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PAR2, a receptor activated by serine proteases, has primarily pro-inflammatory

roles in the airways and may play a role in asthma pathogenesis. PAR2 exerts

its effects in the lungs through activation of a variety of airway cells, but also

activation of circulating immune cells. There is evidence that PAR2 expression

increases in asthma and other inflammatory diseases, although the regulation

of PAR2 expression is not fully understood. Here we review the available

literature on the potential role of PAR2 in asthma pathogenesis and propose

a model of PAR2-mediated development of allergic sensitization. We also

propose, based on our previous work, that PAR2 expression on peripheral

blood monocyte subsets has the potential to serve as a biomarker of asthma

severity and/or control.
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Introduction

Protease-Activated Receptors (PAR) are a family of G- protein coupled receptors
with 4 members, PAR1−4. PARs are activated by serine proteases through a unique
mechanism; the extracellular N terminal of the receptor is cleaved by serine proteases
and the new N terminal, the tethered ligand (TL), folds and activates the receptor
(1). A variety of serine proteases produced by inflammatory and other cells or from
microorganisms can activate PAR receptors (2–10). Synthetic ligands that mimic TL
sequences, called PAR activating peptides (PAR-AP), can activate PAR1, PAR2, and PAR4

Abbreviations: AM, Alveolar macrophage; AP, Activating peptide; AHR, Airway hyper responsiveness;
BAL, Bronchial alveolar lavage; CCR5, C-C chemokine receptor type 5; DC, Dendritic cell;
ED, Emergency department; FOXO1, Forkhead Box O1; GM-CSF, Granulocyte macrophage
colony stimulating factor; HDM, House dust mite; IL, Interleukin; IgE, Immunoglobulin E; IMMo,
Intermediate monocytes; LPS, Lipopolysaccharides; LTC4, Leukotriene C4; PAR, Protease activated
receptor; SNP, Single nucleotide polymorphism; TL, Tethered ligand; TLR4, Toll like receptor 4; TNF,
Tumor necrosis factor; TSLP, Thymic stromal lymphopoietin.
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without the requirement for proteolysis. Many of the studies
we will review below use PAR-AP to study PAR-mediated
effects, since unlike natural proteases they do not induce PAR-
independent effects. Among PARs, PAR2 has a wide expression
pattern (11) and has been linked to inflammation in the skin
(12), gastrointestinal tract (13) and lungs (14), as well as in
inflammatory pain (15).

Asthma and allergic airway
inflammation

Asthma is a complex inflammatory disease of the airways
and one of the most common chronic diseases worldwide (16).
Based on the intensity of therapy required to maintain disease
control, asthma can be classified as mild, moderate and severe
(17). Severe asthma represents less than 10% of patients with
asthma but is responsible for a large share of asthma associated
morbidity and health care costs (18). Identification of patients
with severe asthma to allow timely institution of appropriate
therapy is an important clinical problem. Asthma presents
with multiple phenotypes and endotypes (19). Identification of
endotypes of asthma is the result of our increased understanding
of the pathophysiology of the disease including the role that
various immune pathways play in disease development and
progression. Allergic asthma is the most common form of
asthma, but allergic asthma is also a heterogeneous condition
that could be associated with different endotypes (20). Serine
proteases present in the airways have been associated with
the pathogenesis of allergic asthma through their ability to
activate PAR2.

PAR2 in asthma pathogenesis

PAR2 and allergic airway inflammation

The first evidence suggesting a role for PAR2 in asthma
came from studies showing pro-inflammatory effects of PAR2-
mediated airway epithelial cell activation (21, 22). More
direct evidence came in 2002 when Schmidlin et al. showed
that PAR2 knockout (KO) mice were protected from the
development of eosinophilic airway inflammation and airway
hyperresponsiveness (AHR) in response to ovalbumin (23). The
latter observation has since been reproduced in murine models
that utilize ovalbumin, but also various biologically relevant
allergens (24–27).

