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Abstract

Environmental perturbations have large effects on both organismal and cellular traits,

including gene expression, but the extent to which the environment affects RNA processing

remains largely uncharacterized. Recent studies have identified a large number of genetic

variants associated with variation in RNA processing that also have an important role in

complex traits; yet we do not know in which contexts the different underlying isoforms are

used. Here, we comprehensively characterized changes in RNA processing events across

89 environments in five human cell types and identified 15,300 event shifts (FDR = 15%)

comprised of eight event types in over 4,000 genes. Many of these changes occur consis-

tently in the same direction across conditions, indicative of global regulation by trans factors.

Accordingly, we demonstrate that environmental modulation of splicing factor binding pre-

dicts shifts in intron retention, and that binding of transcription factors predicts shifts in

alternative first exon (AFE) usage in response to specific treatments. We validated the

mechanism hypothesized for AFE in two independent datasets. Using ATAC-seq, we found

altered binding of 64 factors in response to selenium at sites of AFE shift, including ELF2

and other factors in the ETS family. We also performed AFE QTL mapping in 373 individuals

and found an enrichment for SNPs predicted to disrupt binding of the ELF2 factor. Together,

these results demonstrate that RNA processing is dramatically changed in response to envi-

ronmental perturbations through specific mechanisms regulated by trans factors.

Author summary

Changes in a cell’s environment and genetic variation have been shown to impact gene

expression. Here, we demonstrate that environmental perturbations also lead to extensive

changes in alternative RNA processing across a large number of cellular environments

that we investigated. These changes often occur in a non-random manner. For example,

many treatments lead to increased intron retention and usage of the downstream first
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exon. We also show that the changes to first exon usage are likely dependent on changes

in transcription factor binding. We provide support for this hypothesis by considering

how first exon usage is affected by disruption of binding due to treatment with selenium.

We further validate the role of a specific factor by considering the effect of genetic varia-

tion in its binding sites on first exon usage. These results help to shed light on the vast

number of changes that occur in response to environmental stimuli and will likely aid in

understanding the impact of compounds to which we are daily exposed.

Introduction

Variation in gene expression has long been associated with cellular and organismal pheno-

types. For example, studies have found that gene expression in blood and bronchial epithelial

cells differs among individuals with asthma [1, 2, 3, 4]. Such differences in gene expression

occur in specific cellular pathways, such as the glucocorticoid response pathway [1, 5, 6, 7],

leading to the general usage of glucocorticoids to treat asthma. These studies, and others, have

demonstrated that variation in gene expression plays a role in complex traits and cellular

responses [8, 9, 10, 11, 12]. More recently, however, researchers have begun to assess the

impact of alternative mRNA isoform usage on phenotypes. Previous studies have found that

RNA processing, leading to differential isoform usage, is different in certain diseases such as

Alzheimer’s disease and several forms of cancer [13, 14, 15, 16, 17]. Furthermore, studies have

identified global shifts in exon usage associated with developmental or diseased cellular states.

For instance, shorter 3’ untranslated region (UTR) isoforms are prevalent in proliferating or

cancerous cells [18, 19]. Cancer is also associated with increased retention of introns [20, 21].

Li et al. recently identified genetic variants associated with inter-individual variation in

mRNA splicing and identified almost 2,900 splicing Quantitative Trait Loci (QTLs). Further,

they showed that splicing QTLs are also enriched for genetic variants associated with several

complex traits in Genome-Wide Association Studies (GWAS), demonstrating the potential

importance of splicing misregulation in complex traits [22]. Previous work from our lab and

others have shown that gene-by-environment interactions can impact both gene expression

and complex traits [23, 24, 25, 26, 27, 28]. While splicing QTLs have been identified both in

humans and mice [22, 29, 30, 31], less is known about how gene-by-environment interactions

may affect RNA processing. The first step to address this question is to characterize RNA pro-

cessing in response to environmental perturbations.

RNA processing is regulated in response to certain environmental stimuli, such as cancer

therapy drugs, nutrient starvation and infection [32, 33, 34, 35] some of which influence cell

viability [36, 37, 38]. For example, UV exposure leads to differential isoform usage in the gene

BCL2L1, which is involved in the regulation of apoptosis. UV leads to increased abundance of

Bcl-xs which favors apoptosis as opposed to Bcl-xl which is anti-apoptotic [39]. Other studies

have demonstrated widespread, directed changes in the regulation of RNA processing. Infec-

tion with Listeria monocytogenes and Salmonella typhimurium led to increased inclusion of cas-

sette exons and shorter 3’UTRs genome-wide [35]. The longer versions of 3’UTRs that were

shortened were found to be enriched with particular microRNA binding sites, suggesting that

the RNA processing shift leading to shorter 3’UTRs may be a way for these genes to evade

down-regulation following infection. Despite the fact that these studies have increased our

understanding of factors that influence changes in RNA processing, they have investigated

only a limited number of environments. Cataloguing and characterizing RNA processing

changes across many environments, in a tightly controlled study using specific treatments, is
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PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006995 October 12, 2017 2 / 26

https://doi.org/10.1371/journal.pgen.1006995


necessary to increase our understanding of the cellular mechanisms leading to variation in

RNA-processing, including which aspects are common across many environments and which

are specific to certain perturbations.

Our study aimed to systematically assess the impact of a broad range of environmental per-

turbations on the regulation of RNA processing. We measured RNA processing patterns in

five cell types across over 30 treatments, corresponding to a total of 89 cellular environments

with 3 biological replicates and additional technical replicates (297 RNA-seq libraries in total

with 130M reads per library on average) [23]. The treatments represent compounds to which

we are exposed in daily life, ranging from metal ions and vitamins to allergy medication. This

work catalogs the extent of alternative RNA processing in response to a wide range of specific

environmental perturbations and provides evidence for molecular mechanisms by which trans

factors influence this process.

