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Cochlear nerve deficiency (CND) is often associated with variable outcomes of
cochlear implantation (CI). We assessed previous investigations aiming to identify
the main factors that determine CI outcomes, which would enable us to develop
predictive models. Seventy patients with CND and normal cochlea who underwent
CI surgery were retrospectively examined. First, using a data-driven approach, we
collected demographic information, radiographic measurements, audiological findings,
and audition and speech assessments. Next, CI outcomes were evaluated based on
the scores obtained after 2 years of CI from the Categories of Auditory Performance
index, Speech Intelligibility Rating, Infant/Toddler Meaningful Auditory Integration Scale
or Meaningful Auditory Integration Scale, and Meaningful Use of Speech Scale. Then,
we measured and averaged the audiological and radiographic characteristics of the
patients to form feature vectors, adopting a multivariate feature selection method, called
stability selection, to select the features that were consistent within a certain range of
model parameters. Stability selection analysis identified two out of six characteristics,
namely the vestibulocochlear nerve (VCN) area and the number of nerve bundles, which
played an important role in predicting the hearing and speech rehabilitation results of
CND patients. Finally, we used a parameter-optimized support vector machine (SVM) as
a classifier to study the postoperative hearing and speech rehabilitation of the patients.
For hearing rehabilitation, the accuracy rate was 71% for both the SVM classification and
the area under the curve (AUC), whereas for speech rehabilitation, the accuracy rate for
SVM classification and AUC was 93% and 94%, respectively. Our results identified that
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a greater number of nerve bundles and a larger VCN area were associated with better
CI outcomes. The number of nerve bundles and VCN area can predict CI outcomes in
patients with CND. These findings can help surgeons in selecting the side for CI and
provide reasonable expectations for the outcomes of CI surgery.

Keywords: cochlear nerve deficiency, cochlear implantation, machine learning, stability selection, support vector
machines

INTRODUCTION

Cochlear nerve deficiency (CND) is defined as a small or absent
cochlear nerve (CN) (Adunka et al., 2007). When the CN is small,
it is referred to as cochlear nerve hypoplasia (CNH). When the
CN is absent, it is referred to as cochlear nerve aplasia (CNA).
The estimated prevalence of CND is 18% among children with
congenital sensorineural hearing loss (SNHL) (Jallu et al., 2015).

Cochlear implant (CI) was an effective treatment to restore
hearing for patients with SNHL. The mechanism of cochlear
implantation (CI) involves converting acoustic signals into
electrical signals, directly stimulating the spiral ganglion neurons
(SGNs), and transmitting the signals through the CN fibers to
the auditory brainstem. Recent years, optics has been proposed
to stimulate CN such as optical wireless CI and all-optical CI
(Trevlakis et al., 2019, 2020). These architectures could convert
acoustic to optical signals which improved the reliability and the
efficiency of the transcutaneous link (Boulogeorgos et al., 2021).

In CND patients, due to the decrease in the absolute number
of CN fibers, SGNs are insufficient and the stimuli that can
be received are limited. In early studies, CND was considered
a contraindication for CI (Shelton et al., 1989). However, a
large number of studies have shown that some patients with
CND can benefit from CI (Kang et al., 2010; Wu et al., 2015;
Wei et al., 2017). When compared with patients without CND,
patients with CND need higher stimulation to induce a CN
response (Yousef et al., 2021). Generally, children with CND
perform worse than those without CND (Wei et al., 2017; Yousef
et al., 2021) and some patients even experience no benefit at all
(Colletti et al., 2004). Due to the low incidence of CND and the
uncertainty regarding the effects of CI surgery, there has been
no study involving a large sample of patients with CND. At the
same time, patients with CND were far more likely to exhibit
inner ear malformations than patients without CND (Wu et al.,
2015), which affected the number of SGNs and further limited
the CI outcomes, making it difficult to determine whether the
surgical results were different due to the differences in the surgical
methods and electrode positions (Shi et al., 2019). Some studies
have revealed the predictive role of radiographic information for
CI outcomes in CND patients (Wu et al., 2015), but they did not
include the patients with inner ear malformations.

