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Abstract

Background: Targeted sequencing of discrete gene sets is a cost effective strategy to screen subjects for monogenic
forms of disease. One method to achieve this pairs microfluidic PCR with next generation sequencing. The PCR step of
this pipeline creates challenges in accurate variant calling. This includes that most reads targeting a specific exon are
duplicates that have been amplified from the PCR step. To reduce false positive variant calls from these experiments,
previous studies have used threshold-based filtering of alternative allele depth ratio and manual inspection of the
alignments. However even after manual inspection and filtering, many variants fail to be validated via Sanger
sequencing. To improve the accuracy of variant calling from these experiments, we are challenged to design
a variant filtering strategy that sufficiently models microfluidic PCR-specific issues.

Results: We developed an open source variant filtering pipeline, targeted sequencing support vector machine
("tarSVM"), that uses a Support Vector Machine (SVM) and a new score the normalized allele dosage test to
identify high quality variants from microfluidic PCR data. tarSYM maximizes training knowledge by selecting
variants that are likely true and likely false variants by incorporating knowledge from the 1000 Genomes and
the Exome Aggregation Consortium projects. tarSVYM improves on previous approaches by synthesizing variant
features from the Genome Analysis Toolkit and allele dosage information. We compared the accuracy of tarSVM versus
existing variant quality filtering strategies on two cohorts (n =474 and n=1152), and validated our method on a third
cohort (n=75). In the first cohort, our method achieved 84.5 % accuracy of predicting whether or not a variant would
be validated with Sanger sequencing versus 78.8 % for the second most accurate method. In the second cohort, our
method had an accuracy of 73.3 %, versus 61.5 % for the second best method. Finally, our method had a
false discovery rate of 5 % for the validation cohort.
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Conclusions: tarSVM increases the accuracy of variant calling when using microfluidic PCR based targeted
sequencing approaches. This results in higher confidence downstream analyses, and ultimately reduces the costs
Sanger validation. Our approach is less labor intensive than existing approaches, and is available as an open source
pipeline for read trimming, aligning, variant calling, and variant quality filtering on GitHub at https.//github.
com/christopher-gillies/TargetSpecificGATKSequencingPipeline.
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Background

Whole genome sequencing remains a time- and cost-
prohibitive method to screen patients for rare and causal
genetic variation. Thus, a current strategy involves tar-
geted amplification of only the genomic regions of interest
with subsequent focused sequencing. While technological
advances have increased the throughput of sequencing
platforms, the target enrichment step remains low-
throughput and rate-limiting. Increasingly, multiplexed
microfluidic PCR assays have been employed to increase
throughput of the target enrichment reactions in a rapid
and cost-effective manner [1, 2]. As an example, the 48.48
Access Array System (Fluidigm, South San Francisco,
California, USA) is a chip-based platform that uses micro-
fluidics to reduce sample requirements and increase scale,
enabling multiple PCR amplification reactions to occur
simultaneously. With 48 DNA inlets and 48 primer inlets,
each chip permits 2300 simultaneous amplification prod-
ucts. To further increase the scale, reactions have been
multiplexed with 10 primer pairs per inlet, resulting in a
total of 23,000 unique amplification products. Thus,
multiplex microfluidic PCR assays permit target enrich-
ment at an increased scale, which can then be integrated
with next generation sequencing (NGS) technologies,
where the replicated PCR products are sequenced.

A primary goal in data analysis is to maximize the
accuracy of variant calling from the targeted sequence
data generated. False variant calls can arise from numer-
ous sources, such as errors in base calling, or artifacts
that occur when aligning samples’ reads to the reference
genome [3]. In addition, multiplexed microfluidic PCR
assays have unique factors that can increase potential for
false variant calling. First, the polymerase can incorpor-
ate incorrect nucleotides during target amplification.
The subsequent PCR product, now containing an error,
can itself be used as the target for additional rounds of
amplification. If the product accumulates in sufficient
quantity, the product will be sequenced. This altered se-
quencing read is now a false positive finding, a technical
artifact masquerading as a variant. Second, the process
of target amplification for focused sequencing inherently
creates multiple duplicate sequencing reads. Compared
to whole genome sequencing — where duplicate reads
can be removed and the presence of unique sequencing

reads increases confidence in variant calling — the pres-
ence of duplicates reads that cannot be removed in tar-
geted sequencing strategies can confound the analysis.
Together, these limitations necessitate intense scrutiny
of the sequence data to minimize false variant calling.

Following multiplexed microfluidic PCR amplifica-
tion and subsequent sequencing, a common approach
to data analysis involves using commercial software for
sequence alignment and variant calling [2, 4]. Subse-
quently, filtering strategies have been developed to im-
prove accuracy of variant calling. While developing a
filter, Halbritter and colleagues studied the distribu-
tions of allele balance (alternative allele read depth ra-
tio) and alternative allele depths for heterozygotes [2].
They suggested that an allele balance of 20 %-a ratio
of alternative alleles to total alleles of >0.2—be required
as a filtering mechanism. In addition, they recom-
mended requiring that the alternative allele appear in
at least 10 reads (alternative allele depth). After discov-
ering variants meeting this criteria, manual inspection
of the alignments is necessary to distinguish between
primer artifacts and true variation. Even following care-
ful and labor-intensive filtering strategies, many identi-
fied variants are subsequently not confirmed by Sanger
sequencing.