Results

External stimuli induce environment-specific shifts in RNA processing

Using high-throughput RNA sequencing, we identified 32 compounds that induce gene

expression changes in 32,451 genes in 5 different cell types (a total of 89 environments) [23]

(S1 Table). In order to identify changes in RNA processing, we utilized the probabilistic frame-

work implemented in the software Mixture of Isoforms (MISO) [40], which characterizes

changes in exon usage by calculating a percent spliced in (PSI, C) value. The C value is calcu-

lated by taking the ratio of reads specific to an inclusion isoform—specifically, reads aligning

to the alternative exon or its junctions—to all reads that can be mapped to the region (includ-

ing constitutive exons). Instead of entire isoforms, which may involve multiple RNA process-

ing mechanisms that are convolved together, we focused on individual exons that are tied to

known RNA processing mechanisms. We focused on events that involve known curated iso-

forms (see Methods), rather than novel isoforms, and characterized variation in RNA process-

ing events across different environments. This allowed us to learn about cis- and trans-acting

mechanisms leading to the RNA processing response. Specifically, we characterized changes in

eight event types: skipped exons (SE), retained introns (RI), alternative 3’ or 5’ splice sites

(A3SS, A5SS), mutually exclusive exons (MXE), alternative first or last exons (AFE, ALE),

and tandem untranslated regions (TandemUTR) (Fig 1A, S1 Fig shows a treatment color key

used throughout the manuscript). Across all conditions, we identified 15,300 changes in RNA

processing, representing a unique set of 8,489 events that significantly differ between at least

one treatment and control condition (Table 1, S2 Table). These events are found in genes

enriched for gene ontology terms such as RNA binding, gene expression, metabolic process,

response to stress and cell cycle suggesting their role throughout the cellular response to envi-

ronmental perturbation (BH FDR< 5%, S3 Table) [41]. Each significant change in an RNA

processing event was identified based on RNA sequencing data across cell lines derived from

three unrelated individuals (example in Fig 2 and at http://genome.grid.wayne.edu/

RNAprocessing). Across all environments, the most abundant event types with shifts were

RI, AFE and ALE (relative to the number of sites tested), while the least abundant was A3SS

(Fig 1B).

As we studied events in a given cell type across conditions, we found treatment-specific

shifts in RNA processing, resulting in vast differences in the number and type of event shifts

(examples in Fig 3). We found a wide range in the number of significant shifts across treat-

ments, with vitamin D producing the highest number (2,530 events) and BP3 leading to the

lowest number of significant shifts in RNA processing (65 events) (average = 478 events, 0.5%

of events tested) (Fig 1C). The number of RNA processing changes in each environment is
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minimally correlated to the sequencing depth of the library (Spearman’s ρ = 0.15, p = 0.02;

S2A Fig), but it is correlated to the number of differentially expressed genes in each environ-

ment (Spearman’s ρ = 0.59, p = 1.22 × 10−8; S2B Fig), suggesting the same underlying mecha-

nism inducing changes in RNA processing and in overall gene expression.

Fig 1. RNA processing events and gene expression changes following treatment. A) Diagram depicting the 8 types of RNA splicing changes

characterized in this work: alternative first exon, mutually exclusive exon, skipped exon, alternative 5’ splice site, retained intron, alternative 3’ splice

site, alternative last exon, and tandem untranslated region. B) Graph showing the estimated proportion of each event type within a given treatment

resulting from a logistic model. C) Proportion of significant changes in events over the total number of events that were tested in that treatment. Each

bar combines all cell types treated with the compound. Error bars denote the standard error from a binomial test. The dotted line indicates the

average proportion of significant events across all treatments.

https://doi.org/10.1371/journal.pgen.1006995.g001
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In addition to differences in the overall number of RNA processing changes, we also found

differences in relative number of changes in certain event types (Fig 1B). While changes in

AFEs represent the greatest overall number of changes across environments, there is substan-

tial variation in the extent to which each event type changes within each treatment (Fig 1B).

We utilized a generalized linear model to determine the proportion of event types among sig-

nificant event shifts in a given treatment. With this model, we identified 3 treatments that

Table 1. RNA processing events across 89 environments. Number of significant RNA processing events and changes across all environments. The num-

ber of changes is the number of significant RNA processing shifts summed across environments. Events are the number of positions at which an RNA pro-

cessing shift occurs in at least one environment, thus representing a unique set of genomic positions.

SE A3SS A5SS RI MXE AFE ALE TandemUTR

# of sig. changes 1681 516 686 1759 669 6015 3726 248

# of sig. events 1144 354 370 960 404 3003 2075 179

# of events tested 15895 5357 3714 3731 3728 10926 6714 2335

% sig. events 7.2 6.6 10.0 25.7 10.8 27.5 30.9 7.7

https://doi.org/10.1371/journal.pgen.1006995.t001

Fig 2. Sashimi plot showing AFE change following selenium treatment in LCLs across 3 unrelated individuals. The diagrams

on the left show the read coverage of an AFE shift in PAIP1 for six samples (three selenium and three control treated LCLs). The plots on

the right show the full posterior distribution of theΨ value, along with their confidence intervals. The model of this region is represented

below. HighΨ (greater than 0.5) indicates preference for the upstream AFE.

https://doi.org/10.1371/journal.pgen.1006995.g002
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Fig 3. Example of RNA processing across treatments in one individual. The plots on the right show theΨ value for

each sample with confidence intervals. The plots to the left show the read coverage in each exon with a model of this

region below each read coverage plot. A) Sashimi plot showing SE shift in RAPGEF2 in PBMCs following exposure to 4

treatments (vitamin D, dexamethasone, biotin and zinc) and both controls. B) Sashimi plot showing RI shift in APEX1 in

melanocytes following exposure to 4 treatments (selenium, caffeine, BHA and loratadine) and both controls.

https://doi.org/10.1371/journal.pgen.1006995.g003
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showed enrichment for an event type, including vitamin E, tunicamycin, and cadmium. For

example, vitamin E is enriched for A5SS while cadmium is depleted for RI (Fig 1B). Together,

these results demonstrate that, similar to changes in gene expression, a large number of RNA

processing events change in response to environmental perturbations.

Direction of RNA processing shifts and gene expression changes

Regulation of RNA processing events in response to environmental perturbations may be

mediated by trans factors that impact many RNA processing events of the same type, or by cis-

acting regulatory sequences that would impact each event separately. To investigate these two

mechanisms we considered global shifts in RNA processing. Among the 8 event types with

changes following treatment, 5 were considered directionally: SE, RI, AFE, ALE, and Tande-

mUTR. Specifically, for each event, ΔC was assigned a sign to indicate a qualitative difference

between treatment and control conditions that is consistent across all events. We used a posi-

tive ΔC (same as positive Z-score) to indicate either an increase in usage of the skipped exon,

upstream AFE, downstream ALE, longer TandemUTR or intron retention in the treatment

sample as compared to control (Fig 4A). This allowed us to consider transcriptome-wide

trends across sites that may indicate a shift in overall regulation of RNA processing, such as

consistent inclusion of an exon.

When we focused on treatments with at least 30 significant RNA processing shifts of a cer-

tain event type, 19% of treatments showed a correlation (p< 0.05) between changes in RNA

processing and changes in gene expression (examples in S3 Fig, S4 Table). For example, iron

induced a positive correlation between ALE and gene expression (Spearman’s ρ = 0.27,

p = 0.002) (S3A Fig). Specifically, genes shifting towards usage of the downstream ALE follow-

ing iron treatment also have increased expression in the treatment samples. On the other

hand, selenium leads to the opposite effect: increased expression following selenium is found

in genes that utilize the upstream ALE (Spearman ρ = −0.18, p = 1 × 10−4) (S3B Fig). These

data suggest that in specific environments, cells respond with concerted shifts in RNA process-

ing events and gene expression. However, while we did identify correlations between RNA

processing events and gene expression in some conditions, the absence of strong correlation in

many of the conditions suggests that other factors play a role in RNA processing shifts. To

investigate this possibility, we started by examining similarities of shifts across sites that might

suggest certain factors that play a role in the cellular response to environmental perturbation.

