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Abstract: The prevalence of obesity and obesity-related metabolic comorbidities are rapidly increasing
worldwide, placing a huge economic burden on health systems. Excessive nutrient supply combined
with reduced physical exercise results in positive energy balance that promotes adipose tissue
expansion. However, the metabolic response and pattern of fat accumulation is variable, depending
on the individual’s genetic and acquired susceptibility factors. Some develop metabolically healthy
obesity (MHO) and are resistant to obesity-associated metabolic diseases for some time, whereas
others readily develop metabolically unhealthy obesity (MUO). An unhealthy response to excess
fat accumulation could be due to susceptibility intrinsic factors (e.g., increased likelihood of
dedifferentiation and/or inflammation), or by pathogenic drivers extrinsic to the adipose tissue
(e.g., hyperinsulinemia), or a combination of both. This review outlines the major transcriptional factors
and genes associated with adipogenesis and regulation of adipose tissue homeostasis and describes
which of these are disrupted in MUO compared to MHO individuals. It also examines the potential
role of pathogenic insulin hypersecretion as an extrinsic factor capable of driving the changes in
adipose tissue which cause transition from MHO to MUO. On this basis, therapeutic approaches
currently available and emerging to prevent and reverse the transition from MHO to MUO transition
are reviewed.

Keywords: obesity; metabolically healthy and unhealthy obesity; adipocyte dysfunction; reversing
obesity; therapeutic targets

1. Obesity: A Heterogeneous Disorder of Rapidly Increasing Global Importance

Obesity is a complex condition that occurs due to abnormal or excessive fat accumulation
in the body and is diagnosed at a body mass index (BMI) of ≥ 30 kg/m2 [1]. The worldwide
overweight and obese population has already increased from 857 million in 1980 to over 1.9 billion
in 2016 according to the World Health Organization (WHO) estimates, affecting both developed
and developing countries [2].

Obesity is a heterogeneous disorder and its pathogenesis involves the interplay between genetic
and environmental factors. Mendelian inheritance of severe obesity as a consequence of mutations in
genes affecting appetite regulation is rare, such that a polygenic basis is favored to explain the majority
of the strong heritability of obesity [3]. Genome-wide association studies (GWAS) have uncovered
multiple common variants associated with BMI and obesity with low to modest effect size, the most
notable being the fat mass and obesity-associated (FTO) gene [3,4]. Environmental factors interacting
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with a genetically susceptible person are known to contribute, such as ready access to high energy
foods (rich in sugars and saturated fats and low in fibers and micronutrients), reduced requirement for
physical activity, and even alterations in the gut microbiota [5,6].

With increasing prevalence of overweight and obesity in women of childbearing age, pregnant
women are more likely to be overweight or obese and have hyperglycemic disorders such as gestational
diabetes and type 2 diabetes (T2D) [7–9]. Their offspring are more likely to be born large for gestational
age due to fetal hyperinsulinemia and excess adipose tissue accumulation and be at higher risk of
childhood obesity, metabolic syndrome (MetS) and T2D [7,8]. Increasing evidence is emerging of
the importance of in-utero programming through epigenetic processes, such that early life developmental
factors combined with genetic risk and childhood and adult environmental exposures add another
dimension to the risk of developing obesity [10].

Obesity is associated with increased risks for a plethora of comorbidities. These include
cardiometabolic disorders such as non-alcoholic steatohepatitis (NASH), T2D, polycystic ovary
syndrome (PCOS) and atherosclerotic cardiovascular disease (ASCVD), as well as disorders not usually
classified as cardiometabolic, such as chronic kidney disease, mental health conditions and various
types of cancer [11–14]. Closely associated with all these obesity-related comorbidities are the MetS
factors, insulin resistance (IR), hyperinsulinemia, glucose intolerance, hypertriglyceridemia, reduced
high-density lipoprotein cholesterol and hypertension [15,16].