Thus, there is a need to develop a more accurate and
more fully automated variant calling pipelines when
working with microfluidic PCR based NGS studies. In
this paper, we describe targeted sequencing Support
Vector Machine (“tarSVM”), an open source pipeline
based on Genome Analysis Toolkit (GATK) [5] that
seeks to achieve this goal. Our pipeline is a synthesis of
the ideas from previous studies calling variants from
microfluidic PCR coupled with NGS [1, 2], many sugges-
tions from GATK’s best practice filter, and GotCloud’s
[3] SVM filtering strategy. Our pipeline trims adapters
from reads, aligns to the reference genome, performs
variant calling, and uses a novel SVM which models
allele balance and features summarized by GATK to
perform variant quality filtering. tarSVM is further
improved by incorporating knowledge from the 1000
Genomes [6] and the Exome Aggregation Consortium
(http://exac.broadinstitute.org) (ExAC) to maximize the
number of variants to learn the SVM’s decision
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boundary. Using two independent cohorts of partici-
pants with kidney phenotypes, we constructed this
pipeline and compared it to existing and alternative
methods. tarSVM was then validated using Sanger
sequencing on a third cohort. The software is avail-
able on GitHub at https://github.com/christopher-gillies/
TargetSpecificGATKSequencingPipeline.

Results

Overview

In this study, our goal was to develop a more efficient and
accurate filtering pipeline to identify true variants identi-
fied by microfluidic PCR followed by next generation se-
quencing (NGS). To achieve this, we used two existing
NGS datasets from cohorts of subjects with kidney pheno-
types who had undergone targeted diagnostic screening of
disease-associated gene panels using microfluidic PCR +
NGS. NGS-based sequence reads from these two existing
datasets had previously evaluated using the CLC Genom-
ics Workbench™ (https://www.qiagenbioinformatics.com/)
including quality control via manual inspection of the
alignments. Variants called with this approach that were
also predicted to be pathogenic (including allele fre-
quency<1 %), then underwent Sanger sequencing for
confirmation. Variants confirmed by Sanger sequencing
were used as a gold standard to analyze predictions from
existing methods and our new approach. We then vali-
dated our approach using a third cohort with kidney dis-
ease who had existing sequencing data. Additionally, to
obtain an external evaluation of the sensitivity of different
methods, we used an exome array based technology as a
gold standard for which to compare. All analyses were
performed on the Variant Call Format (VCF) file gener-
ated from our pipeline (see Methods) except where
noted otherwise.

Terminology
In the following discussion, we assume that the ground
truth is the set of variants that underwent Sanger se-
quencing. The below statements also apply if the exome
array dataset was used as the ground truth. Please note
that we use tarSVM as a placeholder for any of the
filtering methods that we evaluate.

The set of variants that underwent Sanger sequencing
has two subgroups (1) sites validated by Sanger sequen-
cing and (2) sites not validated by Sanger sequencing.

e A site that is found in the Sanger sequencing data
and passed tarSVM is a true positive (TP).

e A site that is validated in the Sanger sequencing
data but not identified by tarSVM is a false
negative (FN).

e A site not validated in Sanger sequencing data and
not identified by tarSVM is a true negative (TN).

Page 3 of 13

e Finally, a site that is not validated in the Sanger
sequencing data, but identified by tarSVM is a false
positive (FP).

o Sensitivity = TP/(TP + EN), the proportion of Sanger
validated sites identified by tarSVM.

o Specificity = TN/(TN + FP), the proportion of sites
that were not validated via Sanger that were also
rejected by tarSVM.

e False discovery rate = FP/(FP + TP), the proportion
of sites identified by tarSVM and underwent Sanger
sequencing that were not validated by Sanger.

e Accuracy =as (TP + TN)/(TP + FP + TN + EN), the
proportion of all sites that underwent Sanger
sequencing that tarSVM predicted correctly.

Dataset descriptions

The first cohort (“NS Cohort”) was comprised of 474
subjects, 413 with nephrotic syndrome (NS) enrolled in
either the Nephrotic Syndrome Study Network (NEP-
TUNE) [7] or C-PROBE and ancestry matched 61
population controls from the 1000 Genomes Project.
In this cohort, 21 genes implicated in monogenic NS
were amplified using Fluidigm Access Array and se-
quenced using Illumina NGS instruments. The NEP-
TUNE cases and 1000G controls have been previously
described [8]. The second cohort (“CAKUT Cohort”)
consisted of 1152 subjects sequenced across 38 genes
associated with Congenital Anomalies of Kidney and
Urinary Tract (CAKUT). To validate our SVM based-
filtering, we applied our approach to a third cohort
(“SA Cohort”) comprising 75 South African subjects
with NS sequenced across 28 genes implicated in
monogenic NS nephrotic syndrome in the same manner
as the NS cohort.

Next generation sequencing statistics

In the NS Cohort, 95 % of samples had a mean depth
greater than 157, and 80 % of samples had a mean
depth greater than 365. In the CAKUT Cohort, 95 % of
samples had a mean depth of at least 296, and 80 % of
samples had a mean depth of at least 526. In the SA
Cohort, 95 % of the subjects had a mean depth
greater than 109, and 80 % of subjects had mean
depth of at least 152.

Accuracy of CLC-based filtering strategy

A variant filtering strategy using CLC Genomics
Workbench™ (CLC) paired with manual inspection of
potential variants sites yielded a high false discovery
rate (FDR). Specifically, in the NS Cohort, (472 sites
with sufficient mean read depth) this filtering strategy
identified 142 sites that harboring missense, splice
variants, or stop gained variants classified as puta-
tively pathogenic and which thus were subsequently
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were Sanger sequenced. Of these 142 variants, 83
(58 %) were validated with Sanger sequencing and 59
(42 %) failed validation. Overall there was a 42 %
FDR. The vast majority of variants were found in the
heterozygous state in a single individual (singleton).
However for the rare cases where multiple subjects
had a variant at a site, we defined a site as true if at
least one variant was Sanger confirmed at that site.
We also limited our analysis to single nucleotide vari-
ants, because of the relatively few indels identified.

Of the 1152 CAKUT subjects, 28 were excluded be-
cause of low mean depth. The CLC-Workbench-based
analysis identified 371 rare sites of variation that were
putatively pathogenic. Of these, 159 were validated with
Sanger sequencing (42 %). Thus, the FDR for the
CAKUT Cohort was 57 %.

