migration; ↓CXCR4; ↓MMP-
9; MMP-2

(315)

(Continued)
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with doxorubicin (362) and paclitaxel (363) amplified their
anticancer activity against human esophageal and prostate
cancer cells, respectively. Moreover, baicalin improved
the chemosensitivity to cisplatin (364) and doxorubicin (365)
in lung and breast cancer cells, respectively, by inducing cell
cycle arrest, apoptosis, and DNA damage. Furthermore,
arctigenin sensitized various cancer cell lines, including SW620,
HepG2, H460, HeLa, SW480, and K562, to cisplatin treatment
(366–368). Morin (369), chrysin (370), and pterostilbene (371)
are some of the other polyphenolic compounds that increased the
cytotoxicity of antineoplastic agents in several in vitro models
of cancer.

In addition to polyphenols, terpenes also showed a significant
ability to increase the sensitivity of different cancer cell lines to
various drugs, such as 5-FU, gefitinib, cisplatin, doxorubicin, and
gemcitabine. Combination therapy of cisplatin and paclitaxel
with zerumbone, a sesquiterpene agent, enhanced ROS
production and p53 expression, as well as inhibited the JAK2/
STAT3 pathway in prostate and lung cancer cells (372, 373). It
was reported that andrographolide augmented the doxorubicin-
mediated antitumor activity in different cancer cells through the
blockade of JAK/STAT3 signaling (374, 375) and its
coadministration with gemcitabine promoted apoptosis and
inhibited STAT3 in pancreatic cancer cells (376). Furthermore,
treatment with andrographolide increased cisplatin-induced
antineoplastic activity against lung cancer cells (377). Carnosic
acid is another triterpenoid compound that, in combination with
cisplatin and tamoxifen, promoted apoptosis in lung (378) and
breast (379) cancer cells. In addition to carnosic acid, triptolide
showed significant anticancer properties and amplified the in
vitro and in vivo anticancer activity of various chemotherapeutic
agents, including cisplatin (380–382), paclitaxel (383),
hydroxycamptothecin (384, 385), gemcitabine (386), and
doxorubicin (387), in several cancer types, including bladder
(EJ, UMUC3, and T24R2), breast (MDA-MB-231, BT549, and
MCF7), lung (A549), and gastric (SC-M1) cancer cell lines.
Another triterpenoid compound, ursolic acid, potentiated the
therapeutic effects of gemcitabine, oxaliplatin, cisplatin, and
paclitaxel in human pancreatic and colorectal cancer cells by
Frontiers in Oncology | www.frontiersin.org 24
promoting apoptosis and inhibiting the inflammatory
microenvironment and NF-kB p65 signaling (388–391).
Moreover, treatment with oridonin overcame antibiotic
resistance and augmented the antineoplastic effects of
doxorubicin, cisplatin, and gemcitabine via increased
expression of Bax, induction of apoptosis, downregulation of
Bcl−2, and inhibition of MMP in the in vivo and in vitro models
of lung, breast, pancreatic, and ovarian cancers (392–395). In a
similar study, ginsenoside Rg3 enhanced the cytotoxicity of
paclitaxel in breast cancer cells by regulating the expression of
Bax/Bcl-2 and suppressing NF-kB signaling (396). Additionally,
ginsenoside Rg3 amplified cisplatin therapy in the lung cancer
cell lines H1299, SPC-A1, and A549 by inhibiting the NF-kB
pathway (397, 398). Another study found that co-administration
of ginsenoside Rg3 and gefitinib increased the cytotoxicity of
gefitinib against lung cancer in vitro (399). The results
demonstrated that the main mechanisms by which ginsenoside
Ro enhances the anti-malignant effects of 5-FU occurs by
accumulating DNA damage, inhibiting DNA repair,
downregulating DNA replication, and delaying the degradation
of checkpoint kinase 1 (CHEK1) (400). The treatment
combination of docetaxel and ginsenoside Rg3 increased
activation of the apoptotic pathway in colon and prostate
cancer cells via suppression of NF-kB (401, 402). Lycopene, a
carotenoid agent, improved cisplatin-induced apoptosis in HeLa
cancer cells via inhibition of NF-kB activation (403).

Alkaloids, like other secondary metabolites, enhance the
in vitro and in vivo anticancer activities of various drugs by
elevating their antiproliferative effects and promoting apoptosis
and cell cycle arrest. The combined effects of doxorubicin and
berberine on lung (404) and breast (405, 406) cancer cells
inhibited the STAT3, high mobility group box 1 (HMGB1)-
TLR4 axis and downregulated the expression of Nanog and
miRNA-21. Cisplatin and berberine combined therapy also
inhibited cell growth, promoted apoptosis, created DNA
breaks, and interfered with miR-93/PTEN/Akt signaling in
MCF-7 and A2780 cells (407, 408). Moreover, berberine
increased the chemotherapy potential of irinotecan against
in vitro models of colon cancer through the suppression of
TABLE 4 | Continued

Compound Types of
study

Cell line(s)/tumor model(s) Mechanisms of action References

Plumbagin In vitro
and in
vivo

Pancreatic cancer cells (PANC1, BxPC3); Xenograft
SCID male mice

↓NF-kB; ↓EGFR; ↓STAT3 (316)

In vitro Gastric cancer cells (SGC-7901, MKN-28, AGS) ↓NF-kB (317)
Ondole glucosinolates In vitro

and in
vivo

Ehrlich ascites carcinoma cells; Albino mice ↓NF-kB; ↓IL-6; ↓IL-1b; ↓TNF-a; ↓NO (318)

Thymoquinone In vitro Human myeloid cells (KBM-5) ↓NF-kB; ↑Apoptosis; ↓VEGF (319)
In vitro Metastatic human (A375) and mouse (B16F10)

melanoma cells
↓NLRP3; ↓NF-kB (320)

Decursinol angelate In vitro Fibrosarcoma cell (HT1080); Breast cancer cell (MDA-
MB-231)

↓NF-kB; ↓PI3K; ↓ERK; ↓b1-integrin; ↓MMP-9 (321)

Polysaccharide
agaricus blazei murill

In vivo TLR2-/- mice ↓TLR2; ↑IL-12, ↓Arg-1; ↑iNOS (322)

HEG In vivo Swiss albino Wistar ↓NF-kB; ↓COX-2; ↓PGE2 (323)
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NF-kB (409). Another alkaloid compound, piperlongumine,
induced apoptosis and potentiated the anticarcinogenic activity
of doxorubicin, paclitaxel, oxaliplatin, cisplatin, and gemcitabine
via suppression of the JAK2/STAT3 pathway and induction of
oxidative stress in breast, intestinal, gastric, HNSCC, colorectal,
and pancreatic cancer cells (410–415). In a similar study,
harmine, in combination with paclitaxel, suppressed the
invasion and migration of SGC-7901 and MKN-45 gastric
cancer cell lines via downregulation of MMP-9 and COX-2
(416, 417). In addition, harmine suppressed the proliferation of
pancreatic cancer cells in vitro by enhancing the cytotoxicity of
gemcitabine (418). Likewise, several studies have reported the
advantages of combining matrine with irinotecan and cisplatin
to augment their antitumor activity against human colorectal
(HT29) (419), urothelial bladder (EJ and T24) (420), liver
(HepG2) (421), and cervical (U14) (422) cancer cell lines. The
results suggested that matrine significantly potentiated the
antineoplastic effects of both irinotecan and cisplatin and
increased the sensitivity of the aforementioned cancer cells to
treatment through induction of apoptosis, facilitation of cell
cycle arrest, and enhanced activity of topoisomerase I, ROS,
b−catenin, Bax, caspase-3, caspase-7, and caspase-9. Treatment
with sophoridine inhibited the growth of lung cancer cells by
amplifying cisplatin sensitivity via activation of Hippo and p53
signaling (423).

