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Abstract 

Rationale: Growth differentiation factor-8 (GDF-8), also known as myostatin, belongs to the transforming 
growth factor-beta (TGF-β) superfamily. GDF-8 is expressed in the ovary and regulates various ovarian 
functions. Ovarian hyperstimulation syndrome (OHSS) is one of the most serious disorders during in vitro 
fertilization treatment. Aromatase, encoded by the CYP19A1 gene, is the enzyme that catalyzes the final step in 
estradiol (E2) biosynthesis. It has been demonstrated that high serum E2 levels are associated with the 
development of OHSS. However, the effects of GDF-8 on aromatase expression and its roles in the 
pathogenesis of OHSS remain unclear. 
Methods: The effect of GDF-8 on aromatase expression and the underlying mechanisms were explored by a 
series of in vitro experiments in primary human granulosa-lutein (hGL) and KGN cells. Rat OHSS model and 
human follicular fluid samples were used to examine the roles of the GDF-8 system in the pathogenesis of 
OHSS. 
Results: We demonstrate that GDF-8 stimulates aromatase expression and E2 production in hGL and KGN 
cells. In addition, TGF-β type I receptor ALK5-mediated SMAD2/3 signaling is required for GDF-8-induced 
aromatase expression and E2 production. Using a rat OHSS model, we show that the aromatase and GDF-8 
levels are upregulated in the ovaries of OHSS rats. Blocking the function of ALK5 by the administration of its 
inhibitor, SB431542, alleviates OHSS symptoms and the upregulation of aromatase. Clinical results reveal that 
the protein levels of GDF-8 are upregulated in the follicular fluid of OHSS patients. Moreover, the expression 
of GDF-8 is increased in hGL cells of OHSS patients. 
Conclusions: This study helps to elucidate the mechanisms mediating the expression of aromatase in human 
granulosa cells, which may lead to the development of alternative therapeutic approaches for OHSS. 
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Introduction 
Growth differentiation factor-8 (GDF-8), also 

known as myostatin, was first identified in 1997 and 
was discovered as a member of the TGF-β 
superfamily. GDF-8 gene knockout mice exhibit a 
dramatic increase in muscle mass, suggesting its 
negative regulatory role in skeletal muscle growth [1]. 

Naturally occurring gene mutations or gene knockout 
models further confirm the inhibitory effect of GDF-8 
on myogenesis in several species, including humans 
[2-5]. GDF-8 is a secreted protein that is mainly 
synthesized by skeletal muscle cells. After secretion, 
the activity of circulating GDF-8 can be either 
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increased or decreased by different factors [6]. 
Although it remains controversial, GDF-8 has been 
shown to regulate adipogenesis outside the 
skeletomuscular system, and aberrant expression of 
GDF-8 is associated with obesity [7]. 

Increasing evidence has suggested the roles of 
GDF-8 in female reproductive functions as the 
expression of GDF-8 and its receptors have been 
detected in the ovary, uterus, and placenta [8-10]. In 
the ovary, the ovarian follicle is the basic functional 
unit, which consists of an oocyte surrounded by 
granulosa and theca cells. Granulosa cells are essential 
for normal oocyte development and steroid hormone 
production. We and other groups have shown that 
GDF-8 and its receptors are expressed in human 
granulosa cells. In addition, secreted GDF-8 has been 
detected in human ovarian follicular fluid [10-13]. 
Functionally, we have demonstrated that granulosa 
cell proliferation, steroidogenesis, cumulus 
expansion, and oocyte maturation are regulated by 
GDF-8 [11-17]. Collectively, these studies demonstrate 
that GDF-8 acts as an important local factor and can 
regulate various ovarian functions in an autocrine 
and/or paracrine fashion. 

Controlled ovarian hyperstimulation (COH) is 
an approach that is generally applied to infertile 
women to produce more oocytes during assisted 
reproductive technology treatments. Ovarian 
hyperstimulation syndrome (OHSS), one of the 
serious complications associated with COH, is mainly 
caused by the administration of exogenous 
gonadotropins for ovarian stimulation and 
subsequent ovulation induction by the human 
chorionic gonadotropin (hCG) [18]. Spontaneous 
OHSS rarely occurs in women who are not 
undergoing ovulation induction therapies. Therefore, 
OHSS is considered an iatrogenic complication. 
However, severe OHSS may lead to maternal death 
[19-21]. To date, several risk factors have been 
reported to be associated with the development of 
OHSS. Among them, high serum estradiol (E2) levels 
before administration of hCG are significantly 
associated with the development of OHSS. In 
addition, inhibition of E2 levels prevents OHSS 
development [22-24]. 