Coordinated RNA processing shifts across cellular environments

We investigated whether the global shifts in events had consistent direction across environ-

ments suggesting a shared trans-acting mechanism of change. First, we found that 8 environ-

ments led to an enrichment for SE shifts toward either inclusion or exclusion of the alternative

exon (two-sided, binomial test compared to the expected proportion of 50%, p-value< 0.05,

Fig 4B). Specifically, six environments were enriched for positive SE shifts which indicate

global inclusion of the alternative exon while two led to more negative shifts or exclusion of

the exon.

When studying RI across all environments, we identified 20 environments that lead to

global shifts in intron inclusion. Specifically, 18 out of 20 were enriched for positive events (p-

value < 0.05, Fig 4B), thus showing enrichment for intron retention as compared to the con-

trol for most environments. These results suggest a common mechanism for intron retention

in cells that respond to changes in the environment. For example, even though vitamin D

causes many more changes in alternative splicing in PBMCs, all cell types trend towards

retaining introns following vitamin D treatment. This can be more clearly seen when

Environmental perturbations lead to extensive directional shifts in RNA processing
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considering all RI events (not just significant events), where all 4 cell types show a shift toward

more positive values in their ECDF (Kolmogorov-Smirnov (KS) test p< 0.05 for 3 of 4 cell

types) denoting higher ΔC values, retaining of introns, following vitamin D treatment (S4A

and S4B Fig).

Of the 5 event types whose direction could be assessed, AFE global shifts are observed in

the most environments (Fig 4B). Specifically, 34 environments led to usage of the downstream

AFE (negative Z-scores), while seven treatments were significantly enriched for shifts to the

upstream AFE (positive Z-scores) (p-value< 0.05, Fig 4B). Interestingly, several treatments

lead to opposite AFE shifts in different cell types demonstrating the importance of the cellular

background in response to environmental perturbations. For example, insulin leads to a shift

toward the downstream AFE in SMCs but a shift toward the upstream AFE in melanocytes.

This is also apparent when we consider all event shifts in these environments (KS test

p< 0.05) (S4C and S4D Fig). Both ALE and TandemUTR also showed deviation from the

expected 50:50 ratio of positive to negative events but the trend was less clear (S5 Fig). These

results demonstrate that while there are similar trends in the proportion of significant events

across event types in a given environment, the directionality of the event shift is often different.

Furthermore, these results show that global shifts in RNA processing events can be determined

solely by the treatment or by the combined effect of treatment and cell type.

Environmental shifts in SE and RI are mediated by changes in splicing

factor expression and binding

In order to elucidate the specific factors involved in the global shifts in SE and RI events, we

focused on factors likely to influence RNA processing, specifically splicing factors. We quanti-

fied the gene expression changes of splicing factors across all environments to determine if

there was a correlation to the number of positive (inclusive) RNA processing shifts. The under-

lying hypothesis is that shifts in exon usage may be explained by splicing factors that: 1) have

activity largely mediated by changes in gene expression, and 2) have the same influence over

splicing in all treatments.

We identified 14 splicing factors (of 166 tested) with changes in gene expression correlated

with percent significant positive events of all significant events for RI (BH FDR< 5%, example

in Fig 5A and 5B, S5 Table); none were found for SE. Notably, we identified that changes in

expression of LARP7 are positively correlated with RI events. This suggests that the increased

expression of LARP7 under treatment conditions leads to more intron retention (positive RI

events). Previous work has shown that LARP7 promotes skipping of alternative exons [42].

Our results suggest that LARP7 also plays a role in intron retention events. This trend can be

seen across all environments considered. For example, selenium leads to an increase in expres-

sion of LARP7 and more intron retention. The lack of splicing factors correlated with SE could

be due to several factors. First, unlike RI, there are multiple treatments that do not have global

trends towards either inclusion or exclusion of the skipped exon. This may indicate that each

exon is controlled by unique mechanisms and so searching for a particular responsible splicing

factor may not be the best model. Furthermore, across treatments, we do not see the same

coordinated changes as we do for RI further hindering our ability to identify a splicing factor

across treatments.

Many factors may influence RNA processing differently following various treatments and

so we may miss an effect by investigating common expression patterns across environments.

Also, some factors are known to have different effects depending on binding location and not

necessarily on overall gene expression. For example, when SR proteins (serine-arginine pro-

teins) bind upstream of 5’ splice site, they induce splicing but do not have the same effect when

Environmental perturbations lead to extensive directional shifts in RNA processing
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Fig 4. Direction of shift in events following treatment. A) Schematic of direction of event shifts for a givenΨ and ΔΨ.

Shown for 5 event types.B) These plots indicate the direction of shift for 3 event types: SE (left), RI (middle) and AFE

(right). Each plot shows 78 environments for whichthese events were tested. The height of each bar shows the

proportion of significant event shifts for each environment and the dotted line indicatesthe average proportion of

significant events across environments. Each bar is then broken in two with the shaded region showing the proportion

Environmental perturbations lead to extensive directional shifts in RNA processing
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bound in the intron [43]. With this in mind, we asked whether predicted binding sites of splic-

ing factors may explain SE and RI. First, we characterized motifs that are present upstream,

downstream or within the alternative unit (exon for SE or intron for RI). We, then, utilized an

elastic-net regularized generalized linear model (GLM-NET) to predict splicing changes in 5

environments with greater than 100 significant event shifts (3 with SE, 2 with RI), based on the

binding motif occurrences of splicing factors. When studying the model as a whole, we found

that area under the curve (AUC) for each environment ranges from 0.67 for melanocytes

exposed to loratadine to 0.87 for PBMCs exposed to vitamin D, suggesting that binding of

splicing factors is important for determining changes in splicing following treatment, but the

impact differs across cellular environments (Fig 5C). We also found that the genomic location

of a binding site, relative to the splicing event, is an important predictive feature. For example,

a motif for RBM8A (M054_0.6 from RNAcompete [44]) is a part of the predictive model of SE

in PBMCs treated with vitamin D but only when the motif is located in the upstream intron.

This demonstrates the positional effect of binding that others have characterized for some

splicing factors [43, 45, 46, 47] and expands its importance across a large number of environ-

mental perturbations.

Effect of transcription factor expression and binding on AFE

We hypothesized that transcription factors regulate AFE shifts and TSS usage in response to

environmental perturbations. Similar to our analysis with splicing factors, we first hypothe-

sized that shifts in AFE could be the consequence of changes in gene expression for transcrip-

tion factors that promote usage of either the upstream or the downstream TSS and have

similar effects in all environments.