Sulforaphane could significantly sensitize human breast, lung,
colorectal, and bladder cancer cells to variant chemotherapeutic
agents via downregulation of NF-kB, induction of cell cycle
arrest, and reduction of cyclin A and p-Akt (424–427).
Furthermore, sulforaphane increased the in vitro and in vivo
antiproliferative activity of salinomycin in colorectal cancer cells
via diminished signaling of the PI3K/Akt pathway (428).
Moreover, shikonin reversed gemcitabine tolerance in a
xenograft model of pancreatic cancer via modulation of the
NF-kB signaling pathway (429). Treatment with shikonin
potentiated the antitumor efficacy of gefitinib in lung cancer
cells through suppression of the PKM2/STAT3/cyclin D1
pathway (430). Shikonin also increased the sensitization of
paclitaxel against esophageal cancer cells by promoting
apoptosis (431). Additionally, shikonin enhanced 4-
hydroxytamoxifen-induced apoptosis in breast cancer cells by
activating mechanisms involved in apoptosis and its related
signaling pathways (432). It was reported that co-treatment of
breast cancer cells with phenethyl isothiocyanate and paclitaxel
induced apoptosis, arrested the cell cycle, and inhibited cell
growth (433, 434). Garcinol induced the death of the breast
cancer cell lines MCF7, MDAMB231, and SKBR3 via triggering
p53-dependent upregulation of Bax and downregulation of Bcl-
xL (435). It also potentiated cisplatin sensitivity in HNSCC (436)
and ovarian (437) cancer cells, as well as enhanced paclitaxel
sensitivity in breast cancer cells (438) via inhibition of survivin,
NF-kB/Twist-related protein 1 (Twist1), VEGF, caspase-3/
calcium-independent phospholipase A2 (iPLA2), cyclin D1,
Bcl-2, and PI3K/Akt signaling.

Hispidin (439), genistein (440, 441), guggulsterone (442),
ginkgolide B (443), icariin (444), and zyflamend (445)
Frontiers in Oncology | www.frontiersin.org 25
potentiated the antineoplastic activity of gemcitabine in several
cancer types, including pancreatic, osteosarcoma, and
gallbladder cancers. Cisplatin in combination with tangeretin
(446), galangin (447), and cepharanthine (448) decreased the
proliferation and invasion of esophageal, lung, and ovarian
cancer cells. Cotreatment of paclitaxel with icariside II (449)
and caffeic acid (450), as well as combined treatment of 5-FU
with oxymatrine (451), troxerutin (452), and calebin (453)
increased the sensitivity of colon, lung, and melanoma cancer
cells. Parthenolide (454) elevated oxaliplatin toxicity in A549
cells. The anticancer activity of doxorubicin was enhanced when
combined with forbesione and isomorellin (455). Dioscin
potentiated the effects of adriamycin in the K562 leukemia cell
line (456).

In summary, phytochemicals have the potential to increase
the sensitivity of various cancer cells and animal tumor models to
several ant icancer drugs . Phytochemicals augment
chemoresistance through interfering with many processes, such
as cell cycle arrest, DNA damage, angiogenesis, and variant
signaling pathways, especially TLR/NF-kB/NLRP (Table 5).
NANOFORMULATIONS OF
PHYTOCHEMICALS AGAINST
CHEMORESISTANCE AND
IMMUNOTHERAPY RESISTANCE

Mutations and long-term chemotherapy lead to the development
of chemoresistance, prompting the need for progressively
increasing dosages of anticancer drugs. Consequently, these
higher concentrations of chemotherapeutic agents are toxic to
noncancerous cells (457). Nanoparticles are increasingly used due
to their improved bioavailability, protection of drug molecules,
high specificity for cancer cells, and decreased clearance.
Combining the versatile capabilities of nanoparticles with the
aforementioned benefits of phytochemicals created the concept
of phytonanomedicine, which revolutionized cancer therapy
(458). Phytonanomedicine utilizes the valuable properties of
phytochemicals merged with the nano-size, high surface area,
optical activity, and surface reactivity of nanoparticles to achieve
active or passive tissue-specific drug delivery. The application of
phytonanocompounds may reduce the toxicity and side effects of
chemotherapeutic agents, while increasing their efficacy, thereby
combating chemoresistance (459).

Flavones are the most prominent natural phytochemical that
regulates the functions of Bax, Bid, and Bak proteins. Additional
mechanisms by which phytochemicals combat chemoresistance
are altering the expression of selected genes during mitosis or
meiosis, regulating the expression of mutated genes like p21 and
p53, and interfering with DNA repair mechanisms. Liposomes,
polymeric nanoparticles, polymeric micelles, nanodispersion,
and dendrimers, among others, are efficient nanocarriers that
are often used (460).

Quercetin-loaded mesoporous silica decorated with
chondroitin sulfate potentiated the delivery of paclitaxel,
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TABLE 5 | Phytochemicals in combination with anticancer drugs potentiate chemotherapy and immunotherapy: focusing on TLR/NF-kB/NLRP pathway.

Compound Antineoplastic
Agent

Types
of

study

Cell line(s)/cancer model(s) Mechanisms of action References

Curcumin Paclitaxel In vitro
and in
vivo

Xenograft model of human cervical cancer;
Human cervical cancer (HeLa)

↓NF-kB; ↓tumor incidence; ↓tumor volume;
↓survival signals; ↓Akt; ↓MAPKs; ↓cell proliferation;
↓angiogenesis

(327)

Paclitaxel In vitro Breast cancer cells (MDA-MB-231, MCF-7) ↑apoptosis; ↑necrosis (329)
Paclitaxel In vitro Breast cancer cells (MDA-MB-231, MCF-7) ↓NF-kB; ↓c-Ha-Ras; ↓Rho-A; ↓p53; ↓Bcl-XL;

↓Bcl-2
(328)

Paclitaxel In vitro Cervical cancer cells (HeLa, CaSki) ↑apoptosis; ↑p53; ↑cleavage of caspase−3; ↓cell
growth; ↓NF−kB−p53−caspase−3

(330)

Paclitaxel &
Cyclophosphamide

In vitro
and in
vivo

Breast cancer cells (MDA-MB-231, MCF-7);
Swiss albino mice

↓NF-kB; ↓PKC; ↓HDAC; ↓telomerase (331)

Oxaliplatin In vitro Colorectal adenocarcinoma (LoVo, HT29, and
DLD1)

↓Akt/NF-kB; ↓CXC-Chemokine/NF-kB; ↓NF-kB (332)

Cisplatin;
Carboplatin;
Oxaliplatin

In vitro Human colorectal cancer cell (HT-29) ↓NF-kB; G2/M arrest; ↑apoptosis (333)

Dasatinib In vitro
and in
vivo

Human colon cancer cell (SW-620, HCT-116,
HT-29); Female min mice

↓NF-kB activity; ↓IGF-1R; ↓C-Src; ↓EGFRs; ↓cell
growth

(334)

Tamoxifen In vitro Breast cancer cells (MCF-7/LCC9 and MCF-7/
LCC2)

↓NF-kB; ↓Akt/mTOR; ↓Src; ⟂ G2/M cell cycle
arrest

(335)

Retinoic acid In vitro Breast cancer cell lines (MDA-MB-231 and MD-
MB-468)

↓FABP5; ↓PPARb/d; ↓VEGF-A; ↓PDK1 (336)

Doxorubicin In vivo Xenograft 4T1 tumor-bearing mice ↓NF-kB (337)
Sorafenib In vitro

and in
vivo

Hepatocellular carcinoma (Huh7); Athymic BALB/
c nu/nu mice

↓NF-kB/p65; ↓MMP-9 (338)