In addition to its many comorbidities, obesity is also associated with major economic consequences.
For example, individuals with obesity incur medical costs of >30% higher than non-obese individuals.
Therefore, obesity is a major cause of concern for governments and healthcare systems worldwide [17].
Thus, development of effective interventions to reduce the incidence of obesity and its related
comorbidities are urgently needed, with particular focus on preventing the amplification of this health
crisis across generations [10].

2. Classification of Obesity as Metabolically Healthy or Unhealthy

At any age, excessive weight gain and obesity are frequently associated with the abnormalities
of MetS and increased risk for its associated conditions of NAFLD, PCOS, T2D and ASCVD [15,18].
Interestingly, a subset of individuals within this population (approximately 30%) can be classified as
“metabolically healthy obese” (MHO). Although they have excess body weight, they do not display
features of MetS, have relatively normal insulin sensitivity and do not have evidence of, or require
treatment for, any cardiometabolic diseases [19–21]. However, since the definition of MHO has not been
fully standardized, variance in its prevalence has been reported [19,21]. Currently, MHO individuals
are required to have a BMI ≥ 30 kg m−2 or BMI ≥ 25 kg m−2 (Asian population) and the absence of
the following (or no more than 1 or 2 of them) with abnormal cutoffs that vary according the different
criteria for: systolic and diastolic blood pressure (most often ≥130/85), fasting triglyceride (TG) (most
often ≥1.7 mmol/L), HDL-cholesterol (most often ≤1.0 mmol/L for men and ≤1.3 mmol/L for women),
fasting plasma glucose (most often ≥ 5.6mmol/L) and homeostasis model assessment of IR (HOMA-IR)
(multiple cut-offs suggested) or other methods of IR assessment [21,22]. Waist circumference has
been included by some, but this makes little sense as all obese persons are likely to have increased
waist circumference. It is argued that the allowance of 2 abnormal characteristics, as is used in some
criteria, may result in misclassification of MUO as MHO [19]. Additionally, the criteria that can be
used for population level studies may need to be different from those used for more advanced clinical
research studies, with the latter needing more sophisticated measures of insulin sensitivity, and in
some circumstances, liver fat quantification [19]. Clearly, if the terms MHO and MUO are to be used in
clinical practice and research, international consensus on definitions is necessary.

Longitudinal and prospective studies have shown that around 50% of individuals with MHO
progress to MUO status [22–26]. Increased incidence of cardiovascular events and higher risk for
long-term all-cause mortality in the MHO group have also been described [22–26]. Hence, MHO
and MUO should not be considered longer-term dichotomous groups, as transition between the two
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states is possible. Prevention and reversal of the transition of MHO to MUO, therefore, should be
considered as therapeutic goals. Thus, understanding the molecular determinants of this transition
becomes critical with the potential to also lead into precision medicine approaches.

In this review, we will examine the main processes involved in adipose tissue development
and maintenance, the molecular and biochemical mechanisms at the adipose tissue level that are
known to be involved in transition from MHO to MUO status, and the therapeutic interventions
currently available to treat MUO. We will also discuss emerging concepts of roles for hyperinsulinemia
and disruption of the circadian rhythm in the transition between MHO to MUO that could lead to
alternative approaches to obesity management.