Over the past 5 years, machine learning has been increasingly
used to automate intelligent processes and improve the efficiency
of medical processes. For example, cochlear implants can be
enhanced by adopting machine learning techniques, which have
been applied to create predictive models (Crowson et al., 2020;
Velde et al., 2021) (see Velde et al., 2021 for a recent review).
In addition, machine learning algorithms have been used to

predict cochlear implantation (CI) outcomes. The prediction
of postoperative CI performance from preoperative data may
allow practitioners to evaluate implantation candidacy, estimate
performance expectations from non-modifiable predictors, and
optimize the procedure by intervening in modifiable predictors
(Crowson et al., 2020). Han et al. (2019) established a multiple
regression model for 25 CND patients with normal cochlea
to predict CI postoperative outcomes, explaining 66% variance
of the Categories of Auditory Performance (CAP) scores for
patients with 2-year CIs. They concluded that the postoperative
effect of CI in patients with CND was related to the preoperative
auditory brainstem response (ABR) and the area ratio of
the vestibulocochlear nerve (VCN) to the facial nerve (FN).
Preoperative counseling based on this model helped determine
the treatment modalities for hearing rehabilitation.

In this study, we analyzed the CI surgery-related factors in
CND patients with normal cochlea, based on a relatively larger
sample. We used a data-driven multivariate approach based on
machine learning to evaluate postoperative hearing and speech
rehabilitation in patients with CND and the influencing factors.
We retrospectively analyzed the clinical data of CI surgery from
70 patients with CND and normal cochlea. Then, we measured
and averaged audiological and radiological features of patients
with CND to form feature vectors. Data-driven methods (i.e.,
stability selection and SVM) were applied to data from patients
with CND to relate various factors to the CI outcomes and to
build the corresponding predictive models. In addition, stability
selection, a machine learning method that identifies highly
consistent and representative features, was used to examine the
factors that best differentiate the effects of postoperative hearing
and speech rehabilitation in patients with CND.

MATERIALS AND METHODS

Participants
This study was approved by the Research Ethics Board of
Tongren Hospital, Beijing, China. We considered 70 CI pediatric
recipients (37 males and 33 females; ages 7–54 months) with
CND who were diagnosed using three-dimensional MRI and
who underwent CI between January 2012 and August 2018
in this study. All children failed to pass the newborn hearing
screening sequence and the ear with better residual hearing was
selected to undergo CI. Thirty-four patients were implanted with
Med-El (Innsbruck, Austria) devices, 22 with Cochlear (Sydney,
Australia) devices, 14 with AB (California, United States) devices.
Table 1 lists the demographic details with quantitative variables
shown as count, mean, standard deviation, minimum, maximum,
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TABLE 1 | Descriptive statistics of patients.

Count Mean Standard deviation Min. 25% 50% 75% Max.

Age (months) 70.00 27.31 13.92 7.00 14.00 25.50 38.00 54.00
Residual hearing (dB) 70.00 108.17 14.07 81.00 97.50 106.88 124.69 125.00
Bony cochlear nerve canal diameter (mm) 70.00 0.83 0.58 0.01 0.35 0.83 1.17 2.28
Internal auditory canal diameter (mm) 70.00 2.47 0.85 0.41 1.91 2.51 2.96 4.42
Number of nerve bundles 70.00 1.71 0.80 1.00 1.00 2.00 2.00 4.00
Vestibulocochlear nerve area (mm2) 70.00 1.32 0.55 0.30 0.91 1.27 1.71 2.78
Area ratio of the vestibulocochlear nerve to the facial nerve 70.00 1.50 0.48 0.44 1.22 1.47 1.69 2.63
40-Hz auditory-evoked related potential 70.00 – – – – – – –
Auditory brainstem responses 70.00 – – – – – – –
Cochlear microphonics 70.00 – – – – – – –
Distortion product otoacoustic emissions 70.00 – – – – – – –
Acoustic immittance 70.00 – – – – – – –
CAP 70.00 4.10 1.32 2.00 3.00 5.00 5.00 7.00
SIR 70.00 1.87 0.92 1.00 1.00 2.00 3.00 4.00
MAIS 70.00 25.14 10.47 3.00 18.00 26.50 33.75 40.00
MUSS 70.00 11.96 10.32 0.00 3.00 8.00 21.75 33.00

Not available values (–) indicate discrete variables without mean, standard deviation, maximum, minimum, and quantile.

and quantile, and qualitative variables shown as count. Hearing
impairment was classified according to the World Health
Organization classification (Olusanya et al., 2019) into mild (26–
40 dB), moderate (41–60 dB), severe (61–80 dB), and profound
(81 dB or greater). The inclusion criteria were as follows: (1)
the diameter of the CN smaller than that of the FN or less
than four nerve bundles within the internal auditory canal
(IAC), (2) bilateral severe to profound SNHL, (3) no inner ear
malformation or other congenital syndromes, (4) history of CI,
and (5) completion of 2-year follow-up after CI.