Resveratrol Cisplatin In vitro
and in
vivo

Breast cancer cells (MDA-MB-231); Xenografts
BALB/c mice

↓tumor growth; ↓TGF-b1; ↓Fibronectin (483)

Cisplatin In vitro Prostate cancer cell (PC3 and DU145) ↑Apoptosis; ↓COX-2; ↓NF-kB; ↑DUSP1 (339)
Cisplatin In vitro Non-small cell lung cancer cell (NCI-H460) ↓Cell invasion; ↓cell migration; ↑apoptosis; ↓NF-

kB; ↓Bcl-2; ↑caspase-3; ↑p53; ↑Bax; ↑p21; ⟂G0/
G1 phases cell cycle

(340)

5-fluorouracil (5-FU) In vitro Colorectal cancer cells (SW480R, HCT116) ↓IkBa kinase; ↓IkBa phosphorylation; ↓NF-kB (341)
Apigenin Paclitaxel In vitro Cervical cancer cell (HeLa) ↑Apoptosis; ↑ROS; ↓SOD activity; ↑cleavage of

caspase-2
(343)

Tamoxifen In vitro Breast cancer cells (MCF-7) ↑Apoptosis; ⟂G2/M phase cell cycle; ↑p53;
↓Cyclin B1

(344)

Gemcitabine In vitro Pancreatic cancer cells (CD18, AsPC-1) ↓Cell proliferation; ⟂ G2/M and S phases cell
cycle; ↑apoptosis; ↓pAkt

(346)

Gemcitabine In vitro
and in
vivo

Pancreatic cancer cells (MiaPaca-2, AsPC-1);
Xenograft BALB/c nude mice

↓NF-kB; ↓tumor growth; ↓Akt; ↑apoptosis (345)

Doxorubicin In vitro Human prostate cancer cell (PC3) ↑Caspases; ↑Bax; ↑cyt c; ↓Bcl-XL; ↑p21; ↑p27;
↓Snail; ↓Twist; ↓MMPs; ↓pERK; ↑PTEN; ↓pPI3K;
↓pAkt

(347)

Cisplatin In vitro Human prostate cancer cell (PC3) ↑Apoptosis; ↑Caspase-8; ↑Apaf-1; ↑p53; ↓Bcl-2;
↑p21; ⟂G2/M and S phases cell cycle

(348)

Cisplatin In vitro
and in
vivo

Human bladder cancer cells (UMUC2, T24);
Swiss albino inbred mice

↓Tumor growth; ↑Mice survival (353)

Cisplatin In vitro
and in
vivo

Oral squamous cell carcinoma (cell lines Tca-
8113 and SCC-15); Xenograft mice models

↓NF-kB; ↑apoptosis; ↑caspase-8 and caspase-9;
↓xIAP

(352)

Adriamycin In vitro
and in
vivo

P388 leukemia cells; Xenograft mice models ↑NF-kB; ⟂S phase cell cycle; ↑Caspase-3; ↓Bcl-2;
↑Bax

(354)

Gemcitabine In vitro Pancreatic cancer cells (PANC-1, BxPC-3);
Hepatocellular carcinoma cell (Huh-7, HepG2)

⟂S phase cell cycle; ↑p53; ↓cyclin D1 (355)

(Continued)
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TABLE 5 | Continued

Compound Antineoplastic
Agent

Types
of

study

Cell line(s)/cancer model(s) Mechanisms of action References

EGCG Sunitinib In vitro
and in
vivo

Human lung carcinoma (H460 and H1975);
Breast carcinoma cells (MCF-7); Xenograft
mouse model

↓IRS/MAPK/p-S6K1; ↓PI3K/Akt; ↓MEK/ERK (357)

Cisplatin In vitro
and in
vivo

Mice bearing Ehrlich ascites carcinoma; Cervical
cancer cell (HeLa); Lung cancer cells (A549);
Monocytic leukemia cell (THP-1)

↓NF-kB activation; ↓cyclin D1, ↓MMP-9, and
VEGF

(356)

Irinotecan In vitro Colorectal cancer cell (HCT116 and RKO) ↓Cell migration; ↓Cell invasion; ⟂S phase cell
cycle; ⟂G2 phase cell cycle; ↓topoisomerase I;
↑DNA damage; ↑apoptosis; ↑autophagy

(358)

Doxorubicin In vitro Bladder cancer cells (SW780 and T24) ↓NF-kB; ↓MDM2; ↑p53; ↑p21; ↑cleaved-PARP (359)
Gemcitabine In vitro

and in
vivo

Pancreatic cancer cells (MIA PaCa-2 and Panc-
1); C57BL/6J mice

↓Cell growth; ↓cell invasion; ↓cell migration; ↓Akt (360)

Cisplatin In vitro
and in
vivo

Ovary cancer cell (OVCAR3, SKOV3); Xenograft
mouse model

↑Cisplatin; ↑DNA-Pt adducts; ↑copper transporter
1

(361)

Naringin Doxorubicin In vitro
and in
vivo

Esophageal cancer stem cell (YM1); Xenograft
mouse model

↓Tumor size; ↓systemic toxicity; ↓Cell viability;
↑apoptosis; ⟂S phase cell cycle

(362)

Paclitaxel In vitro Prostate cancer cells (PC3, DU145, and LNCaP) ↓Cell survival; ↑apoptosis; ⟂ G1 phase cell cycle (363)
Baicalin Cisplatin In vitro Lung cancer cells (A549 and A549/DPP) ⟂S1 phase cell cycle; ↑apoptosis; ↑DNA damage;

↑Bax; ↓Bcl-2; ↓cyclin D1; ↓DNA repair
(364)

Doxorubicin In vitro Breast cancer cells (MCF-7, MDA-MB-23) ↑ROS; ↑apoptosis (365)
Arctigenin Cisplatin In vitro Colorectal cancer cells (SW480 and SW620) ↑Autophagy; ↑apoptosis; ↑Cleaved caspase-3;

↑LC3-II; ↓LC3-I
(368)

Cisplatin In vitro Non small lung cancer cell (H460) ↓Survivin; ⟂G1/G0 phase cell cycle; ↑apoptosis;
↑cleavage of caspase-3

(367)

Cisplatin In vitro Hepatocellular cancer cells (HepG2); Human
cervical cancer (HeLa)

↓STAT3; ↓pSTAT3; ↓Src; ↓JAK1; ↓JAK2; ↓ERK;
↓Akt

(366)

Morin In vitro Ovarian cancer cells (SK-OV-3, TOV-21G) ↓Cell viability; ↓cell proliferation; ↑apoptosis;
↑galectin-3

(369)

Chrysin Doxorubicin In vitro Lung cancer cells (H157, H1975, A549, H460) ↓GSH; ↑cell death (370)
Pterostilbene Tamoxifen In vitro Breast cancer cells (ZR-751 and MCF7) ↓Cell viability; ↑apoptosis (371)
Zerumbone Cisplatin In vitro Human NSCLC cells (A549 and NCI-H460) ↑p53; ↑ROS (372)

In vitro Prostate cancer cells (DU145 and PC3) ↓Cell growth; ↓JAK2; ⟂G0/G1 phase cell cycle;
↑apoptosis

(373)

Andrographolide Doxorubicin In vitro Hepatocellular cancer cell (HepG2); Cervical
cancer cell (HeLa); Breast cancer cell (MDA-MB-
231); Colorectal cancer cell (HCT116)

↓JAK-STAT3 pathway; ↓pSTAT3; ↓JAK1/2;
↑Apoptosis

(374)