We identified 328 (out of 1,342) transcription factors whose change in expression is corre-

lated with shifts in AFE (BH FDR < 5%) (example in Fig 5D and 5E, S6 Table). Together,

these results suggest that transcription factor binding influences the choice of TSS leading to a

consequent shift in alternative first exon usage.

To directly determine the effect of transcription factor binding on AFE shifts, we then uti-

lized transcription factor footprints identified in DNase-seq data from ENCODE and the

RoadMap Epigenomics [49, 48, 50] to predict shifts in AFE usage in 14 environments. We

used footprints from more than 150 cell types to better capture a wider range of cellular envi-

ronments, as determined by tissue of origin or culturing conditions. To predict AFE shifts,

we considered the number of footprints present within 1000bp in either direction of each

transcription start site (defined as the beginning of each alternative first exon), and used

GLM-NET (as we did in the splicing factor analysis). Across the 14 environments, the AUC

ranges from 0.71 for cadmium in LCLs to 0.92 for dexamethasone in LCLs (Fig 5F). These

data suggest that transcription factor binding predicts changes in AFE following treatment.

Validation of the mechanism for AFE shifts

By inducing changes in transcription factor binding, specifically by perturbing the cellular

environment, we can validate the effect of binding on AFE usage (Fig 6A). To this end, we

performed ATAC-seq in LCLs following treatment with selenium and its vehicle control.

First, we noticed that selenium leads to an overall reduction in chromatin accessibility near

ofthe significant changes that shifted towards a positive ΔΨ (inclusion of exon, intron or upstream AFE) while the white

region of each bar is theproportion of sites with a negative ΔΨ. The column of boxes shows if there is a departure from

the expected 50:50 for positive to negative ΔΨ(tested using a binomial test). Red denotes enrichment for ΔΨ > 0 and

blue for ΔΨ < 0).

https://doi.org/10.1371/journal.pgen.1006995.g004
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Fig 5. Effect of trans-factor binding on RNA processing shifts. A) and D) show models of hypothesized mechanism

of splicing or transcription factor influence on RNA processing and exon usage. B) An example of a correlation between

the changes in gene expression of an RNA processing factor (LARP7) and the percent of RIs that shift towards the intron

retention across all environments for which gene expression could be assessed. E) An example of a correlation between

the changes in gene expression of a transcription factor (HSF1) and the percent of AFEs that shift towards the upstream

Environmental perturbations lead to extensive directional shifts in RNA processing
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transcription start sites (Fig 6B). To determine how selenium influences binding of transcrip-

tion factors near alternative TSS, we characterized chromatin accessibility following treatment

with selenium, or control (with the footprints used in the prediction analysis).

We found significant differences in chromatin accessibility for 64 motifs, near the TSS that

was preferentially used in the treatment versus the TSS preferred in the control condition. Of

these 64 motifs, 26 are ETS transcription factor family members (or from motifs with similar

sequence preferences). The most significant motif was for the transcription factor ELF2 (also

in the ETS family, p-value = 5.4 × 10-6). We found a global decrease in chromatin accessibility

at the ELF2 motif but there was a milder decrease in accessibility at the preferred TSS following

selenium (Fig 6C and 6D), compared to the non-preferred TSS. These data suggest that at

baseline ELF2 promotes transcription at both TSSs. However, following selenium treatment,

though there is an overall decrease in ELF2 from both TSSs, there is a greater decrease from

one TSS and this leads to a shift towards less usage of that TSS following treatment. All 26

motifs predicted from the ETS family of transcription factors show a similar change in binding

as ELF2. More broadly, these results support a mechanism for changes in TSS usage driven by

changes in chromatin accessibility and potentially transcription factor binding in response to

perturbations of the cellular environment.

To further validate the effect of ELF2 binding on AFE usage, we characterized AFE across

373 unrelated, European individuals from the GEUVADIS data [51]. We identified 8,263 AFE

events that can be characterized in at least 200 individuals. Using these data we performed

AFE quantitative trait loci (QTL) analysis, by focusing on the SNPs in ELF2 footprints in the

cis region of an AFE. We found an enrichment for QTLs in SNPs that were also predicted

[48] to impact binding of ELF2, compared to those that do not affect binding (Fisher test p-

value < 0.05, OR = 3.14, Fig 6E). For example, the G allele of a SNP in IGHMBP2 (rs546382) is

predicted to promote binding of ELF2 and the genotype of this SNP is associated with C values

across the GEUVADIS dataset (p-value = 1.1 × 10−35, Fig 6F). In this way, using genetic pertur-

bation, we were able to validate the impact of transcription factor binding, and specifically

binding of ELF2, on AFE usage.

Discussion

We describe 15,300 event shifts following a wide range of environmental perturbations at

8,489 unique RNA processing event sites. We have provided a browsable web-resource cata-

loguing these RNA processing shifts. Researchers interested in a given gene, isoform, or treat-

ment will be able to access our data to determine when RNA processing shifts occur and

which other genes respond under similar environments. Mining of our results has the poten-

tial to inform on the mechanisms by which a cell responds to environmental perturbations

and its genome-wide effect on RNA processing. Interestingly, we identified some RNA pro-

cessing changes that occurred across biologically-related treatments. For example, of the 1,030

significant RNA processing shifts occurring in PBMCs, 120 can be found to shift in the same

direction among various metal ion treatments (copper, iron, molybdenum, zinc and cad-

mium). Additionally, even though the COS inhibitors ibuprofen, aspirin and acetaminophen

are structurally distinct and likely have different mechanisms of action, of the 147 event shifts

AFE across all environments for which gene expression could be assessed. The correlation for B) and E) was tested

using Spearman’s rho and the p-value shown is Benjamini-Hochberg corrected while the trendline depicts the best-fit

line. C) Graph indicating the predictability (AUC as a proxy) of SE or RI shifts in a certain environment given predicted

splicing factor binding sites (RNAcompete). F) Graph indicating the predictability (AUC as a proxy) of AFE shifts in a

certain environment given transcription factor footprints [48].

https://doi.org/10.1371/journal.pgen.1006995.g005
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Fig 6. Binding of ELF2 impacts AFE shift following selenium treatment. A) Model illustrating the situation where transcription is shifted

towards the downstream AFE following selenium treatment and demonstrates an example of a TSS that would be included in our analysis. B)

Chromatin accessibility of TSS with significant shift in AFE following selenium measured by ATAC-seq (read count normalized to total reads in the

library). Chromatin accessibility profiles derived from LCLs treated with selenium are bright blue or red, while profiles derived from LCLs treated

with control are dark blue or red. Blue lines show accessibility at TSS to which the AFE shifts towards in selenium while red show the other TSS (as

illustrated in A). C and D) ATAC-seq profiles centered on ELF2 motif locations within 1000bp of either TSS (colors are the same as in A and B)

where C) shows accessibility of ELF2 motifs near TSS that are favored following selenium and D) shows accessibility of ELF2 motifs near TSS that

are favored in the control samples. The difference in the ratio of treatment vs control read counts between the preferred and not preferred AFE is
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in melanocytes, 25 shifts are shared across these treatments. In addition to informing on par-

ticular treatments and cell types, these data can be utilized to study similarities of cellular

responses across the wide range of treatments used here. While these data are valuable for

understanding cellular response, further research is necessary in order to verify these RNA

processing shifts in vivo.