The airway epithelium, the first organ encountered by
inhaled particles, pollutants and allergens, is viewed as an
important immune organ aimed to protect the organism from
environmental insults (28, 29), but is also involved in the
pathogenesis of respiratory inflammatory diseases, including
asthma (30, 31). PAR2-mediated activation of airway epithelial

cells has been reported to release a number of factors that play
important roles in asthma pathogenesis (Figure 1); these factors
include remodeling proteases such as matrix metalloproteases
(21), the neutrophil chemotactic factor IL-8 (22, 32–34), IL-6
(22, 35, 36), GM-CSF that affects multiple innate and adaptive
immune cells (36, 37), the Th2 polarizing mediators TSLP (38,
39) and IL-25 (40) and various chemokines such as eotaxin
(37, 41) and CCL-2 (42). These observations suggest that
PAR2-mediated activation of the airway epithelium may release
inflammatory mediators that polarize the immune response
toward the Th2 phenotype and attract innate and adaptive
immune cells to the airways (43).

Development of allergic airway inflammation in humans
and animal models can be divided into two steps; initial
encounter with the antigen locally or systemically, leads to
allergic sensitization with development of antigen-specific Th2
cells and production of IgE, while a subsequent exposure
of a sensitized individual to the same antigen leads to the
development of eosinophilic airway inflammation and AHR.
PAR2 activation may participate in the development of allergic
sensitization by inducing a deviation of the nasal/airway mucosa
immune response against a foreign innocuous antigen from
the default pathway of tolerance to allergic sensitization and
production of antigen-specific IgE (44). This PAR2 effect
exhibits striking similarities to the effects of TLR4 activation
in the airways (45). We propose that in the airways PAR2

recognizes both internal and external “danger” signals, namely
serine proteases released from inflammatory and other cells or
inhaled through the air, respectively. PAR2 activation under
these circumstances leads to activation of the innate and
adaptive immune system through soluble mediators from the
airway epithelium and to allergic sensitization (Figure 2). In
addition to TNF (44), many other factors may also mediate,
at least in part, the deviation of the immune system toward
a Th2 phenotype and allergic sensitization following PAR2

activation, some of them factors released by the airway
epithelium (Figure 1). In addition to the indirect effects of
PAR2 activation on the adaptive immune system shown in
Figure 2, endogenous and/or exogenous serine proteases may
directly activate adaptive immune cells, since they also express
PAR2 (46). Finally, in sensitized individuals, PAR2 activation
during repeat exposures to sensitizing allergens results in release
of inflammatory mediators important for the development of
allergic airway inflammation, AHR and airway remodeling (14,
47, 48).

However, the role of PAR2 in the airways may be more
complex that discussed so far. PAR2 activation causes relaxation
of trachea preparations and protects from bronchoconstriction
in vivo through the release of PGE2 from airway epithelial
cells (49). Similarly, in a rabbit model of pollen allergy,
PAR2 activation in the airways just prior to allergen challenge
decreased allergen-mediated bronchoconstriction, eosinophil
infiltration and AHR (50). These observations indicate that
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FIGURE 1

PAR-2 activated airway epithelial cells release a variety of inflammatory mediators that may induce airway inflammation, airway
hyperresponsiveness and airway remodeling. The numbers in brackets after the name of specific inflammatory mediators indicate the reference
of the main text where that mediator is discussed. AHR, airway hyperresponsiveness; CCL2, CC motif chemokine ligand 2; DC, dendritic cell;
GM-CSF, granulocyte-macrophage colony-stimulating factor; ILC2, type 2 innate lymphoid cells; IL-25, interleukin 25; IL-8, interleukin 8; LTC4,
leukotriene C4; MMP-9, matrix metalloproteinase 9; TSLP, thymic stromal lymphopoietin.

PAR2 may also have a protective effect against the development
of signs and symptoms associated with asthma. The reasons
for the potential dual effect of PAR2 activation have not been
identified. We also do not know whether these “protective”
effects of PAR2 activation can acutely or chronically antagonize
the better studied pro-inflammatory effects. Finally, we don’t
know if these protective effects would also be evident
in human airways.