Sensitivity of tarSVM
We first sought to determine whether our SVM-based
strategy was sensitive to detect polymorphic sites (sites
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that have a non-reference allele on one or more chromo-
somes) and sites that have a non-reference allele on
exactly one chromosome within the target geneset. To
do this, we took advantage of the fact that 373 (79 %)
NS Cohort participants had been previously genotyped
using the Illumina Human Exome-12 v1A (“Exome
Chip”). In the Exome Chip array, there were 513 poten-
tial variant sites among the 21 genes. In our 373 NS
subjects, 311 of these sites were monomorphic (no non-
reference variants detected) and 202 were polymorphic.
Of the 202 polymorphic sites, 61 had a non-reference
allele count of one. We used this independent genotyp-
ing dataset as a gold standard so that we could effect-
ively benchmark our method’s sensitivity. Variants with a
non-reference allele count of one are rare. Specific-
ally, 69 % of the variants have an allele frequency in
the ExAC database less than 107-3 (Additional file 1:
Figure S1).

We evaluated three strategies for their power to de-
tect polymorphic (Fig. 1a) and singleton sites (Fig. 1b).
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The three strategies were “no filter”, the “default
genotype filter”, and “tarSVM” (see Methods). The
microfluidic PCR platform, without any filter, identi-
fied 95 % of the polymorphic sites on the Exome
Chip. The default genotype filter identified 93 % of
sites, and tarSVM identified 92 % of all sites. When
focusing on singletons, the microfluidic PCR platform
with no filter, default, and tarSVM identified 92, 89,
and 89 % of singletons, respectively. Thus applying
tarSVM to microfluidic PCR-derived NGS data has
acceptable sensitivity to detect rare variants.

Accuracy of tarSVM: comparison to alternative methods

We next assessed the sensitivity and specificity of our
method in comparison to five other filtering strategies
(Figs. 2, 3, 4 and 5). We obtained existing sequence
data from microfluidic NGS performed on NS and
CAKUT cohort. Variants had been called using CLC-
software based method with manual alignment inspec-
tion. Called variants from NGS data were confirmed by
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Sanger sequencing. We considered these Sanger-
confirmed. We considered these Sanger variant calls as
the gold standard against which we would compare the
different methods.

The filtering methods we compared were Variant
Quality Score Recalibration (VQSR) [5], GotCloud’s
SVM [3], GATK’s best practice hard filter, the default
variant quality filter [2], the stringent genotype quality
[2], and tarSVM (see Methods for details). First we
investigated the sensitivity and specificity using the
NS Cohort (Fig. 2). tarSVM was 96.4 % sensitive and
67.8 % specific. Only the default genotype filter had
higher sensitivity (98.8 %) than tarSVM. While
tarSVM was the most specific filter, the false positive
rate was still substantial at 32.2 %.

Figure 3 shows the accuracy and false discovery rate
for the same analysis. tarSVM’s accuracy was 84.5 %,
which is 5.6 % higher than the stringent genotype filter
(the second most accurate filter). Furthermore, it
reduces the false discovery rate from 22.1 % (stringent
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genotype filter) to 19.2 % (tarSVM). Figures 4 and 5
display the same comparison using the CAKUT cohort.
The performance of all methods decreased on the
CAKUT data. tarSVM’s sensitivity was about 1.1 times
lower than the most sensitive filter (98.1 vs. 92.5 %), but
its specificity was 1.3 times higher than the second most
specific filter (GotCloud). tarSVM’s accuracy was 1.2
times higher than the second most accurate filter (strin-
gent genotype filter). Overall, the accuracy of tarSVM
was 73.3 %. tarSVM’s false discovery rate (FDR) was 1.3
times lower than the stringent genotype filter’s FDR.

Reduction in number of variants to validate using Sanger
sequencing

We next sought to determine the magnitude by which
utilizing tarSVM would reduce our pool of variants that
would subsequently need to undergo Sanger Sequen-
cing. We first applied either the default genotype or
tarSVM quality filter to the variants called by GATK
coming from the NS and CAKUT cohorts. With these

high-quality variants called, we then applied a previ-
ously described “default” variant pathogenicity filter to
both cohorts, which utilized a combination of allele
frequency thresholds and functional prediction scores
to protein-altering variants [9].

Table 1 displays a summary of applying the patho-
genicity filter to the variant calls sets emerging from
the default genotype filter and tarSVM. Overall there
were 1054 variants in the NS cohort called by both
the default and tarSVM. tarSVM filter called 39 vari-
ants not called by the default genotype filter, and the
default filter called 209 variants uniquely. Then a pre-
viously described pathogenicity filter was applied [10].
As compared to the default genotype filter, tarSVM
reduced the number of variants required to validate
by 22 % (156 to 121). In the CAKUT cohort, filters
were in consensus for 2293 variants. tarSVM called
54 variants not called by the default genotype filter,
and the default filter called 1007 variants uniquely. In
this cohort, when applying the same pathogenicity
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filter, tarSVM reduced the number of variants requ-
ired for validation by 32 % (637 to 430).

Validation of SVM filter

We next applied our pipeline to the NGS data from the
75-member SA Cohort. After applying tarSVM, we then
applied the same pathogenicity filter as used above,
which identified 12 rare variants for Sanger sequencing.
Of these 12 variants, 11 were validated with Sanger
Sequencing, which gives tarSVM a FDR of 8 %. tarSVM
filter also correctly predicted common variants impli-
cated in APOLI-related kidney disease [11], tarSVM
filter thus had an overall FDR of 5 % (1 of 20). An
additional three variants were also identified when
performing the Sanger sequencing, and tarSVM cor-
rectly predicted two of these variants. Thus, the overall
accuracy was 20 of 22 or 91 %.