The majority of events could be characterized as AFE, ALE, RI or SE, suggesting that these

are the most influenced by the environmental perturbations considered here. This is distinct

from previous reports that TandemUTR events change most following infection [35] and sug-

gests diverse mechanisms through which the cells respond to their environment.

Previous work has studied the role of splicing factors and transcription factors in RNA

processing, in the absence of specific environmental perturbations. For example, others have

shown that multiple splicing factors influence cassette exon usage, several of which fall into 2

protein families: hnRNPs and SRSFs. These 2 protein families often result in opposite splic-

ing patterns [43]. These proteins may play a role in several of the RNA processing events that

we study here, including SE, RI, A5SS, and A3SS. There are other studies that characterized

proteins related to polyadenlyation site usage (which we study as TandemUTR), including

E2F, CSTF2, CSTF64 [52, 53]. Furthermore, recent studies have suggested that binding of

transcription factors may influence differential use of transcription start sites in mice [54].

While these studies demonstrate the role of trans factors in RNA processing, we aimed to

determine their role in global RNA processing changes in response to environmental

perturbation.

Across 89 cellular environments, we found that binding sites for specific trans factors pre-

dict the shifts in events following treatment, thus demonstrating the importance of these fac-

tors and their binding locations for cellular response. We often find that not all binding sites

for a given motif are predictive, but rather only binding sites in a certain location relative to

the exon of interest. Furthermore, while previous studies have demonstrated the impact of

binding location on RNA processing events at baseline, we demonstrate that the effect of bind-

ing in a certain location is treatment-specific. These results highlight the importance of study-

ing trans factor binding across various environments. Further analysis of these binding sites

will aid in understanding the details of the molecular mechanisms regulating RNA processing

response to each cellular environment. For example, motifs associated with weaker binding of

a trans factor may allow for more rapid changes in RNA processing and a more rapid cellular

response.

Previous reports have characterized differences in transcription factor expression and bind-

ing across cellular environments [49, 55]. Here, we show that variation in transcription factor

binding following environmental perturbations may determine TSS usage in addition to their

function of influencing total gene expression. Feng et al. demonstrated the influence of tran-

scription factors on TSS usage in mice [54]. Here, we expand on this knowledge by showing a

similar function in human cells, both in response to many environmental changes and across

individuals. Using ATAC-seq data, we further pinpointed factors such as ELF2 whose binding

is disrupted by the environment, leading to changes in TSS usage. The changes in TSS usage

are also observed when binding is disrupted by genetic variation in the GEUVADIS data, as

shown in the AFE QTL analysis. Transcription factors are often regulated by environmental

significant (BH pvalue = 2.0 × 10−3). E) QQ-plot of the AFE QTL p-values for SNPs in footprint of ELF2 (within cis region of an AFE event) that are

predicted to influence binding (black) or not (gray). F) Association between genotype of SNP (rs546382) found in an ELF2 footprint and predicted

to influence binding [48] andΨ of AFE in IGHMBP2 across European individuals from the GEUVADIS data (p-value = 1.1 × 10−35). In the bottom

right of the graph is the motif logo for ELF2 and the arrow indicates the position of the SNP.

https://doi.org/10.1371/journal.pgen.1006995.g006
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changes and are then responsible for impacting expression of many genes to promote re-estab-

lishment of cellular homeostasis (reviewed in [56]). Therefore, we suggest that TSS usage may

also play a substantial role in cellular response and homeostasis.

Alternative RNA processing is predicted to occur in over 95% of multi-exon genes in

humans across various tissues [57]. Our comprehensive catalog of genome-wide RNA process-

ing changes can be utilized in future studies that aim to understand the role of RNA processing

under various conditions and diseases as many of the treatments we used represent com-

pounds to which individuals are commonly exposed. Furthermore, because RNA processing is

associated with complex trait variation [22, 17], individual differences in RNA processing, spe-

cifically in response to environmental changes, could shed light on variation in organismal

phenotypes.

Methods and materials

RNA-seq data source

We used deep-sequenced RNA-seq data (fastq files) from Moyerbrailean et al., 2016 [23].

Briefly, five cell types (LCL, PBMC, HUVEC, melanocyte and smooth muscle cells) were

treated with 50 compounds to which humans are regularly exposed. Each environment (cell

type and treatment) was represented in cell lines derived from three, unrelated individuals. We

utilized the step 2 sequencing data which focused on 89 environments, with at least 80 differ-

entially expressed genes, (S1 Table) that were sequenced with 150bp reads to an average of

130M reads/library (297 RNA-sequencing libraries). These 89 environments include treat-

ments and three vehicle controls (S1 Table).

Alignment

In order to detect alternative splicing, we used Mixture of Isoforms (MISO) [40], which

requires reads of the same length. Therefore, we selected reads with a length greater than or

equal to 120bp. All reads were trimmed to 120bp. We also removed reads whose paired end

was less than 120bp.

Reads were aligned to the hg19 human reference genome using STAR [58] (https://github.

com/alexdobin/STAR/releases, version STAR_2.4.0h1), and the Ensemble reference tran-

scriptome (version 75) with the following options:

STAR --runThreadN12 --genomeDir<genome>
--readFilesIn<fastqs.gz>--readFilesCommandzcat
--outFileNamePrefix <stem> --outSAMtypeBAM Unsorted
--genomeLoadLoadAndKeep

where <genome> represents the location of the genome and index files, <fastqs.gz> rep-

resents that sample’s fastq files, and <stem> represents the filename stem of that sample.

Each of the 297 RNA-sequencing libraries were sequenced multiple times in Step 2 [23] in

order to obtain adequate coverage. These sequencing runs were merged using samtools (ver-

sion 2.25.0). We further removed reads with a quality score of< 10 (equating to reads mapped

to multiple locations).