The vast majority of the in vivo data on the role of PAR2

in allergic inflammation come from animal studies. There is
limited information on the pro-inflammatory potential of PAR2

in humans in vivo. PAR2-AP have been shown to induce
inflammation when applied to humans intradermally (51), but
these peptides have not been administered to humans through
any other routes.

PAR2 may also affect allergic airway inflammation through
its expression on a variety of immune cells. Both monocytes and
macrophages express PAR2 (52) and its expression is altered in
airway inflammatory conditions (53). PAR2 activation leads to
cytokine production from monocytes and macrophages (48, 54,
55), affects macrophage differentiation (56, 57) and has antiviral

effects. In vitro differentiated DC do not express PAR2 (52),
but PAR2 is needed for their normal maturation (58). PAR2

contributes to DC antigen uptake and facilitates the presence
of mature DC in draining lymph nodes in vivo, but in these
case it is not clear if the effects are direct (44, 59). Direct
PAR2 activation on naive T cells by proteases may induce IL-4
release and lead to allergic inflammation (46). PAR2 activation
induces various inflammatory, but also antiviral pathways in
neutrophils (60–63). Finally, eosinophils may also express PAR2,
but the role of PAR2 in eosinophil functions is controversial
(64–66).

PAR2 and airway remodeling

Airway smooth muscle cells also play an important role
in asthma pathogenesis (67). In addition, asthma, especially
severe disease, is characterized by airway remodeling that
includes airway smooth muscle hyperplasia and hypertrophy
and fibrosis (30, 68). Two studies using house dust mite
(HDM), showed that allergen proteases also induce proliferation
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FIGURE 2

Model of PAR-2-mediated allergic sensitization. Allergic
sensitization requires the recognition of an antigen by DC and
also PAR-2 activation by an allergen with serine protease activity,
or by an independent serine protease. Other stimuli may
facilitate this process. AM, alveolar macrophages; DC, dendritic
cells; GM-CSF, granulocyte macrophage colony stimulating
factor; LPS, lipopolysaccharide; TNF, tumor necrosis factor;
TSLP, thymic stromal lymphopoietin.

of asthmatic bronchial smooth muscle cells through PAR2-
dependent mechanisms (69, 70). These observations suggest
that PAR2-mediated smooth muscle activation, either directly
or indirectly through LTC4 released from epithelial cells (71),
may contribute to the smooth muscle hypertrophy and/or
hyperplasia seen in patients with asthma.

There are in vivo observations that PAR2 activation
is involved in fibrosis, but these come primarily from
fibroproliferative lung diseases such as idiopathic pulmonary
fibrosis. A murine study showed that PAR2 contributes
to the development of pulmonary fibrosis, while targeting
PAR2 affords protection from bleomycin-induced fibrosis (72).
Another study showed that mast cell tryptase induces lung
fibroblast proliferation via PAR2-activation (73), suggesting that
activated mast cells may induce fibrotic changes in asthma
through PAR2 activation.

Regulation of PAR2 expression

If PAR2 is important for development of allergic
sensitization and inflammation, then interfering with its

expression or activation may be a viable approach for prevention
and/or treatment of allergic diseases. However, triggers relevant
to asthma may upregulate PAR2 expression in the airways,
which in turn may exacerbate allergic airway inflammation.
PAR2 expression is increased on the airway epithelium of
asthmatic individuals (74) and on the nasal mucosa epithelium
of patients with allergic rhinitis (75, 76). Various inflammatory
mediators upregulate PAR2 expression on endothelial cells (77,
78), mast cells (79, 80) and other cells (81–83), and the same
may be true for airway epithelial cells. Also, cockroach (34),
HDM (84), and mold (33) allergen extracts upregulate PAR2

expression on airway epithelial cells, possibly through proteases
contained within the extracts. In addition, inflammatory stress,
which is present in asthmatic airways, may regulate PAR2

expression in the lung through hypoxia, as has been shown to
do in endothelial cells (85).