Discussion
We used a support vector machine approach to
develop tarSVM, a fully automated variant quality

filtering pipeline that can be applied to targeted next
generation sequencing data resulting from microflui-
dic PCR technology. Existing variant quality filtering
strategies designed for whole genome sequencing such
as the SVM-based approach in GotCloud’s alignment
pipeline [3], Variant Quality Score Recalibration
(VQSR) [5], or GATK’ best practice hard filter.
GotCloud and VQSR both use machine learning
based methods to model true and false variants, and
GATK’s hard filter uses specific thresholds for various
variant quality metrics to discriminate true from false
variants. These approaches do not model microfluidic
specific problems well, thus they perform insuffi-
ciently on microfluidic PCR data (Additional file 2:
Figure S2). Our method achieved similar sensitivity to
other variant read quality filtering methods. Import-
antly, tarSVM substantially increases the specificity as
compared to other methods.

In terms of the variant filtration tarSVM is most simi-
lar to GotCloud in that they both use hard filters to
identify negative training examples and use known
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variants to identify positive training examples. After
selecting the training examples, both methods use an
SVM to learn a decision boundary and finally classify
all the variants as true or false using this decision
boundary. While both algorithms appear similar at
this level of abstraction, at a more detailed level of
analysis, the differences are manifold and explain the

reasons why tarSVM outperforms GotCloud using
microfluidic PCR data.

In microfluidic PCR data, a small number of genes
are targeted, thus there is a risk of not having
enough sites to adequately learn the SVM model.
tarSVM addresses this risk by incorporating infor-
mation from ExAC and dbSNP into the positive

Table 1 Reduction in number of variants to validate with Sanger sequencing for the NS and CAKUT cohorts

Cohort Variant quality filter Total variants Total variants passing filter Eligible variants Pathogenicity filter
NS Cohort Default 2250 1263 481 156
NS Cohort tarSYM 2250 1093 408 121
CAKUT Cohort Default 8812 3300 1564 639
CAKUT Cohort tarSVM 8812 2347 1135 432

The first column describes the cohort for which the row corresponds. The second column identifies the variant quality filter applied to the dataset. The total variants
column refers to the total variants that were called by GATK. The next column shows the number of variants passing a particular variant quality filter for a specific

cohort. Eligible variants referrers to all missense and loss of function variants considere:

d for the analysis, excluding frame shift mutations that are considered in the

pathogenicity filter. The final column for the pathogenicity filter column displays the number of variants passing having an allele frequency of less than 1 % across all
population in the Exome Variant Server, and the variant was either loss of function or predicted to be deleterious by two of MutationTaster, PolyPhen2, and SIFT
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training example selection step. GotCloud does not
use this information, which is not a problem on the
scale of whole genome/exome sequencing. In terms
of negative training example selection, tarSVM uses
the normalized allele dosage test (NAD) (see
Methods) and mean alternative allele depth across
heterozygotes to improve the identification of low
quality sites. In addition, tarSVM also uses sites that
are not labeled “PASS” in ExAC and the 1000G as
negative training examples when there is some add-
itional evidence that the site is low quality. tarSVM
does not include strand bias scores in the filtration
process either which is important for microfluidic
PCR since only one strand is being amplified. Add-
itionally, the thresholds for filtering have been tuned
primarily using prior information for microfluidic
PCR. The NAD and alternative allele depth are also
included as features in the model fitting process,
which improves the ability of the SVM to learn a
versatile decision boundary. Finally, tarSVM applies
a genotype-level filter to remove very low quality
variant calls (see Supplement for more details).
tarSVM represents a useful step forward in a num-
ber of ways. (1) We have created an open source, au-
tomated pipeline that transforms raw sequence reads
to a filtered VCF file. The pipeline trims adaptors,
aligns to the reference genome, and performs variant
calling following GATK’s best practice recommenda-
tions wherever possible. (2) tarSVM improves positive
and negative training example selection over Got-
Cloud for microfluidic PCR data. (3) We created the
NAD feature improves the classification of sensitivity
and specificity of detecting variants both for hard
filtering and for learning the SVM. (4) tarSVM the
overall improves the overall accuracy of variant
calling. By incorporating knowledge from the 1000
Genomes and Exome Aggregation Consortium and
modeling microfluidic-PCR biases such as allele bal-
ance, tarSVM more accurately models true and false
variants in this application. Thus tarSVM obtains an
improved decision boundary, which distinguishes be-
tween true and false variants. (5) By fully automating
the process of transforming raw sequence reads to a
filtered VCF, the tarSVM pipeline removes the de-
pendency of having a user manually reject alignment
artifacts as compared the CLC-Workbench approach.
Specifically, the pipeline’s read trimming also removes
adapters from reads where at least six bases match
the adapter starting from the end of the read. This
trimming step dramatically reduces the need to
manually inspect variants contaminated by adapter se-
quence. (6) By aligning to the whole genome reduces
alignment artifacts because a read can align to its
correct genomic coordinates rather than a region of
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high similarity as compared to the CLC-workbench
based approach. (7) Finally, since tarSVM has a
higher specificity than other methods, false variants
are not carried forward for consideration for potential
pathogenicity. This reduces the time and costs associ-
ated with Sanger sequencing confirmation. Additional
file 3: Supplemental Note #1 and Additional file 4:
Supplemental Note #2 provide more details on the
impact of these unique aspects on the performance
of tarSVM.

In the CAKUT cohort, there was a decreased accur-
acy of variant calling for all filtering methods tested.
We believe this is largely due to the increase number
of primers used per inlet on the microfluidic PCR
platform. In the CAKUT cohort, 15 primers per inlet
were used rather than the 10 primers per inlet for
the NS cohort. We posit that unintended interactions
between primers within each reaction chamber in-
creased the introduction and amplification of false
variants. It is possible that sample size may be affect-
ing the results, but it seems more plausible that the
interacting primers are the main cause.