E2 is the most active form of natural estrogens 
and is known to play important roles in female 
reproduction [25]. It is well characterized that the 
aromatase enzyme, which is encoded by the 
cytochrome P450 family 19 subfamily A member 1 
(CYP19A1) gene, plays a pivotal role in the 
biosynthesis of E2. In the ovarian follicle, aromatase is 
expressed in granulosa cells, not in theca cells. 
According to the two-cell-two-gonadotropin theory, 
by converting theca cell-derived testosterone via 

aromatase, E2 is synthesized and produced by 
ovarian granulosa cells [26]. After ovulation, 
granulosa cells differentiate into granulosa-lutein cells. 
The expression of aromatase is detected in human 
granulosa-lutein (hGL) cells and contributes to E2 
production in the early stage of pregnancy and the 
luteal phase of the menstrual cycle [27, 28]. Although 
the underlying molecular mechanisms remain 
undefined, we have shown that GDF-8 treatment 
increases aromatase expression in hGL cells [14]. 
However, whether GDF-8 levels vary between normal 
and OHSS patients remains unknown. In the present 
study, we investigated the underlying molecular 
mechanisms of GDF-8 involved in aromatase 
expression in hGL cells. We also examined the 
expression of GDF-8 in the OHSS rat model and OHSS 
patients. 

Materials and Methods 
Antibodies and reagents 

The aromatase antibody was purchased from 
Bio-Rad Laboratories (#MCA2077). The phospho- 
SMAD2 (#3108), phospho-SMAD3 (#9520), SMAD2 
(#3103), SMAD3 (#9523), and SMAD4 (#38454) 
antibodies were purchased from Cell Signaling 
Technology. The α-tubulin antibody (#sc-23948) was 
purchased from Santa Cruz Biotechnology. The 
recombinant human GDF-8 was obtained from R&D 
systems. The SB431542 was obtained from Sigma. 

Human follicular fluid samples 
The present study received approval and was 

performed in accordance with the approved 
guidelines from the Zhengzhou University Research 
Ethics Board. Written informed consent was obtained 
from all patients before collecting clinical samples. 
None of the women had been prescribed any 
medications before enrollment. Human follicular 
fluid samples were obtained from 50 women (25 
control and 25 OHSS patients) during in vitro 
fertilization treatment. The causes of infertility were 
tubal obstruction or male infertility. Patients with 
polycystic ovary syndrome, endometriosis, 
diminished ovarian reserve, chromosome 
abnormality, or hydrosalpinx were excluded from this 
study. All patients were treated with a standard long 
protocol. At the mid-luteal phase, the 
gonadotropin-releasing hormone agonist, triptorelin 
(0.1 mg; Ipsen Pharma Biotech), was subcutaneously 
administered daily. Approximately 14 days after the 
injection of the GnRH agonist, recombinant FSH 
(Gonal-F; Merck) at a dosage of 150-300 IU was 
administered daily. When at least three follicles had 
reached 18 mm, hCG (10000 IU, Livzon) was injected. 
Oocyte retrieval was scheduled approximately 34-36 h 
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after hCG injection by transvaginal ultrasound- 
guided follicular aspiration. Follicular fluid was 
collected when the oocytes were retrieved. Only the 
first follicular fluid aspirate without blood or flushing 
solution was used for analysis. After 10 min of 
centrifugation at 2000 rpm, the supernatant was 
stored at -80 °C until further analysis. 