Doxorubicin In vitro
and in
vivo

Murine breast cancer cell (4T1); Xenograft BALB/
c nude mice

↓Tumor growth; ↓HUVEC; ↓VEGFR2; ↓cell
migration; ↓cell invasion

(375)

Gemcitabine In vitro Pancreatic cancer cells (SW1990, Panc-1, AsPC-
1, BxPC-3, and Capan-1)

↓STAT3; ↓Akt; ↑Apoptosis; ↑p21Waf1; ↑Bax;
↓Cyclin D1; ↓cyclin E; ↓survivin; ↓X-IAP; ↓Bcl-2

(376)

Cisplatin In vitro
and in
vivo

Human NSCLC cell (A549, LLC); C57BL/6 mice ↑Apoptosis; ↓LC3B-I; ↓LC3B-II; ↓Atg5 (377)

Carnosic acid Cisplatin In vitro
and in
vivo

Mouse Lewis lung cancer cell (LLC); C57BL/6
mice

↑IFN-g; ↑FasL; ↑granzyme B; ↓MDSC; ↓iNOS2;
↓Arg-1; ↓MMP-9

(378)

Tamoxifen In vitro
and in
vivo

Breast cancer cells (MCF-7 and T47D); Mouse
xenograft model

↑Apoptosis; ↑caspase-3; ↓Bcl-2; ↓Bcl-XL; ↑DcR1;
↑DcR2; ↑TRAIL; ↑Bax; ↑Bad

(379)

Triptolide Cisplatin In vitro
and in
vivo

Human gastric adenocarcinoma (AGS, SC-M1);
SCID mouse xenograft model

↑Apoptosis (380)

Cisplatin In vitro Breast cancer cells (BT549, MDA-MB-231) ↑DNA breaks; ⟂S phase cell cycle; ↑DNA
damage; ↓PARP1; ↓XRCC1; ↓RAD51

(382)

Cisplatin In vitro Human bladder cancer cells (T24R2) ↑Caspase-9; ↑PARP; ↑cyt c; ↓pAkt; ↓pERK (381)
Paclitaxel Human lung adenocarcinoma cell (A549);

Xenografts balb/c-nude mice
↓Tumor growth; ↓tumor volume; ↓tumor size (383)

(Continued)
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TABLE 5 | Continued

Compound Antineoplastic
Agent

Types
of

study

Cell line(s)/cancer model(s) Mechanisms of action References

In vitro
and in
vivo

Hydroxycamptothecin In vitro Bladder cancer cell (EJ, UMUC3) ⟂G1 phase cell cycle; ↓CDK4; ↓CDK6; ↓Cyclin
D1; ↓Akt

(385)

Hydroxycamptothecin In vitro Pancreatic cancer cell (PANC-1) ↓NF-kB; ↑caspase-9, caspase-3 (384)
Doxorubicin In vitro MDA-MB-231 and MCF7 ↑Apoptosis; ↓ATM; ↑DDR; ↑DNA break (387)

Ursolic acid Gemcitabine In vitro
and in
vivo

Human pancreatic cancer cells (Panc-28, MIA
PaCa-2, AsPC-1); Orthotopic nude mouse model

↓NF-kB; ↓STAT3; ↓cell proliferation; ↑apoptosis;
↓angiogenic

(389)

Oxaliplatin In vitro
and in
vivo

Colorectal cancer cells (RKO, SW620, LoVo,
SW480); Xenograft mouse model

↓NF-kB; ↓cell proliferation; ↑Apoptosis; ↓ERK1/2;
↓JNK; ↓Akt; ↓IKKa; ↓pMAPK; ↓PI3K/Akt;

(390)

Cisplatin In vitro Human cervical cancer cells (C-33A, HeLa, ME-
180, SiHa);

↓NF-kB p65; ↑apoptosis; ↓Cell growth; ↓Bcl-2 (391)

Paclitaxel In vitro
and in
vivo

Ovarian carcinoma cells (HEC-1A and OVCAR-3);
Nude mouse xenograft model

↓PI3K/Akt/NF-kB; ↑apoptosis; ↑pJNK; ↓pAkt;
↑JNK

(388)

Oridonin Cisplatin In vitro Human ovarian cancer cells (A2780, SKOV3) ↑Apoptosis; ↓MMP; ⟂G0/G1 phase cell cycle (393)
Gemcitabine In vitro Pancreatic cancer cell (PANC−1) ↓Bcl−2/Bax ratio; ↑Cyt c; ↑caspase−3; ↑caspase

−9; ↑apoptosis; ⟂G1 phase cell cycle
(392)

Doxorubicin In vitro Breast cancer cell (MDA-MB-231) ↑Apoptosis; ↓Bcl-2/Bax; ↓PARP; ↓caspase 3;
↓survivin; ↓blood vessel formation

(394)

Cisplatin In vitro Lung cancer cell (A549/DDP); Xenograft BABL/c
mice

↑Tumor inhibition (395)

Ginsenoside
Rg3

Paclitaxel In vitro
and in
vivo

Breast cancer cell (BT-549, MDA-MB-231, MDA-
MB-453); Xenograft BALB/c nu/nu mice

↓NF-kB (396)

Cisplatin In vitro
and in
vivo

Human NSCLC cell lines (H1299, SPC-A1, and
A549); Xenograft tumor mice model

↓NF-kB (398)

Cisplatin In vitro Human NSCLC cell line (A549) ↓NF-kB p65; ↓PD-L1; ↓Akt (397)
Gefitinib In vitro Human NSCLC cell line (H1299, A549) ↓Cell migration; ↑Bax; ↑cleaved-caspase-3; ↓Bcl-2 (399)
5-FU In vitro Esophageal squamous cell carcinoma (TE-1,

ECA-109); Lung cancer cells (H460)
↑DNA damage; ↓DNA repair; ↓DNA replication;
↓CHEK1 degradation; ↓autophagy

(400)

Docetaxel In vitro Colon cancer cells (HCT116, SW620) ↓NF-kB; ↑Bax; ↑caspase-3; ↑Caspase-9 (401)
Docetaxel In vitro Prostate cancer cells (DU145, LNCaP, PC-3) ↓NF-kB; ↑apoptosis; ⟂G0/G1 phase cell cycle (402)

Lycopene Cisplatin In vitro Cervical cancer cell (HeLa) ↓NF-kB; ↓cell viability; ↑Bax; ↓Bcl-2; ↑Nrf-2 (403)
Berberine Doxorubicin In vitro Lung cancer cell (NCI-H1975, NCI-H460) ↓STAT3; ↓cell proliferation; ↑Apoptosis (404)

Doxorubicin In vitro Breast cancer cell (MCF-7) ↓Nanog; ↓miRNA-21 (405)
Doxorubicin In vitro Breast cancer cell (4T1) ↓HMGB1-TLR4 axis (406)
Cisplatin In vitro Ovarian cancer cell (A2780) ↓miR-93/PTEN/Akt; ↑Apoptosis; ⟂G0/G1 phase

cell cycle; ↓miR-93
(407)

Cisplatin In vitro Breast cancer cell (MCF-7) ↓Cell growth; ↑DNA breaks; ↑Apoptosis;
↑Capase-3; ↑Cleaved capspase-3; ↑Caspase-9;
↓Bcl-2

(408)

Irinotecan In vitro Colon cancer cells (HCT116) ↓NF-kB; ↓c-IAP1, c-IAP2, survivin and Bcl-XL (409)
Piperlongumine Oxaliplatin In vitro

and in
vivo

Gastric cancer cell (BMS-582949, SP600125);
Nude mice xenograft model

↑ROS; ↓TrxR1; ↑DNA damage; ↑p38; ↑JNK (414)