When comparing the call sets emerging from
tarSVM and default genotype filters, we found that
tarSVM call set is not simply a subset of the default
filter. Thus, the default filter may not be capturing all
true variants, resulting in false negatives. Because we
used variants that were manually inspected and
passed the default genotype filter via CLC Genomics
Workbench™, it is not surprising the sensitivity we
calculated was higher for the default genotype filter
(the default genotype filter is similar to the filter used
with CLC but it starts from the variants called for
our pipeline instead). But because of these false nega-
tives, tarSVM’s true sensitivity may not be lower than
the default genotype filter. In fact, when performing
validation on the SA Cohort, we did not begin with a
predefined set of Sanger sequencing variants. In this
study, the default genotype filter had sensitivity for
the SA Cohort of 90 % (18/20), whereas tarSVM’s
sensitivity was 95 % (19/20).

One limitation of this study is that it only investi-
gated the effectiveness of our pipeline on data emer-
ging from the Fluidigm’s Access Array. However, our
approach should work for other high-depth targeted
sequencing technologies where duplicate reads cannot
be removed. The utility of this pipeline is also
currently limited to assays where duplicate reads are
expected. One possible future direction for this pi-
peline would be to expand support for duplicate
removal, because this will expand support beyond
microfluidic PCR-based approaches for targeted rare
variant detection (e.g. Molecular Inversion Probes
(MIPs) [12, 13].
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Conclusion

Overall tarSVM represents a synthesis of knowledge
from high quantity variant call sets and previous filter-
ing strategies. tarSVM achieves similar sensitivity, but
substantially improved specificity over other filtering
methods for microfluidic PCR data. At the same time,
tarSVM is not a panacea for all microfluidic PCR or
NGS-based issues. The FDR in the NS cohort improved
from 42 to 19 % for our SVM approach, and for the
CAKUT cohort the FDR improved from 57 to 37 %
FDR with our SVM approach. While these FDRs are
much improved, the FDR estimates derived here illus-
trate the need to continue to use Sanger sequencing to
validate variants derived from microfluidic PCR data.
However, By automating the process and decreasing the
false positive rate, the tarSVM pipeline reduces both se-
quencing and analytic costs and increases confidence in
the variants called in this manner. Finally, it is available
as an open source pipeline for read trimming, aligning,
variant calling, and variant quality filtering on GitHub
at https://github.com/christopher-gillies/ TargetSpecific
GATKSequencingPipeline.

Methods

Institutional review board approval was obtained for
each of the cohorts described below and participant
consent was obtained as well.

Comparison cohorts

The NS Cohort consisted of 413 subjects with neph-
rotic syndrome and 61 healthy controls. All subjects
had their exons from 21 nephrotic syndrome associ-
ated genes amplified on the Fluidigm 48.48 Array
Access™ platform using the same approach as previ-
ously published [2]. 10 primer pairs per inlet of the
Array Access were used for amplification of exons. 96
subjects were sequenced on the Illumina MiSeq using
paired-end sequencing with two times 150 base pairs.
The rest of the samples were sequenced using single-
end sequencing using the Illumina HiSeq 2500 with
reads of length 150 base pairs.

The CAKUT Cohort had 1152 patients and 38
genes associated with CAKUT were amplified using
the Fluidigm 48.48 Array Access™ The amplicons
were sequenced on the Illumina HiSeq 2500 platform
using paired-end sequencing (two by 150 base pairs).
In order to amplify the large increase in amplicons,
the number of primers per inlet of the Array Access
was increased to 15.

Validation cohort

The SA Cohort had 75 subjects from South Africa
and with NS, and these subjects were sequenced
across 28 genes. The subjects’ exons were amplified
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using the Fluidigm 48.48 Array Access™ and the
amplicons were sequenced on the Illumina HiSeq
2500 platform using paired-end sequencing (two by
150 base pairs). The number of primers per inlet of
the Array Access was 10.

From raw reads (FASTQ files) to genotypes (VCF file)

Read trimming in the pipeline was performed using
cutadapt 1.8 [14]. This step removes the Illumina
adapter sequences that can be found at the end of
reads and target-specific primers that are found at the
beginning and end of reads (prior to the Illumina
adapters). Alignment was performed with bwa mem
[15, 16]. Read duplicates were not marked for re-
moval because reads are expected to be PCR dupli-
cates. Base recalibration and indel realignment were
performed using GATK 3.4. While the pipeline has
support for GATK’s HaplotypeCaller, variant calling
was performed jointly using GATK’s UnifiedGenoty-
per, because some known variants were not called
using HaplotypeCaller. The result of this pipeline is a
Variant Call Format (VCF) file. A Support Vector
Machine (SVM) variant quality filter was trained and
applied to the VCEF file in in order to reduce the false
variant calls.

tarSVM variant quality filter

As an overview, there were four steps (labeled A to D)
used in order to use tarSVM filter to classify variants
as true or false variants. In step (A), variants were or-
ganized into three groups: likely false, unknown and
likely true. This classification was achieved through
the use of a series of nine hard filters. Variants were
trichotomized based on how many filters they failed
and whether or not they passed or failed quality
control filters in other public datasets. In step (B), we
trained a SVM [17] using the likely false and likely
true variants, where the variants were modeled using
ten site-level summary scores. Step (C) consisted of
using the trained SVM to predict the classification of
all variants. Step (D) applied genotype-level hard
filtering to remove likely low quality variants.