Radiographic Examinations
High-resolution computed tomography was used to evaluate
inner ear malformations according to Sennaroglu’s classification
(Sennaroğlu and Bajin, 2017). Normal cochlea was diagnose
when normal cochlear appearance shown with current MRI and
CT. The diameter of the bony cochlear nerve canal (BCNC) with
the width of the canal at the midportion of the IAC fundus
(Figure 1A) and the widest diameter of the IAC (Figure 1B) were
measured on computed tomography images. The CN traverses
along the fundus of the IAC to the base of the modiolus through
the BCNC. Magnetic resonance imaging (MRI) was performed
to determine the condition of the CN using a 1.5 Tesla scanner
or a 3.0 Tesla scanner. The scan sequence is a 3D FIESTA water
imaging sequence. Oblique sagittal reconstruction was performed
perpendicular to the plane of the IAC. The areas of the VCN and
FN at the cerebellopontine angle (CPA) were evaluated, as the
cross-sections of these nerves were well visualized as this level.
The area ratio of the VCN to the FN was evaluated at the CPA
using MRI (Figure 1C). In addition, the number of nerve bundles
was counted within the IAC (Figure 2).

Preoperative Auditory Evaluation
The diagnostic protocol for children with suspected hearing
loss incorporated behavioral testing, acoustic emittance,
distortion product otoacoustic emission (DPOAE), ABR,
cochlear microphonics (CM), and 40-Hz auditory-evoked

related potential (40-Hz AERP). The average hearing threshold
was assumed to be 5 dB HL greater than the maximum output of
the audiometer and was averaged across 0.5, 1.0, 2.0, and 4.0 kHz
of pure-tone or behavioral testing.

Cochlear Implantation Device and
Activation
The CI device was selected by the parents with the support and
counseling by the CI team. Typically, the first mapping was
initiated at 3–4 weeks after the surgery. During the programming
sessions, observation and conditioned behavioral audiometry
techniques were used to determine the electrical threshold and
comfortable listening levels. Usually, a stable map can be achieved
at 3–6 months after the initial stimulation.

Evaluation of Cochlear Implantation
Outcomes
Postoperative speech evaluation was performed at 3, 6, 12,
18, and 24 months after CI. Since most of the patients had
stable outcomes at 2 years, we selected the 2-year outcomes
as the predicted results. The CAP, Speech Intelligibility Rating
(SIR), Infant-Toddler Meaningful Auditory Integration Scale (IT-
MAIS, for patients aged < 3 years) or Meaningful Auditory
Integration Scale (MAIS, for patients aged > 3 years), and
Meaningful Use of Speech Scale (MUSS) were used to evaluate
hearing and speech in the patients 24 months after CI surgery.
The CAP has eight levels of sound perception (0–7), ranging
from no awareness of the environment (0) to use of telephone
with known users (7). The CAP is intended to reflect the real-life
auditory capabilities of children. The SIR is a highly reliable and
time-effective measure of children’s speech production in real-
life situations and ranks children’s spontaneous speech into five
categories, ranging from connected speech is unintelligible (1) to
connected speech is intelligible to all listeners (5). To distinguish
the degree of patients’ auditory performance and speech
perception, we divided the patients into two groups according
to CAP and SIR. Figure 1 shows the initial distributions of CAP
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FIGURE 1 | (A) Measurement of the bony cochlear nerve canal diameter using high-resolution computed tomography (distance between the two black arrows). (B)
Measurement of the internal auditory canal diameter using high-resolution computed tomography (distance between the two black arrows). (C) Measurement of the
area ratio of the vestibulocochlear nerve to the facial nerve at the cerebellopontine angle using magnetic resonance imaging (black arrows).

FIGURE 2 | The number of nerve bundles (indicated by the white arrows) in the internal auditory canal on oblique sagittal magnetic resonance imaging. (A) No nerve
bundle, (B) one nerve bundle, (C) two nerve bundles, (D) three nerve bundles, (E) four nerve bundles (thin), (F) four nerve bundles (normal); CN: cochlear nerve, FN:
facial nerve, IVN: inferior vestibular nerve, SVN: superior vestibular nerve.

(Figure 3A) and SIR (Figure 3C) and the distributions of CAP
(Figure 3B) and SIR (Figure 3D) after grouping. For CAP, the
patients were divided into spoken language understanding (CAP
of 5–7) and no spoken language understanding (CAP of 0–4). For
SIR, the patients were divided into intelligible speech (SIR of 2–5)
and unintelligible speech (SIR of 1).