Running MISO to detect splicing events

In order to detect alternative splicing, we used MISO on samples aligned as above. Each con-

trol compound (ethanol, water or DMSO) was used to treat the same individual cell line in

three technical replicates. The reads from each of these samples were combined to perform the

following analysis. We utilized the events annotated and listed on http://miso.readthedocs.io/
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en/fastmiso/index.html. Specifically, we searched our data for 8 types of events with 5 from

version 2 (SE, RI, A5SS, A3SS, and MXE, http://miso.readthedocs.io/en/fastmiso/annotation.

html) and 3 from version 1 (AFE, ALE and TandemUTR, [59]). Two versions were used

because AFE, ALE and TandemUTR were not annotated in version 2. We then ran miso.py
on each of our samples for each of the 8 event types.

miso.py--run indexed_events/my_sample1.bam--output-dir
my_output1/

--read-len120
Then, we used summarize_miso.py to get the summary statistics for each event in each

sample, including the percent spliced in value (PSI, C).

summarize_miso--summarize-samplesmy_output1/summaries/
To identify differential splicing, we used compare_miso.pywhich compares each event

between treatment and control samples in the same individual cell line and experimental batch

(plate).

compare_miso--compare-samplesmy_output1/my_control1/
comparisons/

This script resulted in a ΔC, a Bayes factor and p-value for each comparison. We then

focused on comparisons where both treatment and control contained 2 reads covering each

isoform uniquely and a total of 10 reads unique to either isoform for SE, RI, A5SS, A3SS,

MXE, AFE and ALE. TandemUTR can only have reads specific to one isoform as the other iso-

form is simply a shorter version and completely overlaps the first. Therefore, we focused on

comparisons of TandemUTR where both treatment and control contained 5 reads specific to

the longer isoform and 10 total reads that covered either isoform.

Additionally, in order to inform on a cut-off for significant differential splicing, we per-

formed comparisons between 2 controls (CO2 vs. CO1). Similar to treatments versus controls,

we compared treatments performed in the same individual cell line and on the same plate.

This generates an empirical null distribution that can be used to calibrate the statistical signifi-

cance of the results. To this end, we used the same read requirements and filters as described

above.

Detecting significant changes in RNA processing

Because we had samples from three individuals for each environment (cell type and treat-

ment), we aimed to combine the differential splicing scores across individuals. In order to do

this, first we constructed tables for each event type that have all comparisons for all events of

that type and take the Bayes factor (BF) computed by MISO. Our next step was to convert the

BF of each comparison to a p-value. In order to do this, we used our comparison of CO2 to

CO1 to estimate the empirical null distribution of the Bayes factors. The empirical p-values for

each treatment versus control BF are calculated by the corresponding quantile in the empirical

null distributions (i.e., distribution of BFs in the CO1 versus CO2 comparisons). This proce-

dure is essentially equivalent to calculating an empirical null distribution using permutation-

based approaches. This was done separately for each event type, as they may have different

underlying distributions under the null hypothesis of no changes, i.e. ΔC = 0. Then, we con-

verted each empirical p-value to a Z-score while retaining the direction of the change from the

ΔC (calculated by MISO):

Z ¼ signðDCÞ � jQðp=2Þj ð1Þ

where Q represents the quantile normal function qnorm in R. These Z-scores are then added

across all individuals with enough reads for the specific event considered in a given
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environment and divided by the square root of the number of individuals (Stouffer’s method).

We required that for a given isoform, at least 2 of the 3 individuals had high enough coverage

to be measured (see read minimums in previous section). Finally, we ranked these new Z-

scores (which are a combined measure across 2 or 3 individuals in an environment) and calcu-

lated a Benjamini-Hochberg (BH) corrected p-value to control for the false discovery rate

(FDR). We considered an event with a significant shift if the BH FDR < 15%.

Assigning direction to AFE and ALE

Of the 8 event types, 3 are tested directionally by MISO. SE, RI and TandemUTR had the iso-

forms assigned such that a higher C corresponded to more inclusion of the skipped exon,

inclusion of the retained intron or longer UTR, respectively. In order to assess directionality of

ALE and AFE events, we modified the C signs such that higher C values corresponded to the

more upstream AFE or downstream ALE (on the transcribed strand, using the transcription

start site or end site, respectively) (Fig 4A). This was done for all analysis steps considering

directionality.

Determining significance of global directional shifts in RNA processing

We consider directional shifts for SE, RI, TandemUTR, AFE and ALE. In order to identify sig-

nificant global shifts we utilized a two-tailed binomial test where the ratio of positive to nega-

tive significant Z-scores in a given environment is compared to the expected ratio of 50:50.

Depending on the favored direction, we considered an environment either enriched or

depleted, if p-value< 0.05.

In each environment, to study the global shifts in RNA processing we considered all shifts,

not just the significant ones, and generated an empirical cumulative distribution function

(ECDF) from all the ΔC values. We used the Kolmogorov-Smirnov test (KS-test) to determine

whether this distribution is significantly different compared to the ΔC ECDF derived from the

comparison of two controls (CO2 versus CO1).

Gene expression changes

We calculated differential gene expression as described in Moyerbrailean et al. [23] using

DESeq2 [60]. We analyzed the correlation between the number of significant shifts in exon

usage (of any type) to genes that are differentially expressed in each environment using Spear-

man’s ρ (S2 Fig).

Because gene expression changes are relative to a control treatment, we used the ΔC, which

was calculated relative to the same control samples, to compare gene expression to RNA pro-

cessing shifts. For each treatment (using information from all cell types treated with that com-

pound), we found genes that had a significant shift in an RNA processing event. Then, we

determined the correlation between log-fold gene expression changes (measured over all 3 cell

lines with DESeq2) and the average ΔC across the same 3 individuals (S3 Fig and S4 Table). In

this analysis, we focused on treatment and event type combinations that had at least 30 RNA

processing shifts in genes whose expression could be assessed in the same treatment across all

cell types.

When we studied the correlation of a specific event to gene expression of either a splicing

factor or transcription factor, we correlated the log-fold gene expression of that factor to the

percent positive events (PPE) of a given event type across all environments:

PPEA ¼
# Positive Significant Shifts of Event Type A

# Significant Shifts of Event Type A
ð2Þ
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The correlation between PPE and log-fold gene expression is calculated using Spearman’s ρ
and a best-fit line is added to each plot in Fig 5B and 5E.

Enrichment of event types among significant events in each treatment

In order to estimate the fraction for each event type while controlling for cell-type, and to iden-

tify enrichment of a specific event type among events with significant shifts in a given treat-

ment, we used a generalized linear model:

logð
pl

1 � pl
Þ � Tl � El þ Cl ð3Þ

where pl is the probability that the event ‘l’ has a significant shift of a specific type El, for a

given treatment Tl and cell-type Cl. This allowed us to study the interaction between treatment

and event type (while removing the effect of cell type) on whether or not an event type is signif-

icantly enriched for a specific treatment.

The model incorporates an intercept which utilizes the information from one of each cate-

gory in the equation such that every βt,e is relative to this baseline category. In order to create

Fig 1B, we used the estimated fractions pl from this logistic model, and conditional on each

treatment t. We report the probability of each event type e among significant events. This

allows us to compare proportion of event types across treatments. In order to determine

enrichment of an event type among significant event shifts for a given treatment, we look at

the p-value for the interaction term of treatment by event type (βt,e 6¼ 0).