3. Adipose Tissue Types, Function and Sites

Excess energy is stored as TG in lipid-laden adipocytes in subcutaneous depots of white
adipose tissue (WAT), especially in the torso and the proximal regions of the lower and upper
limbs (subcutaneous adipose tissue, SAT). These storage areas account for up to 80% of all body fat
mass found in humans [27]. The remaining fat (around 10–20% in men and 5–8% in women) is stored
in visceral adipose tissue (VAT), which is associated with major neurovascular tracts. VAT is found
mainly around internal organs in the body (e.g., heart and kidneys) and in the intra-abdominal area
(omental, mesenteric and retroperitoneal fat) [28]. Both depot types are comprised of a heterogeneous
cell population constituted of mature adipocytes, supported by a framework of stromal cells, including
preadipocytes, fibroblasts, mesenchymal stem cells, vascular endothelial cells and immune cells
(macrophages, lymphocytes, dendritic and mast cells) [27]. Brown adipose tissue (BAT) has markedly
different morphological and functional characteristics compared to WAT. BAT cells are smaller,
contain multiple small lipid droplets and mitochondria, and have richer vascular supply [27]. BAT is
capable of very active fatty acid oxidation with heat generation, and for this reason, is important
in neonates for body temperature maintenance. BAT is present in adult humans, but in lesser
quantities with aging [27]. Beige adipocytes, interspersed within WAT, have cellular characteristics
similar to BAT adipocytes, including a high capacity for fatty acid oxidation [29]. “Browning” of
WAT is a term used for interventions to increase the number of beige adipocytes [29]. Breast tissue
adipocytes transdifferentiate into milk-secreting epithelial cells during lactation [30,31]. Due to their
abundant cytoplasmic lipid content, these lipo-secreting epithelial cells have been referred to as
“pink adipocytes.” Epithelial-to-adipocyte reversal of this transdifferentiation occurs at the end of
the lactation period [30,31].

4. Healthy and Unhealthy Responses of Adipose Tissue to Excessive Nutrient Supply

Adipose depots are continuously remodeling themselves according to changes in nutritional
status. During prolonged periods of food deprivation, they reduce in size, as their lipid content is
used to maintain an energy supply to other organs. Conversely, during times of increased nutrient
supply, they can rapidly expand in size to enable the safe storage of excess energy as lipid for later
use. Of relevance to this discussion, are both the healthy and unhealthy responses of adipose tissue to
chronic nutrient supply excess.

Adipose tissue in MUO is characterized by disproportionate accumulation of VAT, adipose
inflammation, abnormal adipokine/cytokine production, adipocyte IR and abnormal lipid metabolism.
The latter contributes to dyslipidemia and increased lipid accumulation in non-adipose tissues
(e.g., ectopic lipid deposition in tissues such as the liver) [32]. Mechanisms proposed for adipocyte
dysfunction include hypoxia-induced adipose tissue injury, inflammation, and impaired adipogenesis
due to impaired cell number expansion and adipocyte differentiation [33–35].

4.1. Impaired Adipogenesis and Adipocyte Differentiation Capacity

Hyperplasia is an alternative process to hypertrophy for adipose tissue expansion [36–38].
This process comprises the proliferation and differentiation of fibroblast-like preadipocytes into mature
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lipid-laden adipocytes. It is a complex and dynamic process regulated by several transcription factors
and cell cycle proteins [39]. The initial phase of adipogenesis, requires the conversion of pluripotent
mesenchymal stem cells to committed preadipocytes, which are morphologically similar but restricted
to differentiation into adipocytes [38]. In vitro studies have shown that upon hormonal stimulation,
committed preadipocytes undergo differentiation triggered by the expression of early CCAAT/enhancer
binding protein (C/EBP) β and δ and late transcriptional factors peroxisome proliferator activated
receptor-γ (PPAR-γ) and C/EBP-α [36]. It culminates with mitotic clonal expansion and changes in cell
morphology, from a fibroblast-like shape to a spherical shape, followed by the functional ability to
accumulate lipid droplets [36] (Figure 1).

Figure 1. Key transcription factors involved in differentiation of pre-adipocytes to adipocytes that
underpin healthy adipocytes. Factors such as insulin, IGF and glucocorticoids can induce differentiation
of committed fibroblast-like preadipocytes into spherical adipocytes capable of storing TG within
lipid droplets in the cell. Hormonal stimulation triggers differentiation by the expression of early
differentiation factors C/EBP-β/δ and late transcription factors C/EBP-α, PPAR-γ and SREBP-1c. PPAR-γ
is known as the main regulator of adipogenesis and modulates the expression of various genes associated
with fatty acid uptake, storage, lipolysis and adipokines. (IGF, insulin-like growth factor; C/EBP,
CCAAT/enhancer binding protein; PPAR-γ, peroxisomal proliferator-activated receptor gamma; SREBP,
Sterol regulatory-element binding protein; FA, fatty acid; TNF-α, tumor necrosis factor alpha; IL-6,
interleukin 6; MCP-1, monocyte chemoattractant protein-1; LPL, lipoprotein lipase; FABP4, fatty acid
binding protein 4; ATGL, adipose triglyceride lipase; HSL, hormone sensitive lipase).