The nine hard filters applied to each SNP in step
(A) were: (1) The quality by depth (QD) filter, which
is the variant quality normalized by the depth of non-
homozygous reference samples, requires a minimum
score of 3; (2) the root mean square of mapping qual-
ity (MQ) filter requires a score of at least 50; (3) the
mapping quality rank sum test (MQRankSum) filter
requires a score between -3 and 10; (4) the read pos-
ition rank sum test requires a score of at least -20;
(5) the mean allele balance (ABHet) filter, which is
the alternative read depth divided by the total read
depth for a site across heterozygotes, requires a score
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between 20 and 80 %; (6) the mean alternative allele
read depth for heterozygotes (AD) filter requires a
value of at least 10; (7) the base quality rank sum test
(BQRankSum) filter requires a score of at least —40;
(8) the call rate filter, which is the proportion of sam-
ples called at a particular site, requires a value of
80 %; and (9) the normalized allele dosage (NAD) test
for heterozygotes filter required a score of at most 5.
The NAD null hypothesis is that that the allele bal-
ance is 50 % and the alternative hypothesis is that the
allele balance is not 50 %. The test is an exact bino-
mial test and is in the PHRED scale normalized by
the alternative allele depth because for high depth the
p-values are smaller for the same allele balance.

The scores for most of these filter’s were based on
the GATK best practice recommendation’s, however,
the scores have been partially adjusted to be more or
less stringent based on the distribution of scores
empirically observed across the NS Cohort and the
CAKUT Cobhort.

If a variant failed three or more of these filters, or
its call rate was less than 50 %, then it was marked
as likely false. If a variant failed two of these filters,
we checked whether the variant passes quality control
as reported in the 1000 Genomes phase 3 data (ftp://
ftp.1000genomes.ebi.ac.uk/voll/ftp/release/20130502/
supporting/site_assessment). If it passed in the 1000
Genomes, we marked the variant’s group as unknown
and if it failed we marked it as likely false. We then did
the same task for ExAC r0.3 (ftp://ftp.broadinstitute.org/
pub/ExAC release/release0.3/). Finally we checked if the
variant appears in dbSNP b138. If it was not present,
we marked the variant as likely false. Otherwise, we
marked the variant’s group as unknown.

If a variant failed one filter, then we gave the variant
its status from the 1000 Genomes or ExAC r0.3. The
1000 Genomes data was given precedence over ExAC
r0.3. When it was not present in either, we marked the
variant as unknown. When a variant passed all filters,
then we gave the variant its filter status from the 1000
Genomes or ExAC r0.3. If it was not present in either,
then we checked dbSNP b138, and if it was present
it was marked as likely true, otherwise it was marked
as unknown.

In step (B) we trained the SVM using likely true
and likely false variants. However, some scores were
missing when a variant’s callrate was less than 10 %
(GATK did not annotate some scores in the VCF) or
the site had no heterozygotes (ABHet, NAD, and
mean alternative allele depth for heterozygotes could
not be calculated). For sites without heterozygotes, we
used QD to calculate ABHet using regression-based
imputation. We then used the mean alternative allele
depth for homozygotes and the imputed ABHet value
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to calculate a pseudo mean reference allele depth.
This information was then used to calculate the NAD
for the site without heterozygotes. All other scores
were imputed with k-nearest neighbors (k-NN). First
we inverse normalized each score and second we
applied k-NN with k=10 to impute missing data
using the R package “impute.” After imputation, we
trained the SVM using only the sites that were likely
false or likely true. The features that we used to
model variants were call rate, QD, RPRankSum,
ABHet, AD, NAD, inbreeding coefficient, haplotype
score, MQRankSum, and BaseQRankSum. We trained
the SVM using the R package “e1071” which uses
LIBSVM [18].

Step (C) consisted of predicting the class of each vari-
ant either “PASS” or “FILTERED”. The trained SVM
predicted the class of all variants. Thus some variants
labeled as likely false could be predicted as “PASS” by
the SVM, and some variants labeled as likely true could
be predicted as “FILTERED” by the SVM.

Finally, in step (D), we performed genotype quality
filtering. This consisted of setting variants for subjects
to be missing if they failed certain criteria. In particu-
lar, for heterozygous variants, we required the geno-
type quality to be at least 40, the AD to be five and
the ABHet to be 10 %. For homozygous alternative
subjects we required the genotype quality to be at
least 40 and the AD to be at least 5.

VQSR filter

VQSR is a Gaussian mixture model designed to model
true and false variants [5]. We used HapMap 3.3 hgl9
sites and 1000 Genomes Omni 2.5 sites, EXAC r0.3 and
1000 Genomes phase 3 to model true variants using the
same features as the SVM. Also we limited the number
of Gaussians to 3.

Default hard filter

This is the default GATK best practices hard filter
(https://www.broadinstitute.org/gatk/guide/best-practices;
accessed 7/13/2015) that rejects sites if Quality by depth
(QD) is less than two or Fisher Score (FS) is greater than
60 or root mean square of mapping quality (MQ) is less
than 40 or mapping quality rank sum test (MPRankSum)
is less than —12.5 or read position rank sum (RPRankSum)
is less than -8.

GotCloud SVM

For this method we used the BAM (Binary Sequence
Align Map) files generated from our pipeline and
used GotCloud’s variant calling pipeline with the
WGS_SVM option set to true, which was recommend
for targeted sequencing [3].
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Default genotype filter

This filter required the alternative allele read depth for a
variant for a subject to be at least 10 and if the subject
was homozygous for this variant, then it required the al-
lele balance to be at least 20 % [2]. This filter is very simi-
lar to the filter used with CLC Genomics Workbench™
approach, except the thresholds are strictly enforced.
This is in contrast to the CLC approach where vari-
ants were evaluated on a case-by-case basis so some
variants were included that did not meet the filtering
criteria. Also this filter was applied to the VCF file
generated from our pipeline, and not CLC Genomics
Workbench™ analysis pipeline.

Stringent genotype filter

This filter required the alternative read depth for a
variant for a subject to be at least 30 and if the sub-
ject was homozygous for this variant, then it required
the allele balance to be at least 20 % [2].