Gene ontology analysis

We utilized GeneTrail [41] to find enrichment of gene ontology terms. We compiled a list of

unique genes that had significant changes in RNA processing. We focused on the 3,363 genes

to which an RNA processing event could be uniquely assigned. We then determined which

GO categories were over-represented as compared to a list of all genes to which an RNA pro-

cessing event could be assigned. We considered a category over/under-represented if the Ben-

jamini-Hochberg FDR< 5%.

Elastic-net regularized generalized linear model

In order to assess the predictive power of transcription factor binding on RNA processing

changes following treatment, we utilized the ‘glmnet’ package in R [61]. This package uses an

elastic-net regularized generalized linear model (using a logistic link function). We used this

model to assess the role of transcription factor binding on AFE and splicing factor binding

sites on SE and RI in environments with at least 100 significant event shifts (BH FDR< 15%).

For our analysis of AFE, we used the transcription factor footprints derived from data col-

lected by ENCODE and RoadMap Epigenomics [49, 48, 50]. We utilized footprints from all

cell types because we expect binding to change following treatment and so did not want to be

too restrictive on what we called a binding site. We then counted the number of footprints

within 1000bp (upstream and downstream) of each TSS for each AFE that showed a significant

shift following treatment. Next, for each AFE, we subtracted the number of footprints near the

downstream TSS from the number of footprints near the upstream TSS. We then used these

values, for each motif, as predictors in the model. The variable we attempted to predict using

this model was the direction of the shift (ΔC) following treatment. From the results of glmnet,

we then used the lambda.1se, the lambda that was 1 standard error from the lambda that

resulted in the highest AUC, to define an AUC for AFE in a given treatment. Measurement of
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AUC and selection of lambda was done using the cross-validation procedure implemented in

glmnet (cv.glmnet).

For our analysis of SE and RI, we used the splicing factor binding sites predicted from RNA-

compete [44]. We split each SE or RI with a significant shift following treatment into 5 regions

around the event site. For SE, we had the region of the upstream intron, the skipped exon itself,

the downstream intron, 100bp upstream of the 3’ splice site, and 100bp downstream of the 3’

splice site. For RI, we used the region of the upstream exon, the intron in question, the down-

stream exon, 100bp upstream of the 5’ splice site, and 100bp downstream of the 5’ splice site.

We determined whether or not a splicing factor motif was found in any of these regions in the

same direction of transcription and then separately considered these into the model as predic-

tors. The variable we attempted to predict using this model was the direction of the shift (ΔC)

following treatment. From the results of glmnet, we then used the lambda.1se, the lambda that

was one standard error from the lambda that resulted in the highest AUC, to define an AUC

for SE or RI in a given treatment. Measurement of AUC and selection of lambda was done

using the cross-validation procedure implemented in glmnet (cv.glmnet).

ATAC-seq in LCLs exposed to selenium

The lymphoblastoid cell line (LCL) GM18508 was purchased from Coriell Cell Repository.

LCLs were cultured in serum containing charcoal-stripped FBS and treated for 6 hours with

1μM selenium as described in [48]. Cells were also cultured in parallel with the vehicle control

(water), to represent the solvent used to prepare the treatment. We then followed the protocol

by [62] to lyse 25,000-100,000 cells and prepare ATAC-seq libraries, with the exception that we

used the Illumina Nextera Index Kit (Cat #15055290) in the PCR enrichment step. Individual

library fragment distributions were assessed on the Agilent Bioanalyzer and pooling propor-

tions were determined using the qPCR Kapa library quantification kit (KAPA Biosystems).

Library pools were run on the Illumina NextSeq 500 Desktop sequencer in the Luca/Pique-

Regi laboratory. Barcoded libraries from three ATAC-seq samples, performed with25,000,

50,000 and 75,000 cells, were pooled and sequenced on multiple sequencing runs for 100M

38bp PE reads.

Reads were aligned to the reference human genome hg19 using bwa mem ([63] http://bio-

bwa.sourceforge.net). Reads with quality <10 and without proper pairs were removed using

samtools (http://github.com/samtools/).

To assess global shifts in accessibility, reads with different fragment length were partitioned

into four bins: 1) [39-99], 2) [100-139], 3) [140-179], 4) [180-250]. For each fragment, the two

Tn5 insertion sites were calculated as the position 4bp after the 5’-end in the 5’ to 3’ direction.

Then for each candidate motif, a matrix X was constructed to count Tn5 insertion events: each

row represented a sequence match to motif in the genome (motif instance), and each column a

specific cleavage site at a relative bp and orientation with respect to the motif instance. We

built a matrix fXlg
4

l¼1
for each fragment length bin, each using a window half-size S = 150bp

resulting in (2 × S +W) × 2 columns, where W is the length of the motif in bp. The motif

instances were scanned in the human reference genome hg19 using position weight (PWM)

models from TRANSFAC and JASPAR as previously described [64]. Then we used CENTI-

PEDE and motif instances with posterior probabilities higher than 0.99 to denote locations

where the transcription factors are bound.

Validating AFE mechanism with ATAC-Seq

First, we assessed chromatin accessibility within 500bp (in either direction) of each AFE by

quantifying the number of reads (lengths 30-140bp, as this corresponds to lengths shorter than
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those that wrap around a nucleosome allowing us to focus on open chromatin). In order to

obtain a sufficient number of sites, we collected all event shifts with BH FDR< 25%.The read

count was summed across AFEs that were either upstream or downstream and then normal-

ized to the total reads in the library (either selenium- or control-treated).

In order to compare the effect of transcription factor binding changes on AFE shifts follow-

ing LCL exposure to selenium, we started with the transcription factor footprints from [48]

used for the prediction analysis. We split these footprints into those found within 500bp of the

TSS towards which transcription shifted following selenium versus those found within 500bp

of the TSS which was less preferred following treatment (termed Selenium-TSS or Control-

TSS). For this analysis, we studied all AFE shifts with a BH FDR< 25%. We used a more

relaxed threshold for this analysis because we also must require the AFE to be within 500bp of

a transcription factor footprint and would otherwise not have a sufficient number of sites to

draw any conclusions. We then quantified the read counts in the selenium and control treated

samples within 100bp (in either direction) of each of these motif locations and normalized

these counts to the overall read counts in each library. For each footprint, we calculated the

ratio of normalized read counts in treatment versus control libraries. We then used these ratios

to perform a Student’s t-Test across all footprints of a specific transcription factor near the

Selenium-TSSs compared to the Control-TSSs (2-tailed). Changes in transcription factor bind-

ing activity were considered significant if BH FDR< 5%.