Cell culture 
Primary human granulosa-lutein (hGL) cells 

were purified by density centrifugation from 
follicular aspirates collected from women undergoing 
oocyte retrieval as previously described [29]. The 
human granulosa cell tumor-derived cell line, KGN 
[30], was kindly provided by Dr. Aaron Hsueh at 
Stanford University. Cells were cultured in a 
humidified atmosphere containing 5% CO2 and 95% 
air at 37 °C in phenol-red free Dulbecco’s modified 
Eagle’s medium/nutrient mixture F-12 Ham medium 
(DMEM/F-12; Gibco) supplemented with 10% 
charcoal/dextran-treated FBS (HyClone), 100 U/mL 
penicillin and 100 μg/mL streptomycin sulfate 
(Boster). Primary hGL cells were cultured in 12-well 
plates at a density of 105 cells/cm2 with 1 mL of 
culture medium for 5 days. After 5 days of culture, 
primary hGL cells were serum-starved in a medium 
containing 0.5% charcoal/dextran-treated FBS for 24 h 
to induce quiescence before treatments. All treatments 
for primary hGL cells were performed in a medium 
containing 0.5% charcoal/dextran-treated FBS. KGN 
cells were cultured in 6-well plates with 2 mL of 
culture medium. KGN cells were grown to 80% 
confluence and serum-starved in a medium without 
FBS for 24 h to induce quiescence before treatments. 
All treatments for KGN cells were performed in a 
medium without FBS. 

Rat OHSS model 
Female Wistar rats were obtained from Charles 

River Laboratories (Beijing, China). Animal handling 
was in accordance with the Guide for the Care and 
Use of Laboratory Animals published by the US 
National Institutes of Health. The rats were housed in 
an environmentally controlled room with free access 
to food and water. Animal studies were approved by 
the Zhengzhou University Animal Research Ethics 
Board. The rat OHSS model was established 
according to a previous study [31]. PMSG (50 IU/d) 
was administered i.p. for 4 consecutive days to 
4-week-old Wistar female rats followed by hCG 
administration (25 IU, i.p.) on the fourth day. Control 
rats were administered a single dose of PMSG (10 IU) 
followed by hCG (10 IU) 48 h later. Rats were treated 
with vehicle control (DMSO) or SB431542 (10 mg/kg, 
i.p.) on days 4-6. All rats were euthanized on day 7. 

Each group contained 5 rats. Changes in body weight 
and ovarian weight were recorded. 

Reverse transcription quantitative real-time 
PCR (RT-qPCR) 

Total RNA was extracted with the RNeasy Plus 
Mini Kit (QIAGEN) according to the manufacturer’s 
instructions. RNA (1 μg) was reverse-transcribed into 
first-strand cDNA with the iScript Reverse 
Transcription Kit (Bio-Rad Laboratories). Each 20 μL 
qPCR reaction contained 1X SYBR Green PCR Master 
Mix (Applied Biosystems), 60 ng of cDNA and 250 nM 
of each specific primer. The following primers were 
used: human CYP19A1 aromatase, 5'-GAG AAT TCA 
TGC GAG TCT GGA-3' (sense) and 5'-CAT TAT GTG 
GAA CAT ACT TGA GGA CT-3' (antisense); human 
ALK4, 5'-TCT CTC CAC CTC AGG GTC TG-3' (sense) 
and 5'-GCC ATA CTT CCC CAA ACC GA-3' 
(antisense); human ALK5, 5'-GTT AAG GCC AAA 
TAT CCC AAA CA-3' (sense) and 5'-ATA ATT TTA 
GCC ATT ACT CTC AAG G-3' (antisense); human 
SMAD4, 5'-TCC ACA GGA CAG AAG CCA TT-3' 
(sense) and 5'-GTC ACT AAG GCA CCT GAC CC-3' 
(antisense); human GAPDH, 5'-GAG TCA ACG GAT 
TTG GTC GT-3' (sense) and 5'-GAC AAG CTT CCC 
GTT CTC AG-3' (antisense); rat CYP19A1 aromatase, 
5'-GCT GGA CAC TTC TAA CAC GC-3' (sense) and 
5'-ATA AGG AGT GCT TGC CAG GC-3' (antisense); 
rat GDF-8, 5'-TAA CCT TCC CAG GAC CAG GA-3' 
(sense) and 5'-CAC TCT CCA GAG CAG TAA TT-3' 
(antisense); and rat GAPDH, 5'-GAC ATG CCG CCT 
GGA GAA AC-3' (sense) and 5'-AGC CCA GGA TGC 
CCT TTA GT-3' (antisense). RT-qPCR was performed 
using an Applied Biosystems QuantStudio 12K Flex 
Real-Time PCR system equipped with a 96-well 
optical reaction plate. The specificity of each assay 
was validated by melting curve analysis and agarose 
gel electrophoresis of the PCR products. All of the 
RT-qPCR experiments were run in triplicate, and a 
mean value was used to determine the mRNA levels. 
Water and mRNA without reverse transcriptase (RT) 
were used as negative controls. Relative 
quantification of the mRNA levels was performed 
using the comparative Ct method with GAPDH as the 
reference gene and using the 2–∆∆Ct formula. 