Cumulative evidence showing impaired replicative and adipogenic capacity of different fat depots
have been described in subjects with lipodystrophy, obesity-related IR and morbid obesity [40–43].
Consistent with this, when adipocyte size is sorted based on size distribution instead of average
size, elevated frequency of very small SAT adipocytes and reduced numbers of larger adipocytes
were reported in overweight subjects with IR and T2D [41,44,45]. However, other studies have also
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shown increased mean adipocyte size, particularly in VAT, in obese subjects with abnormal metabolic
phenotype [46–48].

Increasing evidence points to reduced expression levels of key adipocyte differentiation
transcription factors in adipose tissue from MUO individuals. PPAR-γ is considered a major regulator
of adipogenesis as it plays a central role in the maintenance of mature adipocyte function and insulin
sensitivity [49,50]. It activates genes involved in fatty acid uptake and storage, such as adipose protein-2
(AP2)/fatty acid binding protein-4 (FABP4), lipoprotein lipase (LPL) and acyl CoA synthase (ACS) [36].
PPAR-γ also targets adiponectin, a hormone produced by mature adipocytes that promotes fatty acid
oxidation and insulin sensitivity [51]. Several studies have suggested that the transcription factor
sterol regulatory element binding protein-1c (SREBP-1c) promotes PPAR-γ activity by producing lipid
moieties that are endogenous PPAR-γ ligands [52]. Reduced expression of SREBP-1c and PPAR-γ in
WAT of obese, insulin-resistant individuals has been described compared to insulin-sensitive controls,
suggesting possible defects in adipocyte differentiation [40–42].

4.2. Hypoxia-Induced Adipose Tissue Injury and Adipose Tissue Inflammation

It is well-known that in conditions of short-period nutrient excess, SAT adipocytes become
hypertrophic and are briefly exposed to hypoxia due to inadequate vascularization. This acute effect
triggers a stress response that promotes angiogenesis and remodeling of the extracellular matrix,
restoring a healthy oxygen supply to the expanding adipose tissue [53]. Several studies have suggested
that inadequate vascularization results in adipocyte dysfunction including cell death, recruitment of
inflammatory cells including M1 macrophages that form “crown-like structures” around the dead cells,
increased cytokine production and altered adipokine release [54]. This process causes inappropriate
extracellular matrix remodeling and fibrosis, consequently restricting the lipid storage capacity of
adipose tissue, causing lipid spillover into circulation and ectopic fat accumulation [55].

Although the mechanisms involved are not fully understood, hypoxia is known to increase
adipose expression of the transcriptional factor hypoxia inducible factor-1α (HIF-1α), which can
induce inflammation, fibrosis and IR in rodent WAT [56–58]. Possibly related are the recently
observed associations of CD248 with adipose tissue hypoxia, inflammation, and fibrosis [59]. CD248 is
a sensing transmembrane glycoprotein that is highly expressed in WAT of individuals with obesity,
IR and diabetes, and reduced after bariatric surgery [59]. In human adipocytes, in vitro knock down of
CD248 by siRNA attenuated hypoxia-induced HIF-1α promoter activity, as well as the expression of
a whole cluster of hypoxia-induced genes. Furthermore, adipocyte-specific CD248 knockout in mice
protected against high fat diet-induced insulin resistance, glucose intolerance and WAT dysfunction,
the latter evidenced by increased vascularization, reduced HIF-1α, reduced macrophage infiltration,
and reduced markers of fibrosis [59]. Therefore, adipose vascularization, its extracellular matrix
composition, and CD248 could be targets for the prevention of adipose tissue transition to MUO.