Feature Selection
Feature selection is essential in feature engineering as it aims
to find an optimal subset of features and eliminate redundant
features for classification. The effectiveness of hearing and speech
rehabilitation after receiving a CI depends on various complex
and interdependent factors. By considering the experience of
doctors, we collected and measured these influencing factors.
We measured the radiological and audiological characteristics
of patients with CND multiple times and averaged the results.
Radiological features include the bony cochlear nerve canal
diameter, internal auditory canal diameter, number of nerve
bundles, VCN area and area ratio of the VCN to the FN.
Audiological features include residual hearing, 40-Hz AERP,
ABR, CM, DPOAE, and acoustic immittance. In addition
to radiological and audiological features, we considered the
implantation age of patients with CND. To build a simple
model, we applied feature selection to these 12 features. For
feature selection, the variance threshold and stability selection

are important methods. In brief, the variance threshold removes
all features whose variance does not meet a certain threshold.
By default, it removes all zero-variance features, that is,
features with the same value across samples.1 In this study,
we performed preliminary feature selection using the variance
threshold, graphical method and correlation method and then
applied stability selection to the remaining features. These
features were used as inputs to an SVM classifier and stability
selection coupled with SVM. As usual for classifiers, we applied
min-max normalization to the data before classification and
stability selection to ensure that all features had a common
scale and range.

Stability Selection
A robust model should be sufficiently complete to allow
generalization and interpretation. Hence, the most salient
discriminating features consistent across a range of model
parameters should be selected. Stability selection achieves
state-of-the-art feature selection while preventing overfitting and
enabling data interpretability. In general, representative features
do not score 0 for similar features or associative features. We
used randomized logistic regression and the randomized least
absolute shrinkage and selection operator (LASSO) for stability

1https://scikit-learn.org/stable/modules/feature_selection.html#feature-selection
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FIGURE 3 | Patient distribution before and after considering CAP and SIR grouping. (A) Initial CAP distribution. (B) Distribution of CAP after grouping. (C) Initial SIR
distribution. (D) Distribution of SIR after grouping. CAP, categories of auditory performance; SIR, speech intelligibility rating.

selection. Labels CAP and SIR are discrete variables. Labels MAIS
and MUSS are continuous variables. Therefore, the remaining
6 features and the label CAP or SIR were entered into the
randomized logistic regression model; the remaining 6 features
and the label MAIS or MUSS were entered into the randomized
LASSO model. The stability score of the features to the labels was
obtained, and the feature selection was made according to the
stability score.

Stability selection used a randomized logistic regression
algorithm, which worked by subsampling the training data
and fitting a L1-penalized logistic regression model. By
performing this double randomization several times (running
logistic regression algorithms on different subsets of data and
features), the method assigned high scores to features that
were repeatedly selected across randomizations. In short, the
features selected more often were considered as representative
features (Meinshausen and Bühlmann, 2010). Stability selection
used a randomized LASSO algorithm, which worked by
subsampling the training data and computing a Lasso estimate
(Meinshausen and Bühlmann, 2010). In stability selection, the
feature stability increases as a feature is increasingly selected
over repeated subsampling processes (Nogueira et al., 2017). As
stability selection includes internal randomization over many
interactions, it yields a more reliable and consistent feature
set than conventional filtering or other multivariate approaches
(Mahmud et al., 2020).

We considered the regularization parameter C of 1, the
scaling parameter of 0.5, a sample fraction of 0.75 and

200 resampling processes to implement randomized logistic
regression. The scaling parameter was used to randomly scale
the features (Meinshausen and Bühlmann, 2010). We considered
regularization parameter alpha = “aic,” sample fraction = 0.75,
scaling = 0.5, number of resamples = 200 in our implementation
of randomized LASSO. This was not the alpha parameter in
the stability selection article which was scaling (Meinshausen
and Bühlmann, 2010). Randomized LASSO was able to select
the optimal alpha based on “AIC.” The feature scores were
scaled between 0 and 1, where 0 was the lowest score (i.e.,
irrelevant feature) and 1 was the highest score (i.e., most
representative or stable feature). Over 200 resampling processes,
stability selection provided the overall feature scores (0–1) based
on the selection frequency, and a variable was selected. The
stability scores were ranked to identify the most important,
consistent, stable, and invariant features (i.e., demographic,
audiological, and radiological features) over a range of model
parameters. We used the ranked features and corresponding
class labels in an SVM classifier. Based on the input stable
features, the SVM classified patients with CND for different
stability thresholds.