Western blot analysis 
Cells were lysed in cell lysis buffer (Cell 

Signaling Technology) supplemented with a protease 
inhibitor cocktail (Sigma). Equal amounts (50 µg) of 
protein were separated by SDS polyacrylamide gel 
electrophoresis and transferred onto PVDF 
membranes. After 1 h of blocking with 5% nonfat dry 
milk in Tris-buffered saline (TBS), the membranes 
were incubated overnight at 4 °C with primary 
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antibodies diluted in 5% nonfat milk/TBS. The 
dilutions for antibodies were: aromatase (500x); 
p-SMAD2 (1000x); p-SMAD3 (1000x); SMAD2 (1000x); 
SMAD3 (1000x); SMAD4 (1000x), and α-Tubulin 
(5000x). Following primary antibody incubation, the 
membranes were incubated with appropriate HRP- 
conjugated secondary antibodies. Immunoreactive 
bands were detected using an enhanced 
chemiluminescent substrate (Bio-Rad Laboratories) 
and imaged with a ChemiDoc MP Imager (Bio-Rad 
Laboratories). 

Small interfering RNA (siRNA) transfection 
To knockdown endogenous ALK4, ALK5 or 

SMAD4, cells were transfected with 50 nM ON- 
TARGETplus SMARTpool siRNA targeting a specific 
gene (Dharmacon) using Lipofectamine RNAiMAX 
(Invitrogen). The siCONTROL NON-TARGETING 
pool siRNA (Dharmacon), was used as the 
transfection control. 

Measurement of amphiregulin, GDF-8, and 
estradiol 

Amphiregulin and GDF-8 levels in human 
follicular fluid were measured using an enzyme- 
linked immunosorbent assay (ELISA). Amphiregulin 

and GDF-8 ELISA kits (R&D Systems) were used in 
accordance with the manufacturer’s protocol. 
Estradiol (E2) levels in culture media were also 
measured by ELISA. A human E2 ELISA kit (Cayman) 
was used in accordance with the manufacturer’s 
protocol. E2 levels in the culture media were 
normalized to the protein concentrations from the cell 
lysates. Normalized E2 values in the culture media 
from the treatments are represented as relative values 
by comparison to the control treatment. 

Statistical analysis 
The results are presented as the mean ± SEM of 

at least three independent experiments. The animal 
and clinical results are presented as the mean ± SD. 
All statistical analyses were analyzed by PRISM 
software. Multiple comparisons were analyzed using 
one-way ANOVA followed by Tukey’s multiple 
comparison test. For experiments involving only two 
groups, the results were analyzed by t test. A 
significant difference was defined as p<0.05. 

Results 
The expression of aromatase is upregulated by 
GDF-8 in hGL cells 

We have previously shown that GDF-8 enhances 
follicle-stimulating hormone (FSH)- 
stimulated aromatase expression in primary 
cultures of hGL cells [14]. However, it 
remains unknown how GDF-8 directly 
stimulates aromatase expression in hGL 
cells. Consistent with our previous results, 
the mRNA levels of aromatase (CYP19A1) 
were upregulated by the treatment of 100 
ng/mL human recombinant GDF-8 in a time- 
dependent manner (Figure 1A). Western blot 
results confirmed the stimulatory effect of 
GDF-8 on aromatase protein levels (Figure 
1B). We also examined the effect of different 
concentrations of GDF-8 on aromatase 
expression. As shown in Figure 1C, 
treatment with 10 ng/mL GDF-8 did not 
affect the mRNA levels of aromatase. A 
significant stimulatory effect was obtained 
after treating cells with 30 or 100 ng/mL 
GDF-8. The stimulatory effect of 30 ng/mL 
GDF-8 on aromatase protein levels was 
further confirmed by western blot analysis 
(Figure 1D). Therefore, 30 ng/mL GDF-8 was 
applied in the subsequent experiments. 