Taken together, the inability to recruit and/or to differentiate more preadipocytes into functional
adipocytes in conditions of positive nutrient imbalance, could be playing a role in transition from MHO
to MUO status. Therefore, the use of therapeutics agents that promote adipogenesis could improve
adipocyte lipid storage capacity, and consequently, avoid transition to MUO.

4.3. Altered Adipokine/Cytokine Production

Healthy adipose tissue secretes a wide range of adipokines, which not only modulate biological
processes within the adipose tissue, but also exert regulatory functions in other organs, including
the liver, pancreas, muscle and brain, as well as in vascular and immune system cells/tissues. The most
commonly quantified adipokines in human studies include adiponectin and leptin [60].

Adiponectin is found in high levels in the circulation of healthy individuals, but is decreased
in subjects with obesity, T2D and NAFLD [61,62] (Figure 1). Adiponectin is an insulin sensitizing
adipokine via its capacity to activate AMP-activated protein kinase, which supports enhanced fatty
acid oxidation and glucose utilization in skeletal muscle and the suppression of gluconeogenesis
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within the liver [63,64]. It also has anti-inflammatory properties, since it suppresses TNF-α production
and stimulates synthesis of anti-inflammatory IL-10 [65]. In contrast, leptin, whose circulating levels
are proportional to body fat mass, is involved in appetite control and energy expenditure. High levels
of leptin should prevent overfeeding through suppression of orexigenic peptides and stimulation of
anorexigenic peptides in the central nervous system (mainly in the hypothalamic area). However,
most obese subjects develop resistance to its action [66,67]. Chronically elevated leptin levels are
pro-inflammatory, increasing the production of cytokines such as TNF-α, IL-6 and monocyte chemotactic
protein-1 (MCP-1) from tissue-resident immune cells [68]. Serum adiponectin levels are reduced in
MUO compared to MHO, whereas no difference in leptin is generally observed [69,70].

Other adipokines, such as chemerin and osteonectin, have also been investigated [71]. Chemerin
and its receptor CMKLR1 are highly expressed in mature adipocytes and play regulatory roles in
adipogenesis, adipocyte metabolism and recruitment of immune cells to inflammatory sites [71,72].
Cross-sectional studies reported increased levels of circulating chemerin in children and adults with
obesity. However, when subjects are stratified into MHO and MUO, both no change and elevated
levels of chemerin have been reported in MUO [70,73,74]. Osteonectin, an adipokine involved in
the regulation of extracellular matrix composition and inhibition of adipogenesis, was recently assessed
within a large pediatric Chinese cohort and it was found to be augmented in the circulation of children
with MUO [75].

The mix of cytokines produced by adipose tissue (adipocytes and resident immune cells) is
inflammatory in obese subjects, with evidence of greater effect in MUO. TNF-α, IL-6 and MCP-1
interfere with hepatic insulin signaling through inhibition of IRS1 phosphorylation [76,77]. Additionally,
TNF-α augments adipocyte lipolysis, IL-6 suppresses adiponectin expression and MCP-1 increases
hepatic TG accumulation [51,77–79]. Conflicting results have been reported in human studies
comparing MHO and MUO, where either no difference or increased serum TNF-α and IL-6 in MUO
were found [69,80,81].

There are still limited number of studies comparing adipokine expression levels in MHO and MUO
with metabolically normal lean subjects. Of these, differences in race, age, gender, source of sample
collection, the definition of MHO used, as well as small number of participants, have contributed to
inconsistent results limiting their usefulness in the clinical setting.

4.4. Dysfunctional Adipose Tissue Lipid Metabolism

MUO compared to MHO individuals display dyslipidemia and ectopic fat deposition in many
organs of the body including liver, muscle, heart and pancreas [21,82].