Oxaliplatin In vitro
and in
vivo

Colon cancer cells (HCT-116, LoVo); Xenograft
mouse model

↑Oxidative stress; ↑ROS; ↑Apoptosis (413)

Cisplatin In vitro
and in
vivo

HNSCC (AMC-HN3 and AMC-HN9); BALB/c
athymic nude mice

↑ROS; ↑JNK; ↑PARP; ⟂Sub-G1 phase cell cycle (410)

gemcitabine In vitro
and in
vivo

Pancreatic cells (PCNA and Ki-67); Xenograft
mouse model

↓NF-kB (411)

Doxorubicin Breast cancer cells (MDA-MB-231, MDA-MB-
453); Mice models

↑Apoptosis; ↓JAK2/STAT3; ↓cell growth;
↑apoptosis

(412)

(Continued)
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TABLE 5 | Continued

Compound Antineoplastic
Agent

Types
of

study

Cell line(s)/cancer model(s) Mechanisms of action References

In vitro
and in
vivo

Harmine Paclitaxel In vitro Gastric cancer cells (SGC-7901 and MKN-45) ↓Cell migration; ↓cell invasion; ↓MMP-9; ↓COX-2 (416)
Paclitaxel In vitro Gastric cancer cell (SGC-7901) ↓Bcl-2; ↑Bax; ↓PCNA; ↓COX-2 (417)
Gemcitabine In vitro Pancreatic cancer cells (BxPC-3, CFPAC-1,

PANC-1, SW-1990)
↑Apoptosis; ↓cell proliferation; ↑cleavage of PARP;
↑caspase-3; ↓Akt/mTOR

(418)

Matrine Irinotecan In vitro Colorectal cancer cell (HT29) ↑Apoptosis; ↑topoisomerase I; ↑Bax; ↑caspase-3 (419)
Cisplatin In vitro

and in
vivo

Mouse cervical cancer cell (U14); Kunming mice ↑TSLC1; ↓tumor growth (422)

Sophoridine Cisplatin In vitro
and in
vivo

Lung cancer cells (NCIH446, NCI-H1299, NCI-
H460, A549); Xenograft model in BALB/c mice

↑p53; ↑Hippo signaling (423)

Sulforaphane Everolimus In vitro Bladder cancer cells (TCCSUP, RT112, UMUC3) ↓Cell growth; ↓cell proliferation; ↑p19; ↑p27;
↓phosphorylation of CDK1; ↓CDK1; ↓cyclin B; ⟂S
phase cell cycle

(427)

Oxaliplatin In vitro Colorectal cancer cells (Caco-2) ↓Cell proliferation; ↓ATP; ↑DNA cleavage;
↑caspase-3

(424)

Gefitinib In vitro Lung adenocarcinoma cell (PC9) ↓Cell proliferation; ↓SHH; ↓SMO; ↓GLI1 (426)
Paclitaxel In vitro Breast cancer cell lines (MDA-MB-231 and MCF-

7)
↓NF−kB (425)

Salinomycin In vitro
and in
vivo

Colorectal cancer cells (Caco-2 and CX-1);
Xenografted nude mice

↓PI3K/Akt; ↑p53; ↑apoptosis; ↓Bcl-2; ↑Bax; ↑Bax/
Bcl-2 ratio; ↑PARP cleavage

(428)

Shikonin Gemcitabine In vitro
and in
vivo

Pancreatic cancer cell (BxPC-3, PANC-1, AsPC-
1); Xenograft mouse model

↓NF-kB; ↓tumor growth; ↓Cell proliferation; ↓micro
vessel density; ↑apoptosis;

(429)

Gefitinib In vitro
and in
vivo

Human NSCLC cells (HCC827, H1299, A549,
H1975); Nude mice

↑PKM2; ↓cell proliferation; ⟂G0/G1 phase cell
cycle; ↑apoptosis; ↓PKM2/STAT3/cyclin D1

(430)

Paclitaxel In vitro Esophageal cancer cells (KYSE270, KYSE150) ↑Apoptosis; ↓cell growth; ↓cell mitotic; ↓Bcl-2;
↑p53

(431)

4-hydroxytamoxifen In vitro
and in
vivo

Breast cancer cell lines (MCF−7 and MDA−MB
−435S); BALB/c mice model

↑Apoptosis; ↓mitochondrial membrane potential;
↑ROS; ↓PI3K/AKT/caspase 9

(432)

Phenethyl
isothiocyanate

Paclitaxel In vitro Breast cancer cells (MCF7, MDA-MB-231) ↓Cell growth; ↑Apoptosis; ⟂G2/M phase cell cycle (433)
Paclitaxel In vitro Breast cancer cells (MCF7, MDA-MB-231) ↑Apoptosis; ↑acetylation of alpha-tubulin; ↓Cdk1;

↓Bcl-2; ↑Bax; ↑cleavage of PARP
(434)

Garcinol Cisplatin In vitro Ovarian cancer cells OVCAR-3 ↓NF-kB; ↓PI3K/Akt phosphorylation; ↑Bax; ↓p-
PI3K; ↓pAkt proteins; ⟂S phase cell cycle;
↑apoptosis

(437)

Paclitaxel In vitro
and in
vivo

Breast cancer cell (4T1); Balb/c mice metastasis
model

↓NF-kB/Twist1; ↓caspase-3/iPLA2; ⟂G2/M phase
arrest

(438)

Hispidin Gemcitabine In vitro Pancreatic cancer cells (BxPC-3 and AsPC-1) ↓NF-ĸB; ↓cell proliferation; ↓Bcl-2; ↑tumor
suppressor p53; ↑cleaved caspase-3; ↑cleaved
PARP

(439)

Genistein Gemcitabine In vitro Osteosarcoma cells (MG-63 and U2OS) ↓Akt/NF-kB (440)
Genistein Gemcitabine In vitro

and in
vivo

– ↓NF-kB; ↓Akt (441)

Ginkgolide B Gemcitabine In vitro Pancreatic cancer cell (BxPC-3 and CAPAN1) ↓PAFR/NF-кB (443)
Icariin Gemcitabine In vitro

and in
vivo

Human gallbladder carcinoma cell (GBC-SD and
SGC-996); BALB/c (nu/nu) mice

↓NF-kB; ⟂G0/G1 phase arrest; ↓Bcl-2; ↓Bcl-XL (444)

Zyflamend Gemcitabine In vitro
and in
vivo

Pancreatic cancer cell (AsPC-1, BxPC-3, MIA
PaCa-2, PANC-1); Orthotopic mouse model

↓NF-kB (445)