Bronchial smooth muscle cells from asthmatic individuals
maintain higher PAR2 mRNA and protein expression than cells
from normal individuals after ex vivo culture (86), suggesting
the possibility that epigenetic changes due to the chronic
inflammation in the airways may affect PAR2 expression. We
recently showed that insulin regulates PAR2 expression in
primary human airway epithelial cells through the FOXO1
transcription factor (87), which may indicate that insulin
resistance, often associated with asthma (88, 89), may be
associated with alterations of PAR2 expression. Finally, genetic
factors regulating PAR2 expression cannot be excluded as
PAR2 SNPs have been shown to increase mRNA stability and
increase expression of PAR2 in PBMCs (90) and synovial
tissue (91).

Prevention of PAR2 activation by allergens or
endogenous proteases may also have therapeutic
benefits in asthma. Unfortunately, development of
small molecule inhibitors has been problematic, and
only recently such PAR2 inhibitors are being described
(92). A monoclonal humanized antibody has also
been described, but has not been tested whether it is
functional in vivo (93). Another antibody (MEDI 0618) is
undergoing phase I evaluation and results may be available
soon.1

PAR2 expression as an asthma
biomarker

Personalized medicine offers promise for improved
diagnosis and treatment for inflammatory diseases including
lung diseases (94, 95), but in asthma the lack of easily obtainable
biomarkers to identify specific phenotypes and/or endotypes
(96), limits the applicability of this approach. Many biomarkers

1 https://clinicaltrials.gov/ct2/show/NCT04198558
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have been tested and they all have their advantages and
disadvantages (97). Identification of patients with severe
asthma is an important clinical question, since these individuals
require more intense treatment and close follow up to avoid
asthma morbidity. Biomarkers that could identify those
individuals and predict their response to therapy are in great
demand (98).

Over the last few years our laboratory has been studying the
utility of PAR2 expression as a biomarkers of asthma severity
and control. Cells obtained through induced sputum would
be ideal for these studies, but they are not easily accessible,
except in specialized centers. Therefore, we have focused on
peripheral blood cells. We validated that a subset of peripheral
blood monocytes express surface PAR2, as has been shown
before (48), but our more interesting observation was that
cell surface PAR2 expression on peripheral blood intermediate
monocytes (IMMo) correlated with disease severity (99).
In particular, patients with severe asthma had higher% of
IMMo expressing PAR2 and higher total number of PAR2-
expressing IMMo in their peripheral blood compared to
subjects with mild/moderate disease. Other cells, including
eosinophils, neutrophils, and CD4+ lymphocytes, showed low
PAR2 expression and no differences in expression between
the two populations with different asthma severity, as there
was also no difference between the two groups in PAR2

expression in classical monocytes. Our data showed that
PAR2 expression on IMMo was an excellent marker to
discriminate between subjects with severe and those with
mild/moderate asthma. PAR2 expression on monocytes of
patients with rheumatoid arthritis (100), granulomatosis with
polyangiitis (101) and primary antiphospholipid syndrome
(102) also correlates with disease activity. However, asthma
is the first inflammatory condition where changes in PAR2

expression in a specific monocyte subgroup are associated with
disease severity.

In addition, the% of PAR2-expressing IMMo in peripheral
blood correlated with the dose of inhaled steroids prescribed
to these subjects and was higher in subjects that had
experienced at least one exacerbation over the last year.
Unfortunately, we did not have detailed information on
the proximity, total number and severity of exacerbations
to understand whether subjects with a recent exacerbation
were those with an exacerbation prone phenotype, a
phenotype that has been shown to have prognostic significance
for severe asthma.