ALK5 is required for GDF-8-induced 
aromatase expression 

It has been implicated that the TGF-β 
type I receptors, ALK4 and ALK5, are 

 

 
Figure 1. GDF-8 stimulates aromatase expression in hGL cells. A and B, Cells were treated 
with 100 ng/mL GDF-8 for different periods, and the mRNA (A) and protein (B) levels of aromatase 
(CYP19A1) were examined by RT-qPCR and western blot, respectively. The level of aromatase 
mRNA at each time point was normalized to the GAPDH mRNA level at the same time point. C and 
D, Cells were treated with 10, 30, or 100 ng/mL GDF-8 for 24 h, and the mRNA (C) and protein (D) 
levels of aromatase (CYP19A1) were examined by RT-qPCR and western blot, respectively. The 
results are expressed as the mean ± SEM of at least three independent experiments. The values 
without a common letter are significantly different (p<0.05). 
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putative receptors for GDF-8 that mediate its 
biological functions [32]. To examine the involvement 
of ALK4 and ALK5 in GDF-8-stimulated aromatase 
expression, SB431542, a potent ALK4/5/7 inhibitor, 
was used to block the function of ALK4 and ALK5 
[33]. As shown in Figures 2A and 2B, the stimulatory 
effects of GDF-8 on aromatase mRNA and protein 
levels were blocked by pretreatment with SB431542. 
We also examined the effect of GDF-8 on KGN cells. 
The KGN cell line is derived from human ovarian 
granulosa cell tumors, but KGN cells preserve various 
physiological functions of normal granulosa cells, 
including the expression of functional FSH receptor 
and the expression and activity of aromatase [30]. To 
date, the KGN cell line has been widely used as a cell 
model for understanding the regulation of aromatase 
expression and E2 production. Similar to the results 
obtained from hGL cells, treatment with GDF-8 
stimulated both the mRNA and protein levels of 
aromatase in KGN cells. These stimulatory effects 
were blocked by pretreatment with SB431542 (Figures 
2C and 2D). Because SB431542 blocks both ALK4 and 
ALK5, ALK4 and ALK5 siRNAs were used to 

knockdown the expression of a specific gene to 
further explore the involvement of ALK4 and ALK5 in 
GDF-8-stimulated aromatase expression. To make the 
experiments more technically feasible, particularly 
those involving gene knockdowns, KGN cells were 
used as the experimental model. Transfection of KGN 
cells with ALK4 siRNA downregulated endogenous 
mRNA levels of ALK4. However, knockdown of 
ALK4 did not affect the stimulatory effect of GDF-8 on 
aromatase mRNA levels (Figure 3A). Interestingly, 
the stimulatory effect of GDF-8 on aromatase mRNA 
levels was blocked by the knockdown of ALK5 
(Figure 3B). The same results of the involvement of 
ALK5, but not ALK4, in GDF-8-stimulated aromatase 
protein levels were observed by western blot analysis 
(Figure 3C). Collectively, these results indicate that 
the stimulatory effect of GDF-8 on aromatase 
expression in human granulosa cells is mediated by 
ALK5. 

GDF-8 upregulates aromatase expression and 
induces E2 production by activating the 
ALK5-mediated SMAD2/3 signaling pathway 

SMAD2 and SMAD3 are well 
characterized downstream signaling 
pathways of ALK5 [32]. Western blot 
analysis showed that treatment with GDF-8 
activated both the SMAD2 and SMAD3 
signaling pathways in hGL and KGN cells 
(Figure 4A). To examine whether SMAD 
signaling is involved in GDF-8-induced 
aromatase expression, endogenous SMAD4 
was knocked down by siRNA transfection 
because SMAD4 is necessary for 
SMAD-dependent signaling pathways [34]. 
As shown in Figures 4B and 4C, 
transfection of SMAD4 siRNA significantly 
downregulated endogenous SMAD4 
mRNA and protein levels. Importantly, 
knockdown of SMAD4 not only decreased 
basal aromatase mRNA and protein levels 
but also blocked the stimulatory effects of 
GDF-8 on aromatase mRNA and protein 
levels. Given the pivotal role of aromatase 
in E2 synthesis, we next examined whether 
GDF-8 affects E2 production in KGN cells. 
As shown in Figure 5A, treatment with 
GDF-8 induced E2 production, and this 
effect was abolished by pretreatment with 
SB431542. In addition, the stimulatory 
effect of GDF-8 on E2 production was 
blocked by the knockdown of ALK5 and 
SMAD4 (Figures 5B and 5C). 