Validating effect of transcription factor binding with QTL analysis

We downloaded the bam files for 373 European individuals sequenced in GEUVADIS dataset

[51]. We subsetted the sequencing data to obtain full-length reads of at least 75bp. Then, using

the same parameters described above, we ran MISO to characterize AFE in these individuals.

We quantified the C value for 13,712 unique AFE events (average of 8,495 per individual,

max: 10,679 events, min: 5,567 events). We then normalized these Psi values across individuals

by removing the effect of the lab that performed the RNA-sequencing, the population effect,

and the first five principal components. Finally, we quantile normalized the resulting values,

across the individuals that could be assessed. We focused on the AFEs that could be assess in

at least 200 of the 373 individuals, leaving 8,263 events (also removing events on the X or Y

chromosome).

To assess the impact of ELF2 binding on AFE usage, we used the annotation from Moyer-

brailean et al. [65]. We focused on AFE events with SNPs in ELF2 footprint within 10Kb of

each TSS(the first base of the event’s first exons).The association between genotype and nor-

malized phenotype was measured using a standard linear model. For each SNP we assessed

whether or not they were predicted to influence ELF2 binding [65]. We then compared the

enrichment for QTLs among SNPs that impact ELF2 binding, as compared to those that are

not predicted to impact ELF2 binding based on the sequence model derived from CENTI-

PEDE (i.e. the position weight matrix, PWM).

Supporting information

S1 Fig. Color legend for treatments. This is a figure depicting the colors that are used to

denote each of the 32 treatments throughout the manuscript.

(PDF)

S2 Fig. Correlation of the number of significant shifts in events with sequencing coverage

and number of DEG. This is a two panel figure depicting the following: A) This plot indicates

the read coverage for each library assessed for change in RNA processing events. The y-axis is
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the number of significant shifts for each library. Each point is a library and the color indicates

the treatment for each sample. The y-axis is the number of significant shifts to which that par-

ticular library contributes a C value to the calculation. Because significant shifts are calculated

across individuals, libraries derived from the same cell type and treatment but in different indi-

viduals will have similar number of RNA processing shifts. Spearman’s correlation and signifi-

cance is indicated. B) Each point depicts the number of differentially expressed genes (x-axis)

and the number of significant RNA processing event changes (y-axis). In this plot, each point

indicates values for a cell type and treatment because differential expression and RNA process-

ing shifts are both calculated across three individuals. Each point is colored by the treatment.

(PDF)

S3 Fig. Examples of correlation between differential gene expression and differential RNA

processing. These graphs show the correlation of gene expression changes and significant

RNA processing shifts (using ΔC) following various treatments. Each point represents one

RNA processing shift in a given cell type, with treatment indicated above the graph. Specifi-

cally, A is a graph for genes with shifts in ALE usage following iron, B) shows genes with shifts

in ALE following selenium, C) shows genes with shifts in SE following vitamin D exposure

and D) shows genes with shifts in AFE usage following treatment with copper.

(PDF)

S4 Fig. Examples of different and shared directional changes in RI following treatments. A)

This plot indicates the direction of shifts for RI in the different cell types following exposure to

vitamin D. The height of each bar shows the proportion of significant event shifts. A binomial

test compares the proportion of significant events to the average across all environments. Each

bar is then broken in two with the shaded region showing the proportion of the significant

changes that shifted towards a positive ΔC (inclusion of intron) while the white region of each

bar is the proportion of sites with a negative ΔC. If there is a significant departure from the

expected 50:50 for positive to negative ΔC (tested using a binomial test), the row of boxes shows

this (red denotes enrichment for positive ΔC, blue for negative ΔC). B) These plots correspond

to those in A and show the ECDF of the ΔC across all event shifts, not just the significant event

shifts. C) This plot is similar to A) but it shows the direction of shifts for AFE in various cell

types responding to treatment with insulin (with positive ΔC equating to inclusion of the

upstream AFE). D) Corresponding ECDF plots to C) that show the ΔC across all event shifts.

(PDF)

S5 Fig. Additional direction of shift in events following treatment. These plots indicate

the direction of shift for 2 event types: ALE (left) and TandemUTR (Right). Each plot shows

environments for which these events were tested and more than 10 significant events were

identified. The height of each bar shows the proportion of significant event shifts for each envi-

ronment while the dotted line indicates the average proportion of significant events across all

environments shown here. Each bar is then broken in two with the shaded region showing

the proportion of the significant changes that shifted towards a positive ΔC (inclusion longer

UTR or downstream ALE) while the white region of each bar is the proportion of sites with a

negative ΔC. The column of boxes shows if there is a departure from the expected 50:50 for

positive to negative ΔC (tested using a binomial test). Red denotes enrichment for ΔC> 0

and blue for ΔC< 0).

(PDF)

S1 Table. List of 89 environments analyzed for RNA processing events. Cellular environ-

ments are defined by combinations of 5 cell types, 32 treatments and 3 controls.

(PDF)
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S2 Table. 15,300 RNA processing shifts. This table describes all 15,300 RNA processing shifts

that we identify in our data. These sites can also be found on our browsable web-resource

(http://genome.grid.wayne.edu/RNAprocessing). This table has 20 columns as follows: 1)

Unique identifier for each event, 2) Plate name which is a key covariate among our samples, 3)

Event name from MISO database, 4) Chromosome of event, 5) Strand of mRNA, 6) Start posi-

tions for exons, 7) End positions for exons, 8) Treatment ID, 9) Treatment name, 10) Cell

Type, 11) Control ID for the tested treatment, 12) Control name, 13) Type of event, 14) Num-

ber of individuals that could be assessed, 15) Number of individuals that had p-value derived

from the logBF < 0.05, 16) Number of individuals that had positive ΔC and had p-value

derived from logBF < 0.05, 17) Combined Z-score, 18) q-value, 19) Ensemble gene ID, and

20) Gene symbol.

(TXT)

S3 Table. Gene ontology of events that significantly shift following environmental pertur-

bation. Genes that contained events that shifted in at least one environment were compared to

all genes that were tested for an RNA processing event shift. Analysis was performed using

GeneTrail [41].

(PDF)

S4 Table. Table of correlation between differential gene expression and differential RNA

processing. Spearman’s correlations were calculated between log-fold change in gene expres-

sion and ΔC for genes containing significant shifts in RNA processing. Only treatments with

p-value< 0.05 are reported here.

(PDF)

S5 Table. Correlation of changes in gene expression of splicing factors and proportion of

RNA processing events. Log-fold changes in gene expression of 14 splicing factors is corre-

lated to average ΔC across three individuals for RI events.

(PDF)

S6 Table. Correlation of changes in gene expression of transcription factors and propor-

tion of RNA processing events. Log-fold changes in gene expression of 328 transcription fac-

tors is correlated to average ΔC across three individuals for AFE events.

(PDF)
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