It is also interesting that in the population with a recent
asthma exacerbation PAR2 mRNA expression also correlated
with the numbers of Th2 cells in the peripheral blood,
indicating that PAR2 expression may also be associated with
T2 inflammation, although the mechanisms leading to this
association are not clear. It is interesting that PAR2-mediated
activation of macrophages induces IL-4 secretion (103), which
might contribute to T2 environment in peripheral tissues and

may even support the development of allergic sensitization,
an effect that follows PAR2 activation in murine studies
(26, 44). It is also possible that the same triggers that
lead to T2 disease or factors present in subjects with T2
diseases, are those that upregulate PAR2 on monocytes. To
this effect we have evidence that LPS, which through TLR4
activation can facilitate allergic sensitization (45) or CCR5
that is increased in the airways of subjects with asthma
(104, 105), can both upregulate PAR2 on human IMMo
in vitro (106).

From our data comparing PAR2 expression in IMMo
between subjects with severe and mild/moderate asthma,
it is not clear whether PAR2 upregulation on the surface
of IMMo depends on asthma severity or the presence of
uncontrolled inflammation that can be present in severe
disease. Two studies shed some light to this question. In
a recent study we showed that PAR2 expression on the
surface of IMMo is increased during an asthma exacerbation
(107). In this study we showed that PAR2 expression on
peripheral blood IMMo is higher in subjects presenting to the
Emergency Department (ED) with an exacerbations compared
to subjects with stable disease. PAR2 expression comes down
to levels present in subjects with stable disease 2 weeks after
the ED presentation and after the exacerbation has been
treated. It is possible that increased inflammation in the
days leading to an exacerbation is the reason for increased
PAR2 expression. Increased systemic inflammation may lead
to increased PAR2 expression on IMMo, as suggested by
our results using a human allergy challenge model. In that
case, inhalation allergen challenge induced an early (6 h)
increase in PAR2 expression on peripheral blood IMMo that
was sustained at 24 h (107). It would be interesting to
know whether the same changes in PAR2 expression are
also seen in inflammatory cells in the airways. Studies are
underway in our laboratory to understand whether PAR2

expression increases in induced sputum and/or BAL cells after
an allergen challenge and also in subjects with uncontrolled
versus controlled asthma.

One of the requirements for PAR2 expression on peripheral
blood IMMo to be used as a biomarker is that this value is
stable and reproducible during the course of stable disease. Our
data however, show that this may not be the case (108). We
recruited 20 stable asthmatics and repeated the evaluation of
PAR2 expression on peripheral blood IMMo every 3 months for
a year. We found that even though the% of IMMo expressing
PAR2 was stable in the whole population, there were differences
in expression for specific individuals that could not be explained
with the available clinical data. In this study we had no
subjects that experienced an asthma exacerbation. It is possible
that changes preceding exacerbations will be greater that the
fluctuation of values during a stable course of the disease and
therefore, this value may be useful as predictive biomarker for
asthma exacerbations.
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Being able to evaluate the activation state of the receptor,
instead of its presence on the cell surface, may be a more
accurate approach to evaluate the activity of this inflammatory
pathway and may also function as a biomarker that could be
used in asthma. A recent study showed that the small peptide
liberated from the receptor when it is cleaved by activating serine
proteases can be detected in human serum and its levels increase
in patients with rheumatoid arthritis and responds to treatment
of the disease with specific biologics (109). It will be interesting
to test whether the levels of this peptide also change in asthma
and whether it may be used as another biomarker for asthma
severity and/or control.

Conclusion

Asthma is an inflammatory disease of the airways. Even
though we can treat successfully the disease in the vast majority
of subjects with mild or moderate asthma, we still are not
able to fully address the needs of patients with severe disease.
In addition, we know that exacerbations, especially severe
exacerbations requiring urgent care, can happen at any point
even in patients with mild disease and reliable biomarkers to
predict such events are missing.

Our current knowledge on the potential role of PAR2 in
allergic asthma, indicates that markers of activation of PAR2-
related pathways may be candidates for biomarkers. Our current
observations may allow the development of new hypotheses
regarding potential biomarkers of asthma severity or impending
exacerbations, that could be tested in future studies.
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