Support Vector Machine Classification
Data-driven multivariate analysis is widely used for modeling
complex data and understanding relations between the
considered variables. Parameter-optimized SVM classifiers can
provide robust discriminative models with small sample sizes,
being suitable for human neuroimaging studies (Tan et al., 2015;
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Feng et al., 2018; Skidmore et al., 2020). The classification
performance is greatly affected by the choice of kernel functions,
which can map non-linearly separable data onto a linearly
separable space. Other tunable parameters, such as the kernel,
regularization coefficient C, and γ (γ is an argument having the
RBF function as the kernel), also determine the performance.
Thus, we used grid search to find the optimal kernel, C, and
γ. For kernel functions, we considered the linear function and
radial basis function, whereas for C, we considered values from 1
to 10 in increments of 1, and for γ, we considered values of 0.01,
0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5. Both C and γ were
evaluated using a radial basis function kernel. We randomly split
the data into training and test sets containing 80% and 20% of
the available samples, respectively.

During training, we fine-tuned parameters C and γ to find
the values that maximally distinguish observations from the
CI postoperative CAP and SIR in good and poor recovery
groups. The SVM learned the support vectors from the training
data containing the attributes (e.g., age in months, residual
hearing) and class labels (e.g., spoken language understanding).
The resulting hyperplanes were fixed with maximum margin of
separation between classes and used to predict unseen test data by
providing the unlabeled attributes to the model. The classification
performance was evaluated using common measures: accuracy,
F1-score, and area under the receiver operating characteristic

curve (AUC) (Saito and Rehmsmeier, 2015). The AUC describes
the degree to which a model can distinguish between classes.
An excellent model has an AUC close to 1, indicating high
separability, whereas a poor model has an AUC close to 0,
indicating poor separability.

Technology Roadmap
The experimental process is shown in Figure 4. We input the
CND dataset. First we made a preliminary feature selection.
As shown in Figure 5, we removed three features according to
the variance threshold. As shown in Figure 6, we removed two
features according to the effect of the features on the labels, that
is, the graphical method. As shown in Figure 7, we removed
one feature according to the correlation. Stability selection was
made for the remaining six features. We entered 6 features
and a label CAP or SIR into a randomized logistic regression
model. We entered 6 features and a label MAIS or MUSS into
a randomized LASSO model. We got the stability score of the
features on the labels and sorted the stability scores as shown
in Figure 8. According to the sorted features, the features were
added to the SVM model in turn, and the models labeled CAP
and SIR were established, respectively. Accuracy and AUC of
each model were output, and the best models were selected,
respectively, as the prediction models for predicting auditory and
speech performance after CI.

FIGURE 4 | Technology Roadmap.

FIGURE 5 | Feature distribution of (A) ABR, (B) CM, and (C) DPOAE according to auditory response. ABR, auditory brainstem response; CM, cochlear
microphonics; DPOAE, distortion product otoacoustic emission; Y, response; NR, no response.
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FIGURE 6 | 40-Hz AERP and acoustic immittance for CAP and SIR. (A) CAP: 0 indicates no spoken comprehension, and 1 indicates spoken comprehension.
(B) SIR: 0 indicates unintelligible connected speech, and 1 indicates intelligible connected speech. CAP, categories of auditory performance; SIR, speech intelligibility
rating.

RESULTS

Feature Selection
The distributions of ABR, CM and DPOAE are shown in
Figure 5. For ABR, 68 patients showed no hearing response (NR),
and 2 patients had a hearing response (Y), while for CM, 65
patients had NR and 5 had Y, and for DPOAE, 67 patients had
NR and 3 had Y. Variance selection removed the ABR, CM,
and DPOAE. The influences of the 40-Hz AERP and acoustic
immittance on the labels are shown in Figure 6. As these two
features had less influence on the SIR and CAP labels, they were
removed. The correlation coefficient matrix is shown in Figure 7.
Considering that the correlation coefficient between area ratio of
the VCN to the FN and VCN area is 0.63, it has a high correlation.
Area ratio of the VCN to the FN is removed.

The six remaining features and the corresponding labels
were processed using stability selection to obtain the most
representative factors affecting the postoperative hearing and
speech rehabilitation of patients with CND and CI. Figure 8
illustrates the importance of stability selection. Among the factors
affecting the postoperative CAP and SIR in patients with CND,
VCN area and number of nerve bundles were highly stable and
important. Therefore, these features were selected to establish
a prediction model of postoperative CAP and SIR in patients
with CND. Among the factors affecting the postoperative MAIS
in patients with CND, VCN area was the most stable, and the
stability scores of the number of nerve bundles, residual hearing,
and internal auditory canal diameter were similar. Among the
factors affecting the postoperative MUSS in patients with CND,
VCN area was the most stable, with a stability score of 1, followed
by the number of nerve bundles. Overall, characteristic VCN
area and number of nerve bundles were more stable and showed
the greatest influence on the postoperative hearing and speech
rehabilitation of patients with CND.