 

 
Figure 2. Pharmacological inhibition of ALK4/5 blocks GDF-8-induced aromatase 
expression in hGL and KGN cells. A and B, hGL cells were pretreated with vehicle control 
(DMSO) or 10 µM SB431542 for 1 h, and then treated with 30 ng/mL GDF-8 for 24 h. Aromatase 
mRNA levels (CYP19A1) (A) and protein levels (B) were examined by RT-qPCR and western blot, 
respectively. C and D, KGN cells were pretreated with vehicle control (DMSO) or 10 µM SB431542 for 
1 h, and then they were treated with 30 ng/mL GDF-8 for 24 h. The aromatase mRNA levels (CYP19A1) 
(C) and protein levels (D) were examined by RT-qPCR and western blot, respectively. The results are 
expressed as the mean ± SEM of at least three independent experiments. The values without a common 
letter are significantly different (p<0.05). 
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Figure 3. ALK5 but not ALK4 is involved in GDF-8-induced aromatase 
expression. A, KGN cells were transfected with 50 nM control siRNA (si-Ctrl) or 
ALK4 siRNA (si-ALK4) for 48 h, and then treated with 30 ng/mL GDF-8 for 24 h. The 
mRNA levels of aromatase (CYP19A1) and ALK4 were examined by RT-qPCR. B, 
KGN cells were transfected with 50 nM control siRNA (si-Ctrl) or ALK5 siRNA 
(si-ALK5) for 48 h, and then treated with 30 ng/mL GDF-8 for 24 h. The mRNA levels 
of aromatase (CYP19A1) and ALK5 were examined by RT-qPCR. C, KGN cells were 
transfected with 50 nM control siRNA (si-Ctrl), ALK4 siRNA (si-ALK4), or ALK5 
siRNA (si-ALK5) for 48 h, and then treated with 30 ng/mL GDF-8 for 24 h. The 
protein levels of aromatase were examined by western blot. The results are 
expressed as the mean ± SEM of at least three independent experiments. The values 
without a common letter are significantly different (p<0.05). 

 

Inhibition of ALK5 attenuates the 
pathogenesis of OHSS in rats 

To further examine the role of GDF-8 in the 
pathogenesis of OHSS, SB431542 was applied to block 
the function of GDF-8 in a rat OHSS model. 
Consistent with our previous study [31], induction of 
OHSS significantly enlarged the size of the ovary and 
increased ovarian weight in rats. Administration of 
SB431542 attenuated the increases in ovarian size and 
weight in the OHSS group (Figures 6A and 6B). 
RT-qPCR results showed that the mRNA levels of 
aromatase were significantly upregulated compared 
to the control group and this induction was 
attenuated by the administration of SB431542 (Figure 
6C). Importantly, our results also showed that the 
mRNA levels of GDF-8 were upregulated in the 
ovaries of OHSS rats. However, the upregulation of 
GDF-8 mRNA levels was not affected by the 
administration of SB431542 (Figure 6D). 

GDF-8 levels are elevated in follicular fluid and 
granulosa cells of OHSS patients 

Given the critical role of E2 in the pathogenesis 
of OHSS, we examined the levels of GDF-8 in the 
follicular fluid of 25 control and 25 OHSS patients. As 
shown in Figure 7A, age and BMI did not vary 
significantly between control and OHSS patients. As 
expected, the number of oocytes retrieved and serum 
E2 levels on hCG administration day were 
significantly higher in OHSS patients than in control 
patients. We have previously shown that the levels of 
the EGFR ligand, amphiregulin (AREG), are increased 
in the follicular fluid of OHSS patients [35]. Consistent 
with our previous results, AREG protein levels were 
higher in the follicular fluid of OHSS patients than in 
that of control patients. Interestingly, GDF-8 protein 
levels were upregulated in the follicular fluid of OHSS 
patients (Figure 7B). We also examined the expression 
of GDF-8, ALK4, and ALK5 in the hGL cells derived 
from control and OHSS patients. RT-qPCR results 
showed that the mRNA levels of GDF-8 were higher 
in hGL cells of OHSS patients than in those of control 
patients. Both ALK4 and ALK5 mRNA levels in hGL 
cells did not vary significantly between control and 
OHSS patients (Figure 7C). 