Pathogenicity filter

We examined single nucleotide variants. Functional anno-
tation was performed using SNPEff 3.5 [19], all nonsynon-
ymous variants were annotated using dbSNFP 2.5 [20].
The pathogenicity filter required variants to have an allele
frequency less than 1 % in European Americans and
African Americans in the Exome Variant Server (http://
evs.gs.washington.edu/EVS/accessed March 2015). The
variant had to be either missense, stop gained, start lost,
or a splice mutation. If a variant was missense, it had to be
predicted to be deleterious in two of three of MutationTa-
ster [21], SIFT [22] and PolyPhen2 [23]. When multiple
predictions were present for a variant in dbNSFP, the
worst prediction was selected.

Additional files

Additional file 1: Figure S1. Allele frequency of variants with AC=1in
Exome Chip. The log10 allele frequency from the EXAC r0.3 database of
variants from the Exome Chip with an allele count of one in our cohort is
shown. 69 % of the variants have an allele frequency less than 10A-3.
(PPTX 66 kb)

Additional file 2: Figure S2. Comparison of quality by depth (QD) from
CAKUT and ExAC. Sites that were filtered out of EXAC (VQSR filtering) are
shown in red. Sites that were marked as “PASS” in EXAC are shown in
gold. Sites that were Not Sanger validated are shown in green. Sites that
were Sanger Validated are shown in teal. Sites filtered by tarSVM are
shown in blue. Sites that passed tarSVM are shown in purple. Quality by
depth is correlated with mean allele balance, as is being used as a proxy
for it. It is clear that there is a very clear separation between variants that
are filtered by tarSVM and variants that pass tarSVM. Most of the variants
filtered by tarSVM have a much lower quality than the pass variants.
Variants that are Sanger validated are stronger correlated with variants
that pass tarSVM. Variants that are labeled “PASS” in EXAC have a higher
variant quality that the microfluidic data. The filtered variants in EXAC
have a more flat distribution that those filtered by tarSVM. It is important
to note, the variants that underwent Sanger sequencing were selected
because they had the characteristics of true variants. This is why there is
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so much overlap between the distributions for Sanger validated variants
and Not Sanger validated variants. (PPTX 121 kb)

Additional file 3: Supplemental Notes #1. (DOCX 42 kb)
Additional file 4: Supplemental Notes #2. (DOCX 50 kb)

Abbreviations

CAKUT, Congenital anomalies of the kidney and urinary tract; MIP, Molecular
inversion probes; NEPTUNE, Nephrotic Syndrome Study Network; NS, nephrotic
syndrome; SA, South African; SVM, Support vector machine; tarSVM, targeted
sequencing support vector machine

Acknowledgements

The Nephrotic Syndrome Study Network Consortium (NEPTUNE); U54-DK-
083912, is a part of the National Center for Advancing Translational Sciences
(NCATS) Rare Disease Clinical Research Network (RDCRN), supported through
a collaboration between the Office of Rare Diseases Research (ORDR), NCATS,
and the National Institute of Diabetes, Digestive, and Kidney Diseases. RDCRN
is an initiative of ORDR, NCATS. Additional funding and/or programmatic
support for this project has also been provided by the University of Michigan,
NephCure Kidney International, and the Halpin Foundation.

This project has been funded in part with federal funds from the
National Cancer Institute, National Institutes of Health, under contract
HHSN26120080001E. The content of this publication does not necessarily
reflect the views or policies of the Department of Health and Human
Services, nor does mention of trade names, commercial products, or
organizations imply endorsement by the U.S. Government. This Research
was supported in part by the Intramural Research Program of the NIH,
National Cancer Institute, Center for Cancer Research.

M.GS. is a Carl Gottschalk Research Scholar of the American Society of
Nephrology and is supported by the NIDDK Grant 1 K08-DK100662-01.

Availability of data and material

The described work is available as an open source pipeline for read trimming,
aligning, variant calling, and variant quality filtering on GitHub at https.//
github.com/christopher-gillies/TargetSpecificGATKSequencingPipeline.

Authors’ contribution

CG, EO, HMK, and MS participated in the design of the study. CG and HMK
participated in creation in the SMV method. EO, WW, MS, and CG contributed to
the microfluidic PCR and NGS, and Sanger confirmation of variants. NEPTUNE,
C-PROBE, SSC, AG, RB, and CW contributed patient samples. CG, MS, CR, and BC
drafted the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate

Written consent was obtained for each of the patients. Participants who
consented for each of these parent studies consented for the analyses
described in this paper. This study was approved by the IRBs at the University
of Michigan, Columbia University, and the National Cancer Institute. Beyond the
IRB, additional Ethics Committee approval was not required.

Author details

'Department of Pediatrics-Nephrology, University of Michigan School of
Medicine, Ann Arbor, MI, USA. 2Departmem of Internal Medicine-Nephrology,
University of Michigan School of Medicine, Ann Arbor, MI, USA. *Department
of Medicine, Columbia University College of Physicians and Surgeons, New
York, NY, USA. “Department of Paediatrics and Child Health, University of
KwaZulu Natal, Durban, South Africa. °NCI, Frederick National Lab for Cancer
Research, Molecular Genetics Epidemiology Section, Frederick, MD, USA.
Department of Biostatistics, University of Michigan School of Public Health,
Ann Arbor, MI, USA. 735608 MSRB2, 1150 West Medical Center Drive, Ann
Arbor, MI 48109, USA.

Received: 30 December 2015 Accepted: 2 June 2016
Published online: 10 June 2016


http://evs.gs.washington.edu/EVS/accessed
http://evs.gs.washington.edu/EVS/accessed
dx.doi.org/10.1186/s12859-016-1108-4
dx.doi.org/10.1186/s12859-016-1108-4
dx.doi.org/10.1186/s12859-016-1108-4
dx.doi.org/10.1186/s12859-016-1108-4
https://github.com/christopher-gillies/TargetSpecificGATKSequencingPipeline
https://github.com/christopher-gillies/TargetSpecificGATKSequencingPipeline

Gillies et al. BMC Bioinformatics (2016) 17:233

References

1.