(Continued)
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overcoming MDR in breast cancer cells. Such co-administration
successfully targeted CD44 receptor-mediated targeting with a
low half-maximal inhibitory concentration (IC50) value by
increasing cell cycle arrest in the G2/M phase and destroying
microtubules. Quercetin also decreased paclitaxel efflux by
downregulating the expression of P-gp (349). In another study,
Zafar et al. (461) used phosphorylated chitosan nanoparticles
loaded with a-lipoic acid to overcome chemotherapy resistance.
The nanodelivery system was able to cross the cell barrier and
expose the MDA-MB-231 cells to a high load of the therapeutic
agent. Similar nanoparticles were also used for loading quercetin
and paclitaxel simultaneously (462). The efficacy of curcumin
and temozolomide co-delivery to chemoresistant cells was
highlighted by Bagherian et al. (458). In this study, the
curcumin nanomicelles demonstrated high cytotoxic effects
against U87 cells by attenuating apoptotic and autophagic
mediators. Zafar et al. (461) also used a phytochemical,
thymoquinone, to prevent chemoresistance to docetaxel (e.g.,
endosomes escape). The neoplastic agent was loaded in chitosan
nanoparticles and exhibited cytotoxicity against MCF-7 and
MDA-MAB-231 cancer cell lines. Recently, a functionalized
dendrimer has also been employed to co-deliver siRNA and
curcumin to target HeLa cancer cells. Such co-administration
increased the cytotoxicity against cancer cells by reducing Bcl-2
and improving apoptosis (463). Baicalein nanoparticles targeted
folate and hyaluronic acid to display anticancer effects on
paclitaxel-resistant lung cancer cells by decreasing tumor
growth and cell viability (464). The nanosuspension of another
flavonoid, chrysin, showed anticancer effects against HepG2 cells
by blocking cell growth (465). The phytosome of luteolin,
another flavonoid, exhibited anticancer activity against MDA-
MB-231 cells by reducing the expression of Nrf-2/HO-1 and
decreasing cell viability (466). Poly-lactic acid (PLA)-
Frontiers in Oncology | www.frontiersin.org 30
polyethylene glycol (PEG) nanoformulation of luteolin also
demonstrated anticancer effects against TU212 HNSCC cells,
H292 lung cancer cells, and a xenograft mouse model of head
and neck cancer (467).

Nanostructured lipid carriers were also used for dual drug
loading of imatinib and curcumin to target the CD20 receptor of
lymphoma cells. This co-delivery system displayed promising
responses in resistant tumor cells (468). By regulating oxidative
stress and apoptosis, phyto-nanocomposites diffuse into the
organelles of cancer cells and overcome chemoresistance
through multiple signaling pathways, including TLR/NF-kB/
NLRP, ERK/MAPK/JNK, stress-activated protein kinase/JNK,
TRAIL, PI3K/Akt, and p53/caspase mediated apoptotic
pathways (469).

Poly(lactic-co-glycolic acid nanoparticles of 4-methyl-7-
hydroxy coumarin (a synthetic coumarin) and dendrosomal
nanoformulation of farnesiferol c (a coumarin) demonstrated
anticancer effects by decreasing cell proliferation in gastric
cancer cells and by modulating the Bax/Bcl-2 ratio (470).
Other phytochemicals , such as flavonolignans PEG
nanoliposomes, silibinin, and glycyrrhizic acid, demonstrated
anticancer effects by decreasing cell viability in HepG2
cells (471).

A nanoformulation of honokiol, a lignan, showed anticancer
effects in lung cancer cell lines by inducing cell cycle arrest in the
G0/G1 phase (459). Silver nanoparticles of plumbagin, a
naphthoquinone, induced apoptosis in the human skin cancer
cells HaCaT and A431, producing free radicals and increasing
pyruvate kinase activity (472). Liposomal phytochemicals may
possess anticancer effects in intravenous usage. The liposomal
carrier significantly increased plasma levels of curcumin in a
dose-dependent manner in cancer patients. In one clinical study,
liposomal curcumin showed acceptable plasma concentration
TABLE 5 | Continued

Compound Antineoplastic
Agent

Types
of

study

Cell line(s)/cancer model(s) Mechanisms of action References

Tangeretin Cisplatin In vitro Human lung cancer cell (A549, A2780) ↓NF-kB; ↓PI3K/Akt; ↓apoptosis; ↓p-Akt;
↓phospho-GSK-3b; ↓phospho-BAD; ⟂G2-M
phase arrest

(446)

Galangin Cisplatin In vitro
and in
vivo

Mice xenograft model ↓NF-kB; ↓STAT3; ↓Bcl-2/Bax; ↓p-STAT3/p65;
↓Bcl-2

(447)

Cepharanthine Cisplatin In vitro
and in
vivo

Human ESCC cell line (Eca109); BALB/c nude
mice

↑TNFR1-JNK; ↓Bcl-2 (448)

Icariside II Paclitaxel In vitro Human melanoma cell (A375) ↑Apoptosis; ↑cleaved caspase-3; ↓IL-8; ↓VEGF;
↓TLR4

(449)

Caffeic acid Paclitaxel In vitro Human lung cancer cell (A549 and H1299) ↓NF-kB (450)
Oxymatrine 5-FU In vitro Colon cancer cell (HCT-8/5-FU) ↓NF-kB; ↓vimentin (451)
Troxerutin 5-FU In vitro

and in
vivo

Human gastric cancer (SGC7901); Mice
xenograft model

↓STAT3/NF-kB; ↓Bcl-2 (452)

Calebin a 5-FU In vitro Colorectal cancer cell (HCT116) ↓p65-NF-kB (453)
Parthenolide Oxaliplatin In vitro Human lung cancer cell (A549) ↓NF-kB; ↑apoptosis; ↓COX-2; ↓PGE2 (454)
Forbesione and
isomorellin

Doxorubicin In vitro Human cholangiocarcinoma cells (KKU-100,
KKU-M139, KKU-M156)

↓NF-kB; ↑Bax/Bcl-2; ↑caspase-9; ↓survivin (455)

Dioscin Adriamycin In vitro Leukemia K562 cell ↓NF-kB ↓MDR1 (456)
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with a significant but temporary decrease in tumor markers such
as prostate-specific antigen and carcinoembryonic antigen, in
patients with metastatic tumors. Additionally, liposomal
curcumin inhibited sphingosine kinase (473). Lipocurcumin is
known to be a safe drug that significantly suppresses cancer
markers via apoptosis and cell cycle arrest. The curcumin
nanoparticle suppressed STAT3/NF-kB, thereby inducing
apoptosis. Accordingly, the phase Ib/IIa clinical trial showed
no drug-related severe toxicity while maintaining an inhibitory
effect on cancer resistance. Such nanoparticles could target
cancer-specific mediators in solid tumors (473).

The hyaluronic acid-modified PEGylated liposomes of
doxorubicin-stigmasterol were used against chemoresistant
breast cancer (474). Gold nanoparticles have shown promising
potential in both cancer chemotherapy and immunotherapy
(475). Resveratrol gold nanoparticles improved antitumor
activity through mitochondrial accumulation and apoptosis
both in vitro and in vivo. Gold nanoresveratrol also elevated
the expression of caspase-8 and Bax, while reducing pro-caspase-
3 and pro-caspase-9. Ginseng-derived nanoparticles are another
phytonanocompound that induced M2 to M1 macrophage
polarization through TLR4 and MyD88 signaling. It also
produced ROS and increased apoptosis of melanoma cells (476).
Frontiers in Oncology | www.frontiersin.org 31
Various nanoparticlesmay represent a novel class of nano-targeted
systems in cancer immunotherapy and chemotherapy (Table 6).
CONCLUSION, CURRENT LIMITATIONS,
AND FUTURE PERSPECTIVES

Agrowing number of reports have highlighted the difficulty of
chemoresistance when administering chemotherapy and
immunotherapy. Several complex pathophysiological
mechanisms behind chemoresistance have been discovered. Of
those mechanisms, TLR/NF-kB/NLRP has been identified as a
crucial aspect in the development of chemoresistance. The TLR/
NF-kB/NLRP pathway is interconnected with several
inflammatory, oxidative stress, and apoptotic mediators. Thus,
there is an urgent need to develop novel multi-targeted agents to
overcome drug resistance and restore the sensitivity of current
chemotherapeutic drugs. Plant secondary metabolites (e.g.,
polyphenols, alkaloids, terpenes/terpenoids, and sulfur
compounds) are potential multi-targeted anticancer agents that
may combat chemoresistant dysregulated mediators. We have
also reviewed the potential of phytochemicals in the modulation
of the tumor microenvironment (13, 33, 480). Despite the
TABLE 6 | Phytonanocompounds against chemoresistance, by targeting TLR/NF-kB/NLRP pathway and interconnected mediators.