Discussion 
Increasing evidence has indicated that the 

function of granulosa cells depends not only on 
endocrine regulators but also on a variety of locally 
produced factors that exert their effects in an 
autocrine and/or paracrine fashion. Steroid hormone 
production is one of the major biological functions of 
ovarian granulosa cells. Our previous studies have 
demonstrated that steroidogenic acute regulatory 
protein (StAR) is downregulated by GDF-8 treatment 
in hGL cells [17]. However, other steroidogenesis- 
related enzymes such as P450 side chain cleavage 
enzyme (P450scc) and 3β-hydroxysteroid 
dehydrogenase (3β-HSD) are not affected by GDF-8 in 
hGL cells [13]. Some hormones and growth factors 
expressed in the human ovary and follicular fluid 
have been shown to stimulate aromatase expression 
or E2 production in hGL cells [29, 36, 37]. GDF-8 
belongs to the TGF-β superfamily which plays 
important role in the regulation of ovarian function 
[38]. To date, the expression of several TGF-β 
superfamily members has been detected in the ovary. 
However, only a few studies have examined the direct 
effect of TGF-β superfamily members on aromatase 
expression. In KGN cells, activin treatment stimulates 
aromatase expression [39]. In human granulosa cells, 
aromatase expression is induced by BMP2 [40]. In 
bovine granulosa cells, GDF-8 increases basal 
aromatase expression and E2 production [41]. In this 
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study, we showed that treatment of primary hGL cells 
and KGN cells with GDF-8 stimulated aromatase 

expression. Collectively, our findings together with 
previous studies reveal the critical 

autocrine/paracrine roles of locally 
produced factors in the regulation of 
aromatase expression and E2 production in 
human granulosa cells. In addition, our 
study suggests that GDF-8-induced 
aromatase expression and E2 production 
could be potential therapeutic targets for 
the treatment of OHSS. 

ALK4 and ALK5 have been reported 
to be type I TGF-β receptors for GDF-8 as 
GDF-8 inhibits adipogenesis through 
ALK4- and ALK5-mediated activation of 
SMAD2/3 signaling pathways [42]. Our 
previous studies have shown that GDF-8 
inhibits the expression of StAR and 
pentraxin 3 through ALK5 [11, 17]. In the 
present study, we used a siRNA- 
mediated approach to reveal that the 
stimulatory effect of GDF-8 on aromatase 
expression in human granulosa cells was 
mediated by ALK5 but not ALK4. These 
results agreed with a previous study 
showing that ALK4 mediates the function 
of GDF-8 in myogenic cells, while its 
function in non-myogenic cells is mainly 
mediated by ALK5 [43]. In addition, we 
showed that both SMAD2 and SMAD3 
were activated upon GDF-8 treatment. 
Knockdown of SMAD4 blocked 
GDF-8-stimulated aromatase expression. 
These results demonstrated the important 
role of SMAD2/3 signaling pathways in 
mediating the function of GDF-8 in human 
granulosa cells. In a context-dependent 
manner, SMAD2 and SMAD3 can 
redundantly or differentially mediate 
TGF-β signaling [44]. It has been shown 
that GDF-8-inhibited StAR expression in 
hGL cells is mediated by SMAD3 but not 
SMAD2 [17]. Whether the same is true for 
GDF-8-stimulated aromatase expression 
remains unclear and warrants further 
investigation. 

The gene expression of GDF-8 can be 
regulated by both transcriptional 
machinery and posttranslational 
machinery, but most of the mechanisms are 
identified in the myogenic context of 
animal models [45]. In the present study, 
we found that the protein levels of GDF-8 
were upregulated in the ovaries of the rat 
OHSS model and the follicular fluid of 
OHSS patients. In addition, hGL cells 

 
Figure 4. SMAD2/3 signaling pathways are involved in GDF-8-induced aromatase 
expression. A, hGL cells (left panel) and KGN cells (right panel) were treated with 30 ng/mL GDF-8 
for 30 and 60 min. The levels of phosphorylated and total forms of SMAD2 and SMAD3 were 
determined by western blot. B and C, KGN cells were transfected with 50 nM control siRNA (si-Ctrl) 
or SMAD4 siRNA (si-SMAD4) for 48 h, and then treated with 30 ng/mL GDF-8 for 24 h. The mRNA (B) 
and protein (C) levels of aromatase (CYP19A1) and SMAD4 were examined by RT-qPCR and western 
blot, respectively. The results are expressed as the mean ± SEM of at least three independent 
experiments. The values without a common letter are significantly different (p<0.05). 