Healthy adipose tissue is insulin sensitive, such that at times of increased nutrient supply
and in response to meal-stimulated insulin secretion and insulin action, it can readily store excess
energy safely as TG in lipid droplets [83,84]. Postprandial lipid storage in adipocytes is initiated
with the uptake of free fatty acid (FFA) released from circulating TG-rich lipoproteins (chylomicrons
and very low density lipoproteins (VLDLs)), by the action of lipoprotein lipase (LPL) with activation
by insulin [85,86]. LPL is found on the luminal side of the capillary endothelium associated with
glycosaminoglycan, and is considered the main gatekeeper for the entry of FFA from circulating TG into
adipocytes, where it is re-esterified into glycerolipids, particularly TG, for storage [87]. Its transcription
is initiated by the action of SREBP-1c and PPAR-γ and its action is promoted by insulin; whereas its
inhibition is promoted by tumor necrosis factor alpha (TNF-α) [88,89]. Following LPL action, FFA
are transported into adipocytes by the integral membrane protein CD36/fatty acid translocase (CD36)
and by the cytoplasmic protein FABP4/aP2 [87]. During periods of energy deficit, at times of low serum
insulin/glucagon ratio, fasting and exercise, the intracellular lipolytic enzymes adipocyte triglyceride
lipase (ATGL), hormone sensitive lipase (HSL) and monoacylglycerol lipase (MAGL) hydrolyze TG
stored in the lipid droplets, releasing FFA and glycerol to meet the energy demands of vital organs [90].

In MUO obesity, these processes of adipose tissue lipid storage and release become dysfunctional
as a consequence of IR and adipose tissue inflammation [91,92]. Triglyceride lowering by insulin has
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been shown to be inversely related to the level of IR [93]. Obese patients with both MHO and MUO
have reduced gene expression of factors that promote lipid uptake and processing in comparison with
healthy lean persons [94,95]. In multivariate regression analysis, increasing BMI was most strongly
associated with reduced LPL and FABP4 gene expression in both SAT and VAT, within subjects with
a spectrum of low to high IR [96]. Adipose tissue IR results in dysregulated lipolysis of stored TG [42].
Although limited information is available about the expression levels of lipase enzymes in human
adipose tissues of MHO and MUO, increased mRNA expression of ATGL and HSL, in both VAT
and SAT, have been described in conditions of morbid obesity with variable degrees of IR [42].

Thus, dysfunctional transport of FFA into adipocytes related to IR, as well as impaired suppression
of breakdown of stored TG by insulin, contribute to the development of dyslipidemia and ectopic lipid
deposition and tissue injury, characteristic of MUO (Figure 2).

Figure 2. Characteristics of adipose tissue in metabolically healthy obesity (MHO) and metabolically
unhealthy obesity (MUO). In MHO individuals, adipose tissue is capable of expansion to enable safe
storage of excess energy as lipids in subcutaneous adipose tissue (SAT) depots. However, in individuals
who transition to MUO, there is restriction in further SAT expansion, resulting in disproportionate
lipid accumulation in visceral adipose tissue (VAT), as well as spill-over of lipid from adipose
tissue into circulation and to ectopic deposition in other tissues such as liver and skeletal muscles.
Adipose tissue in MUO is also characterized by adipose inflammation, abnormal adipokine/cytokine
production, adipocyte insulin resistance and abnormal intracellular lipid metabolism, which underlie
the dyslipidemia and systemic inflammation of the MUO state. (SAT, subcutaneous adipose tissue;
VAT, visceral adipose tissue).

4.5. Role of Epigenetics

The epigenome, which comprises chemical modifications within the DNA (e.g., methylation
marks) and closely associated molecules (e.g., histones), determines which genes within a cell are
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expressed. Much of the epigenome is determined through development and is influenced by early
life environment, but some aspects are clearly modifiable by later life environment [97,98]. Key to
this discussion is the role of the epigenome in determining the behavior of adipose tissue cells in
the transition between MHO and MUO. There are studies of human adipose tissue that do indicate
associations of epigenetic changes in adipose tissue with obesity. Furthermore, interventions during
adult life have been shown to induce epigenetic changes within this tissue [99–103].