Support Vector Machine Classification of
Hearing and Speech Rehabilitation
Effects Using Vestibulocochlear Nerve
Area and Number of Nerve Bundles
We only used VCN area and number of nerve bundles to analyze
the effects of postoperative hearing and speech rehabilitation
in patients with CND. These features and the corresponding
category labels were used to train the SVM. In addition,
we applied sevenfold cross-validation and grid search during
training to determine the optimal SVM parameters. The optimal
parameters for the maximum classification performance listed
in Table 2 were C = 5 and γ = 0.02 for CAP and C = 6 and
γ = 0.2 for SIR.

We then selected the best model and performance measures
from the predicted class labels, which were obtained from the
unseen test data and corresponding ground truth. We applied the
SVM classifier using VCN area and number of nerve bundles to
identify the effects of hearing and speech rehabilitation. Table 2
shows that for the hearing rehabilitation effect considering
VCN area and number of nerve bundles, the accuracy of
spoken language understanding prediction after CI surgery in
patients with CND was 71%. For the speech rehabilitation
effect considering those two features, the accuracy of intelligible
connected speech prediction after CI surgery in patients with
CND was 93%. These results indicate suitable prediction of
the effects of postoperative hearing and speech rehabilitation
after receiving a CI.

The SVM classification results on the test dataset are shown in
Figure 9. As a correct prediction is shown with a black circle, a
model with fewer red circles is preferable, whereas numerous red
circles indicate a low generalization ability of the SVM classifier.
In fact, each red circle indicates a misclassified patient with CND.
Figure 9A shows four red circles, indicating four patients with
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FIGURE 7 | Correlation coefficient matrix.

misclassified CAP and a classification accuracy of 71%. Figure 9B
shows one red circle, indicating that the SIR of only one patient
was misclassified and a classification accuracy of 93%.

Stability Selection for Support Vector
Machine Training
We then used stability selection to identify the most
representative stable features to separate groups without
overfitting. We evaluated stability thresholds yielding different
classification performances. The effect of the stability selection
threshold on the classification performance is shown in
Figure 10A for CAP and in Figure 10B for SIR. The histogram
shows the distribution of feature scores.

The feature scores for stability selection were first determined.
As shown in Figure 8, for CAP, stability in descending order

was obtained for VCN area, number of nerve bundles, internal
auditory canal diameter, bony cochlear nerve canal diameter,
residual hearing, and age in months; for SIR, this order was
obtained for the VCN area, number of nerve bundles, bony
cochlear nerve canal diameter, residual hearing, age in months,
and internal auditory canal diameter.

The features obtained by stability selection were used in the
SVM, whose performance depended on the stability threshold.
For CAP and SIR, 66.7% of features scored between 0 and 0.1.
Hence, most features were selected less than 10% of the time
over 200 model iterations and thus carried near-zero importance
for separating groups. Therefore, 66.7% of the features were not
related to the grouping of CAP or SIR.

For CAP, the maximum classification performance with 71%
accuracy, 71% AUC, and F1-score of 67% was achieved for a
stability score threshold of 0.10. For this threshold, two out of
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FIGURE 8 | Stability scores for feature selection. Effect of features on (A) SIR, (B) CAP, (C) MAIS, and (D) MUSS. The stability score in 0–1 is shown as range per bin.

TABLE 2 | Maximum performance (%) of SVM classifier for distinguishing hearing
and speech rehabilitation effects (good and poor).

Measure CAP SIR

Accuracy 71 93
AUC 71 94
F1-score 67 93

F1-score = 2 (precision × recall)/(precision + recall).

the six features were selected. For SIR, stability selection provided
two out of the six features (33.3%), reaching an accuracy of
93%, AUC of 94%, and F1-score of 93%. Below the optimal
threshold of 0.2, the classifier performance reduced owing to the
inclusion of unrelated features, while above the threshold, some
representative features for distinguishing the effects of hearing
and speech rehabilitation were discarded. Even when choosing
a stability threshold of 0.5 as a conservative selection, CAP
classification reached 64% accuracy with one selected feature, and
SIR classification reached 57% accuracy with one selected feature.
Thus, predicting the effects of CIs on postoperative hearing and
speech rehabilitation in patients with CND may require only a
few representative features to notably outperform the random
level of classification.