Compound Nanoparticle type Type
of

study

Cell line(s) cancer model(s) Mechanisms of action References

Curcumin NLCs; liposome In vitro Cervical cancer cell (HeLa);
Glioblastoma cells (U87 MG); Prostate
cancer cell lines (LNCaP & C4-2B)

↓Bcl-2; ↑apoptosis; ↓PSA, CEA, CA 19-9;
↑sphingosine kinase inhibitory activity

(463, 477)

Quercetin Different nanoparticles In vitro
and in
vivo

Brest cancer cell line; Human prostate
cancer (PC-3); Nude male BALB/c
mice

↑cd44 activity; ↑apoptosis; ↑G2M phase
arrest; ↓P-gp expression

(349)

Coumarins Dendrosome In vitro Gastric adenocarcinoma (AGS) ↑Apoptosis; ↑DNA fragmentation;
↑caspase-3

(470)

Silibinins Nanoliposome In vitro Hepatocellular carcinoma cell (HepG2) ↓Cell viability (471)
Resveratrol Nanoparticles based on poly(epsilon-

aprolactone) and poly(D,L-lactic-co-glycolic
acid)-poly(ethylene glycol); Gold NPs

In vitro
and in
vivo

Prostate cancer cells (PC-3, LNCaP,
DU-145)

↓Cell growth & proliferation; ↑ROS;
↑caspase-3; caspase-8; ↑Apoptosis;
↑Bax; ↓pro-caspase-3; pro-caspase-9

(478)

Honokiol Nanomicellar In vitro
and in
vivo

Lewis lung cancer LL/2 cell lines ↑Cell cycle arrest at G0/G1 phase (459)

Plumbagin Different nanoparticles In vitro Epidermoid carcinoma cell (HacaT,
A431)

↑Free radicals; ↑pyruvate kinase activity (472)

Biacalein Different nanoparticles In vitro Human lung cancer cell (A549) ↓Cell viability (465)
Luteolin Different nanoparticles In vitro Breast cancer cells (MDA-MB-231);

Human lung cancer cell (H292)
↓Nrf-2 expression; ↑Akt (466)

Ginseng Different nanoparticles In vivo
and in
vitro

Melanoma cells ↑TLR4; ↑ROS; ↑M1 macrophages (476).

Taxan
alkaloids

Liposome & polymeric micelle formulation In vivo Gastric cancer; Prostate cancer cell
lines (PC3, DU145, and LNCaP)

↓Cell survival; ↑apoptosis; ⟂G1 phase cell
cycle

(479)

Taxan
alkaloids

Liposome In vitro Colon cancer cells (HCT116, SW620);
Prostate cancer cells (DU145, LNCaP,
PC-3)

↓P-gp (401)

Vinca
alkaloids

Liposome In vitro Colorectal cancer cell (HCT116 and
RKO)

↑DNA damage; ↑cell cycle arrest (358)
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effectiveness of plant secondary metabolites in regulating
chemoresistance-associated pathways, their low solubility, poor
bioavailability, instability, and low selectivity limit clinical
efficacy and therapeutic uses in cancer treatment. The
applicability of nanotechnology has greatly improved
bioavailability, cellular uptake, efficacy, and specificity of
anticancer phytochemicals, thereby overcome those
pharmacokinetic limitations (6, 13, 457, 481). In line with this,
liposomes, polymeric nanoparticles, micelles, nanodispersion,
nanostructured lipid carriers, and dendrimers of plant
secondary metabolites have played pivotal roles in reducing
chemoresistance (482).

In this systematic and comprehensive review, the critical roles
of phytochemicals have been highlighted in the modulation of
TLR/NF-kB/NLRP to combat chemoresistance. The need to
develop novel delivery systems of plant secondary metabolites
and targeted therapy is also highlighted. Further research should
be performed involving additional dysregulated mechanisms in
chemoresistance which may reshape therapeutic approaches to
utilize plant-derived secondary metabolites (Figure 8). Additional
studies should consist of extensive in vitro and in vivo
experimentation to further unveil emergent chemoresistance
Frontiers in Oncology | www.frontiersin.org 32
signaling pathways, as well as well-controlled clinical trials. Such
reports may reform current therapeutic strategies, allowing
treatment methods to obtain higher potency/efficacy with fewer
side effects and less chemoresistance by using phytochemicals that
target the TLR/NF-kB/NLRP signaling pathway.
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FIGURE 8 | Targeting chemoresistance-related signaling pathways and interconnected mediators by phytochemicals. CDK, cyclin-dependent kinase; ERK,
extracellular-regulated kinase; GSK-3, glycogen synthase kinase-3; HO-1, heme oxygenase 1; JAK, Janus kinase; NOS, nitric oxide synthase; MAPK, mitogen-
activated protein kinase; MDR, multidrug resistance; MMP; matrix-metalloproteinase; mTOR, mammalian target of rapamycin; NLRP, nod-like receptor pyrin domain-
containing; NOS, nitric oxide synthase; Nrf-2, nuclear factor-erythroid factor 2-related factor 2; PI3K, phosphoinositide 3-kinases; ROS, reactive oxygen species;
STAT, signal transducer and activator of transcription; VEGF, vascular endothelial growth factor.
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111. Mutlu Altundağ E, Yılmaz AM, Serdar BS, Jannuzzi AT, Koçtürk S, Yalçın
AS. Synergistic Induction of Apoptosis by Quercetin and Curcumin in
Chronic Myeloid Leukemia (K562) Cells: II. Signal Transduction Pathways
Involved . Nutr Cancer (2021) 73(4) :703–12 . doi : 10 .1080/
01635581.2020.1767167

112. Yusuf N, Nasti TH, Meleth S, Elmets CA. Resveratrol Enhances Cell-
Mediated Immune Response to DMBA Through TLR4 and Prevents
DMBA Induced Cutaneous Carcinogenesis. Mol Carcinog (2009) 48
(8):713–23. doi: 10.1002/mc.20517

113. Panaro MA, Carofiglio V, Acquafredda A, Cavallo P. And Cianciulli, AAnti-
Inflammatory Effects of Resveratrol Occur via Inhibit ion of
Lipopolysaccharide-Induced NF-kb Activation in Caco-2 and SW480
Human Colon Cancer Cells. Br J Nutr (2012) 108(9):1623–32. doi:
10.1017/S0007114511007227

114. Estrov Z, Shishodia S, Faderl S, Harris D, Van Q, Kantarjian HM, et al.
Resveratrol Blocks Interleukin-1b–Induced Activation of the Nuclear
Transcription Factor NF-kb, Inhibits Proliferation, Causes S-Phase Arrest,
and Induces Apoptosis of Acute Myeloid Leukemia Cells. Blood (2003) 102
(3):987–95. doi: 10.1182/blood-2002-11-3550