 
Figure 5. ALK5-mediated SMAD signaling is involved in GDF-8-induced E2 production. A, 
KGN cells were pretreated with vehicle control (DMSO) or 10 µM SB431542 for 1 h, and then they 
were treated with 30 ng/mL GDF-8 every 24 h for 48 h. B and C, KGN cells were transfected with 50 
nM control siRNA (si-Ctrl), ALK5 siRNA (si-ALK5) (B), or SMAD4 siRNA (si-SMAD4) (C) for 48 h, and 
then treated with 30 ng/mL GDF-8 every 24 h for 48h. E2 levels in culture media were examined by 
ELISA. The results are expressed as the mean ± SEM of at least three independent experiments. The 
values without a common letter are significantly different (p<0.05). 
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derived from OHSS patients expressed higher GDF-8 
compared to those derived from controls. However, 

the mechanism that contributes to the elevation of 
GDF-8 expression in OHSS patients remains 

unknown. Similar to our previous 
study [46], the administration of 
SB431542 attenuated OHSS symptoms. 
However, SB431542 did not affect the 
increases of GDF-8 levels in the ovaries 
of OHSS rats. In ovariectomized rats, 
E2 has been shown to increase GDF-8 
expression in the soleus muscle [47]. 
Interestingly, E2 treatment does not 
affect GDF-8 mRNA levels in the 
muscle of postmenopausal women [48]. 
To date, whether E2 regulates GDF-8 
expression in nonmuscle cells remains 
unknown. Given the high levels of E2 
in OHSS patients, it is possible that E2 
may stimulate GDF-8 expression and 
contribute to the high GDF-8 levels 
observed in OHSS patients. Future 
studies are required to test this 
hypothesis. Single nucleotide 
polymorphisms (SNPs) have been 
identified in the promoter region of the 
GDF-8 gene in several animal species. 
SNPs affect the expression of GDF-8 by 
disrupting the binding of transcription 
factors [45]. Mutations and SNPs of the 
human GDF-8 gene have been reported 
[3, 49]. However, whether these factors 
contribute to the aberrant expression of 
GDF-8 in OHSS patients is unclear. 
Further work is needed to examine the 
signature of the GDF-8 gene in OHSS 
patients. 

In summary, the present study 
reveals the stimulatory effect of GDF-8 
on aromatase expression and E2 
production in human granulosa cells. 
These effects are mediated by ALK5 
and its downstream SMAD2/3 
signaling. In addition, the expression of 
GDF-8 is upregulated in the follicular 
fluid and granulosa cells of OHSS 
patients, which leads to high aromatase 
expression and E2 levels and both of 
that subsequently contribute to the 
pathogenesis of OHSS. These results 
provide a better understanding of the 
mechanisms mediating the expression 
of aromatase and E2 production in 
human granulosa cells, which may lead 
to the development of alternative 
therapeutic approaches for OHSS. 

 
Figure 6. Administration of SB431542 attenuates OHSS symptoms. A, Representative ovaries 
were photographed from each group (n=5 for each group). B, Ovarian weight over body weight was 
determined after rats were euthanized. C and D, aromatase (CYP19A1) (C) and GDF-8 (D) mRNA levels in rat 
ovaries were examined by RT-qPCR. The results are expressed as the mean ± SD. Values without a common 
letter are significantly different (p<0.05). 

 
Figure 7. GDF-8 levels are upregulated in the follicular fluid and hGL of OHSS patients. A, The 
age, BMI, number of oocytes retrieved, and serum E2 levels on hCG day were summarized. B, AREG and 
GDF-8 protein levels in the follicular fluid of control (n=25) and OHSS (n=25) patients were examined by 
ELISA. C, The mRNA levels of GDF-8, ALK4, and ALK5 in hGL cells of control (n=17) and OHSS patients 
(n=22) were examined by RT-qPCR. The results are expressed as the mean ± SD. The values without a 
common letter are significantly different (p<0.05). 
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