DISCUSSION

The present study included 70 patients diagnosed with CND with
normal cochlea according to computed tomography and MRI

findings. All subjects underwent unilateral CI. We summarized
the age at operation, preoperative audiological findings, and
preoperative imaging characteristics of CND patients with
normal cochlea and analyzed their correlation with the 2-
year postoperative outcome of CI. In our study, the overall
mean scores of the CAP, SIR, IT-MAIS/MAIS, and MUSS
after 2-year CI activation were 4.10 ± 1.32, 1.87 ± 0.92,
25.14 ± 10.47 and 11.96 ± 10.32, respectively. Among the
70 participants, 36 (51.4%) achieved an understanding of
common phrases or the ability to carry on a conversation
without lip-reading (CAP 5–7) and 39 (55.7%) patients
achieved intelligible speech (SIR > 1). We also obtained a
prediction model of the CAP and SIR scores at 2 years
after surgery based on these associated factors. We observed
that the CAP and SIR scores at 2 years after CI surgery
were strongly correlated with the number of nerve bundles
and the VCN area.

In our study, the mean age at CI was 27.31 ± 13.92 months
(range: 7–54 months). All children failed to pass the newborn
hearing screening sequence. Age at CI is known to potentially
influence the CI outcomes (Peng et al., 2017). Cochlear
implantation provides a unique opportunity to study cortical
plasticity associated with long-term deafness and restoration of
the auditory modality (Lee et al., 2006). Children who underwent
implantation at a younger age have been reported to demonstrate
greater gains in speech perception over time than those who
underwent implantation at an older age (Zwolan et al., 2004). In
our study, we did not find a strong correlation between age at CI
and CI performance. This might be due to the limited amount
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FIGURE 9 | Prediction using SVM classifier for (A) CAP and (B) SIR.

FIGURE 10 | Effect of stability score threshold on model performance for (A) CAP and (B) SIR. The stability score ranges from 0 to 1.

of CN and auditory stimulation. The results were consistent
with those of previous studies (Birman et al., 2016; Han et al.,
2019).

The residual hearing threshold is one of the most important
prognostic factors correlated with the CI outcomes (Chiossi
and Hyppolito, 2017). It represents the number of SGNs and
the integrity of neural pathways including the SGNs and
the CN. Patients with residual hearing displayed significant
improvements in language development (Carlson et al., 2015)
after CI surgery. However, we did not find a significant
correlation between the average residual hearing threshold and
CI performance, which is consistent with the finding in a previous
study (Han et al., 2019). This might be attributed to the poor
residual hearing of these CND patients. Moreover, we assumed
the average hearing threshold of the absence of measurable
response in pure-tone audiometry or behavior test to be equal to

the maximum output or 5 dB greater than the maximum output
of the audiometer for the purpose of evaluation. The calculated
mean residual hearing threshold was 108.17 ± 14.07 dB (range:
81–125 dB), which might have reduced the difference between
cases with and without residual hearing.

Auditory brainstem response (ABR) represents the efficacy of
hearing aids and cortical development with acoustic stimulation
before CI. It was significantly correlated with CI performance
in a previous study (Han et al., 2019). However, we did not
observe any significant correlation between the ABR and CI
outcomes. This finding might be due to the fact that only 2
patients (2/70, 2.86%) exhibited an ABR. Therefore, the sample
size was too small to obtain reliable results. Three patients
(3/70, 4.27%) exhibited the presence of DPOAE and 5 patients
(5/70, 7.14%) exhibited the presence of CM with absent ABR,
which suggested a gross discrepancy between the measures of
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cochlear and neural function in the auditory system diagnosed
with auditory neuropathy (AN) (Buchman et al., 2006). The
responses of DPOAE as well as CM did not show a statistically
significant correlation with CI outcomes, probably due to the
small sample size.

Due to the limitations of the current imaging techniques, it
is difficult to measure the CN parameters directly. Clinically, the
IAC diameter, BCNC diameter, area of the VCN, area ratio of
the VCN to the FN, and IAC grade can indirectly determine
the condition of the CN. These parameters have been reported
to predict the effect of CI after surgery (Shelton et al., 1989;
Minami et al., 2015; Birman et al., 2016; Wei et al., 2017;
Chung et al., 2018; Han et al., 2019). The maximum diameters
of the IAC and the BCNC can indirectly reflect the number of
CN fibers and are generally considered to be related to CND
(Shelton et al., 1989; Chung et al., 2018). In a previous study
(Clemmens et al., 2013), BCNC had a sensitivity of 84% and a
specificity of 98% for predicting CND, while IAC had a specificity
of 98% and a sensitivity of 44%. In our study, the mean IAC
diameter was 2.47± 0.85 mm and the mean BCNC diameter was
0.83± 0.58 mm. The IAC and BCNC diameters exhibited a weak
correlation with CI performance.