115. Li W, Ma J, Ma Q, Li B, Han L, Liu J, et al. Resveratrol Inhibits the Epithelial-
Mesenchymal Transition of Pancreatic Cancer Cells via Suppression of the
March 2022 | Volume 12 | Article 834072

https://doi.org/10.3390/molecules25214926
https://doi.org/10.1080/10408398.2020.1865870
https://doi.org/10.3389/fbioe.2020.00238
https://doi.org/10.3389/fbioe.2020.00238
https://doi.org/10.1016/j.phymed.2021.153664
https://doi.org/10.3390/molecules26102917
https://doi.org/10.2174/1570159X19666210809103346
https://doi.org/10.2174/1570159X19666210809103346
https://doi.org/10.7314/APJCP.2014.15.5.2329
https://doi.org/10.7314/APJCP.2014.15.5.2329
https://doi.org/10.3892/or.2018.6485
https://doi.org/10.3892/or.2019.7278
https://doi.org/10.18433/jpps30493
https://doi.org/10.1016/j.oraloncology.2011.06.010
https://doi.org/10.1016/j.oraloncology.2011.06.010
https://doi.org/10.1016/j.bcp.2005.04.043
https://doi.org/10.4251/wjgo.v12.i10.1091
https://doi.org/10.3892/ol.2018.9488
https://doi.org/10.1002/mnfr.201801097
https://doi.org/10.3892/ol.2021.12447
https://doi.org/10.3892/ol.2021.12447
https://doi.org/10.3892/or.2020.7765
https://doi.org/10.7314/APJCP.2012.13.10.5287
https://doi.org/10.3892/ijo.2017.4097
https://doi.org/10.3892/ijo.2017.4097
https://doi.org/10.1186/1477-3155-5-3
https://doi.org/10.1158/1078-0432.CCR-08-0024
https://doi.org/10.1016/j.phymed.2012.07.002
https://doi.org/10.1038/srep13429
https://doi.org/10.1038/srep13429
https://doi.org/10.3109/13880209.2015.1060508
https://doi.org/10.1080/13880209.2019.1701042
https://doi.org/10.1155/2020/3860213
https://doi.org/10.18632/oncotarget.2534
https://doi.org/10.1016/j.phymed.2018.09.224
https://doi.org/10.1080/01635581.2020.1767167
https://doi.org/10.1080/01635581.2020.1767167
https://doi.org/10.1002/mc.20517
https://doi.org/10.1017/S0007114511007227
https://doi.org/10.1182/blood-2002-11-3550
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Fakhri et al. Phytochemicals Modulate the TLR/NF-kB/NLRP Signaling in Cancer
PI-3k/Akt/NF-kb Pathway. Curr Med Chem (2013) 20(33):4185–94. doi:
10.2174/09298673113209990251

116. Salla M, Pandya V, Bhullar KS, Kerek E, Wong YF, Losch R, et al. Resveratrol
and Resveratrol-Aspirin Hybrid Compounds as Potent Intestinal Anti-
Inflammatory and Anti-Tumor Drugs. Molecules (2020) 25(17):3849. doi:
10.3390/molecules25173849

117. Ivanov VN, Partridge MA, Johnson GE, Huang SX, Zhou H, Hei TK.
Resveratrol Sensitizes Melanomas to TRAIL Through Modulation of
Antiapoptotic Gene Expression. Exp Cell Res (2008) 314(5):1163–76.
doi: 10.1016/j.yexcr.2007.12.012

118. Kim YA, Lee WH, Choi TH, Rhee SH, Park KY, Choi YH. Involvement of
P21waf1/CIP1, pRB, Bax and NF-kappaB in Induction of Growth Arrest and
Apoptosis by Resveratrol in Human Lung Carcinoma A549 Cells. Int J Oncol
(2003) 23(4):1143–9.

119. Rasheduzzaman M, Jeong JK, Park SY. Resveratrol Sensitizes Lung Cancer
Cell to TRAIL by P53 Independent and Suppression of Akt/NF-kb Signaling.
Life Sci (2018) 208:208–20. doi: 10.1016/j.lfs.2018.07.035

120. Huang H, Lin H, Zhang X, Li J. Resveratrol Reverses Temozolomide
Resistance by Downregulation of MGMT in T98G Glioblastoma Cells by
the NF-kb-Dependent Pathway. Oncol Rep (2012) 27(6):2050–6.
doi: 10.3892/or.2012.1715

121. Yu HB, Zhang HF, Zhang X, Li DY, Xue HZ, Pan CE, et al. Resveratrol
Inhibits VEGF Expression of Human Hepatocellular Carcinoma Cells
Through a NF-Kappa B-Mediated Mechanism. Hepatogastroenterology
(2010) 57(102-103):1241–6.

122. Wang Z, Zhang L, Ni Z, Sun J, Gao H, Cheng Z, et al. Resveratrol Induces
AMPK-Dependent MDR1 Inhibition in Colorectal Cancer HCT116/L-OHP
Cells by Preventing Activation of NF-kb Signaling and Suppressing cAMP-
Responsive Element Transcriptional Activity. Tumour Biol (2015) 36
(12):9499–510. doi: 10.1007/s13277-015-3636-3

123. Gao J, Ma F, Wang X, Li G. Combination of Dihydroartemisinin and
Resveratrol Effectively Inhibits Cancer Cell Migration via Regulation of the
DLC1/TCTP/Cdc42 Pathway. Food Funct (2020) 11(11):9573–84.
doi: 10.1039/d0fo00996b

124. Fan S-H, Wang Y-Y, Lu J, Zheng Y-L, Wu D-M, Li M-Q, et al. Luteoloside
Suppresses Proliferation and Metastasis of Hepatocellular Carcinoma Cells
by Inhibition of NLRP3 Inflammasome. PloS One (2014) 9(2):e89961. doi:
10.1371/journal.pone.0089961

125. Ho HH, Chang CS, Ho WC, Liao SY, Wu CH, Wang CJ. Anti-Metastasis
Effects of Gallic Acid on Gastric Cancer Cells Involves Inhibition of NF-
kappaB Activity and Downregulation of PI3K/AKT/small GTPase Signals.
Food Chem Toxicol (2010) 48(8-9):2508–16. doi: 10.1016/j.fct.2010.06.024

126. Zeng M, Su Y, Li K, Jin D, Li Q, Li Y, et al. Gallic Acid Inhibits Bladder
Cancer T24 Cell Progression Through Mitochondrial Dysfunction and
PI3K/Akt/NF-kb Signaling Suppression. Front Pharmacol (2020) 11:1222.
doi: 10.3389/fphar.2020.01222

127. Han M, Song Y, Zhang X. Quercetin Suppresses the Migration and Invasion
in Human Colon Cancer Caco-2 Cells Through Regulating Toll-Like
Receptor 4/Nuclear Factor-Kappa B Pathway. Pharmacogn Mag (2016) 12
(Suppl 2):S237. doi: 10.4103/0973-1296.182154

128. Priyadarsini RV, Murugan RS, Maitreyi S, Ramalingam K, Karunagaran D,
Nagini S. The Flavonoid Quercetin Induces Cell Cycle Arrest and
Mitochondria-Mediated Apoptosis in Human Cervical Cancer (HeLa)
Cells Through P53 Induction and NF-kb Inhibition. Eur J Pharmacol
(2010) 649(1-3):84–91. doi: 10.1016/j.ejphar.2010.09.020

129. Youn H, Jeong J-C, Jeong YS, Kim E-J, Um S-J. Quercetin Potentiates
Apoptosis by Inhibiting Nuclear Factor-kappaB Signaling in H460 Lung
Cancer Cells. Biol Pharm Bull (2013) 36(6):944–51. doi: 10.1248/bpb.b12-
01004

130. Mukherjee A, Khuda-Bukhsh AR. Quercetin Down-Regulates IL-6/STAT-3
Signals to Induce Mitochondrial-Mediated Apoptosis in a Nonsmall-Cell
Lung-Cancer Cell Line, A549. J Pharmacopuncture (2015) 18(1):19. doi:
10.3831/KPI.2015.18.002

131. Erdogan S, Turkekul K, Dibirdik I, Doganlar O, Doganlar ZB, Bilir A, et al.
Midkine Downregulation Increases the Efficacy of Quercetin on Prostate
Cancer Stem Cell Survival and Migration Through PI3K/AKT and MAPK/
ERK Pathway. Biomed Pharmacother (2018) 107:793–805. doi: 10.1016/
j.biopha.2018.08.061
Frontiers in Oncology | www.frontiersin.org 36
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