20.

21.

Halbritter J, Porath JD, Diaz KA, Braun DA, Kohl S, Chaki M, Allen SJ, Soliman NA,
Hildebrandt F, Otto EA, et al. Identification of 99 novel mutations in a worldwide
cohort of 1,056 patients with a nephronophthisis-related ciliopathy. Hum Genet.
2013;132(8):865-84.

Halbritter J, Diaz K, Chaki M, Porath JD, Tarrier B, Fu C, Innis JL, Allen SJ, Lyons
RH, Stefanidis CJ, et al. High-throughput mutation analysis in patients with a
nephronophthisis-associated ciliopathy applying multiplexed barcoded
array-based PCR amplification and next-generation sequencing. J Med
Genet. 2012,49(12):756-67.

Jun G, Wing MK, Abecasis GR, Kang HM. An efficient and scalable analysis
framework for variant extraction and refinement from population-scale DNA
sequence data. Genome Res. 2015;25(6):918-25.

Sadowski CE, Lovric S, Ashraf S, Pabst WL, Gee HY, Kohl S, Engelmann S,
Vega-Warner V, Fang H, Halbritter J, et al. A single-gene cause in 29.5 % of
cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol. 2015;26(6):
1279-89.

DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA,
del Angel G, Rivas MA, Hanna M, et al. A framework for variation discovery and
genotyping using next-generation DNA sequencing data. Nat Genet.
2011,43(5):491-8.

Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM,
Handsaker RE, Kang HM, Marth GT, McVean GA. An integrated map of genetic
variation from 1,092 human genomes. Nature. 2012,491(7422):56-65.
Gadegbeku CA, Gipson DS, Holzman LB, Ojo AO, Song PX, Barisoni L, Sampson
MG, Kopp JB, Lemley KV, Nelson PJ, et al. Design of the Nephrotic Syndrome
Study Network (NEPTUNE) to evaluate primary glomerular nephropathy by a
multidisciplinary approach. Kidney Int. 2013,83(4):749-56.

Sampson MG, Gillies CE, Robertson CC, Crawford B, Vega-Warner V, Otto E,
Kretzler M, Kang H. Using population genetics to interrogate the monogenic
nephrotic syndrome diagnosis in a case cohort. J Am Soc Nephrol. 2015. [Epub
ahead of print]

Sampson MG, Gillies CE, Robertson CC, Crawford B, Vega-Warner V, Otto EA,
Kretzler M, Kang HM. Using Population Genetics to Interrogate the Monogenic
Nephrotic Syndrome Diagnosis in a Case Cohort. J Am Soc Nephrol. 2015.
[Epub ahead of print]

Sampson MG, Robertson CC, Martini S, Mariani LH, Lemley KV, Gillies CE,
Otto EA, Kopp JB, Randolph A, Vega-Warner V, et al. Integrative Genomics
Identifies Novel Associations with APOL1 Risk Genotypes in Black NEPTUNE
Subjects. J Am Soc Nephrol. 2016,27(3):814-23. doi:10.1681/ASN.
2014111131,

Kopp JB, Nelson GW, Sampath K, Johnson RC, Genovese G, An P, Friedman D,
Briggs W, Dart R, Korbet S, et al. APOL1 genetic variants in focal segmental
glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol. 2011;
22(11):2129-37.

Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary BP, Landegren
U. Padlock probes: circularizing oligonucleotides for localized DNA detection.
Science. 1994,265(5181):2085-8.

Turner EH, Lee C, Ng SB, Nickerson DA, Shendure J. Massively parallel exon
capture and library-free resequencing across 16 genomes. Nat Methods.
2009;6(5):315-6.

Martin M. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnetjournal. 2011; 17(2).

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics. 2009;25(14):1754-60.

Li H. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. arXivorg. 2013.

Cortes C, Vapnik V. Support-Vector Networks. Mach Learn. 1995;20:273-97.
Chang C-CL, Chih-Jen. LIBSVM: A library for support vector machines. ACM
Trans Intell Syst Technol. 2011;2(3):1-27.

Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, Land SJ, Lu X,
Ruden DM. A program for annotating and predicting the effects of single
nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila
melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012,6(2):80-92.

Liu X, Jian X, Boerwinkle E. dbNSFP v2.0: a database of human non-synonymous
SNVs and their functional predictions and annotations. Hum Mutat.
2013;34(9):E2393-402.

Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. MutationTaster
evaluates disease-causing potential of sequence alterations. Nat Methods.
2010;7(8):575-6.

22.

23.

Page 13 of 13

Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous
variants on protein function using the SIFT algorithm. Nat Protoc. 2009;
4(7):1073-81.

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P,
Kondrashov AS, Sunyaev SR. A method and server for predicting damaging
missense mutations. Nat Methods. 2010;7(4):248-9.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BioMed Central



http://dx.doi.org/10.1681/ASN.2014111131
http://dx.doi.org/10.1681/ASN.2014111131

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Overview
	Terminology
	Dataset descriptions
	Next generation sequencing statistics
	Accuracy of CLC-based filtering strategy
	Sensitivity of tarSVM
	Accuracy of tarSVM: comparison to alternative methods
	Reduction in number of variants to validate using Sanger sequencing
	Validation of SVM filter

	Discussion
	Conclusion
	Methods
	Comparison cohorts
	Validation cohort
	From raw reads (FASTQ files) to genotypes (VCF file)
	tarSVM variant quality filter
	VQSR filter
	Default hard filter
	GotCloud SVM
	Default genotype filter
	Stringent genotype filter
	Pathogenicity filter

	Additional files
	show [a]
	Acknowledgements
	Availability of data and material
	Authors’ contribution
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