Cochlear nerve deficiency (CND) diagnosis mainly relies on
MRI (Cerini et al., 2006). Measuring the CN parameters on MRI
is the most direct way to determine the condition of the CN.
However, due to the limited resolution of the currently used
MRI devices, the CN is not clearly visualized. In some cases,
although CN fibers are present, they are not reflected in the
data regarding CN diameter measurements on MRI and the CN
cannot even be visualized. VCN contains all the CN fibers. Hence,
some scholars defined CND as VCN deficiency or the absence or
thin branches of the VCN (Yamazaki et al., 2015). Measuring the
VCN diameter at the CPA indirectly reflects the number of CN
fibers. In our study, the VCN area showed a strong correlation
with CI performance.

Since direct measurement of the VCN diameter is difficult,
some scholars have opted to measure the area ratio of the VCN to
the FN. The size of the VCN is generally 1.5–2 times the size of the
FN and the size of the CN is similar to that of the FN (Giesemann
et al., 2012). Minami et al. (Minami et al., 2015) reported the
relationship between the relative sizes of the VCN and FN after
CI. They observed that 83% of the patients with IAC stenosis had
an FN larger than the VCN. Patients whose FN was larger than the
VCN had an average score of 1.1 for auditory behavior after CI,
while patients whose FN was smaller than the VCN exhibited an
average CAP score of 4.1 after CI. Han et al. (2019) found that the
area ratio of the VCN to the FN was significantly correlated with
the CAP and IT-MAIS scores at 2 years after CI. In our study, this
ratio showed a strong correlation with the CAP and SIR scores,
but the correlation was weaker than VCN area. However, due
to the presence of thinner FN in some patients, the area ratio
of the VCN to the FN was still large despite a thin VCN, which
interfered with the accuracy of the results.

Oblique plane sagittal IAC views can show four nerve
bundles on MRI: CN, FN, inferior vestibular nerve, and superior
vestibular nerve (Govaerts et al., 2003). Since it is difficult to
distinguish the CN from other nerves on MRI, Birman et al.

(2016) suggested classifying CND according to the number of
nerves within the IAC. From oblique plane sagittal IAC views on
MRI, IAC nerve grades 0, I, II, and III represent no nerves, one,
two, and three nerve bundles, respectively, inside the IAC. These
grades correspond to CNA. Grade IV represents four nerves and a
thin CN and corresponds to CNH. Previous studies have reported
that the IAC nerve grading system was significantly related to the
postoperative effect of CI (Birman et al., 2016; Wei et al., 2017;
Han et al., 2019). In our study, a higher number of nerve bundles
was associated with higher CAP and SIR scores in CND patients.
The number of nerve bundles showed strong correlations with
the CAP and SIR scores.

In the stability selection analysis for CI outcomes in patients
with CND, the VCN area and the number of nerve bundles within
the IAC were most representative stable features affecting the
CAP and SIR scores at 2 years after CI. For CAP, the accuracy rate
was 71% for both the SVM classification and the AUC, whereas
for SIR, the accuracy rate for SVM classification and AUC was
93% and 94%, respectively. Only about half of the CND patients
in our study were expected to show relative good outcomes
(CAP 5-7 or SIR > 1). Our models can help surgeons select the
appropriate side for CI and at the same time, provide reasonable
expectations regarding the effects of CI surgery. For patients
who show inadequate benefit following CI, auditory brainstem
implantation should be considered despite the risk of serious
complications such as cerebrospinal fluid leakage, meningitis,
intracranial bleeding, stroke, cranial nerve damage, and even
death (Freeman and Sennaroglu, 2018). In our model, we
included only the CND patients with normal cochlea and patients
with cochlear malformations and other systemic complications
were excluded. Therefore, the application of this model requires
complete audiological and imaging evaluations before surgery.

CONCLUSION

CI in CND with normal cochlea is associated with variable
outcomes. We observed that postoperative CAP and SIR scores
of CND patients showed a strong correlation with the VCN area
and the number of nerve bundles within the IAC. However, age
at implantation and residual hearing did not show any strong
correlation. Results from our study can help surgeons select
the appropriate side for CI and provide reasonable expectations
regarding the outcomes of CI surgery.
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