Indicative of epigenomic change associated with obesity, a study conducted within an adult
European discovery cohort, and confirmed in two separate validation cohorts, reported increased
methylation within three separate sites in intron 1 of the HIF3A locus in adipose tissue associated
with increased BMI [102]. Both exercise and bariatric surgery have shown to have effects on DNA
methylation status within adipose tissue, consistent with the potential for modifying the epigenome of
fat through interventions [100,101]. Relevant to the epigenome and transition between MHO and MUO,
Crujeiras et al. compared the global methylome within VAT of IR and insulin sensitive morbidly obese
individuals [103]. They found DNA methylation was altered within the VAT of IR in 982 CpG sites
encoding 538 unique genes. The identified genes were involved in functions such as cell adhesion,
collagen-related, signal transduction and transcriptional regulation [103].

These studies support a role of epigenetics in MHO to MUO conversion, but the small numbers of
subjects limits interpretation and further larger studies are required.

5. Factors Extrinsic to Adipose Tissue Contributing to MUO

Adipose tissue characteristics clearly differ between individuals with MHO and MUO, as already
discussed. However, the extent to which the transition from MHO to MUO is due to factors intrinsic
or extrinsic to adipose tissue is less clear. These factors include periods of greater nutrient excess,
alterations in the gut microbiome, disruptions of the circadian rhythm affecting neuro-hormonal systems,
pancreatic islet dysfunction resulting in hyperinsulinemia, metabolic dysfunction of other tissues such
as muscle and liver, psychological health and adverse effects of some medications [15,104–107]. This is
important, as approaches/therapies to prevent or reverse progression from MHO to MUO may need to
be multifaceted, with focus on direct modification of adipose tissue as well as on factors extrinsic to
adipose tissue (Figure 3).

Figure 3. Figure 3. Current and possible future interventions to prevent and reverse transition of MHO
to MUO. Several factors are involved in the development of metabolic unhealthy obesity (left panel).
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Therefore, to prevent or reverse transition of MUO to MHO (right panel) it is necessary to adopt
healthy lifestyle changes. However, lifestyle changes alone will be insufficient for many, such
that combination with drugs that directly reverse metabolic abnormalities of MUO and/or promote
substantial weight loss, or bariatric surgery is likely to be also required. (MUO, metabolically unhealthy
obesity; MHO, metabolically healthy obesity; GLP-1, glucagon-like-peptide 1; PPAR, peroxisomal
proliferator-activated receptor).

5.1. Total Body Energy Balance, Pattern of Eating, Nutrient Quality, and Exercise

In an obese person, total body energy balance can vary over time as a consequence of dietary/lifestyle
programs, psychological factors, co-morbidities affecting capacity to exercise and psychotropic
medications [106–108]. There is considerable evidence that periods of excess energy balance as
opposed to negative energy balance, will worsen the MetS factors that underpin the diagnosis of
MUO [109,110]. Modest weight loss does reverse the presence of MetS factors in obese subjects
and result in improvements in adipocyte function [111–113]. Marked weight loss as is possible with
bariatric surgery, also improves metabolic health. For example, the Roux-en-Y gastric bypass (RYGB)
operation, which promotes weight loss through both restriction of nutrient intake and malabsorption,
results in sustainable weight loss, improved metabolic profile (reductions in total cholesterol, LDL-c,
TG, hepatic enzymes), ameliorated inflammatory status (reduced CRP, TNF-α and IL-6) and elevated
adiponectin and incretin hormones [114–116]. Thus, prevention of weight gain and promotion of weight
loss is key in preventing MUO.

Recently, there has been particular interest on the effects of altering eating patterns to improve
metabolic health, through programs of intermittent fasting, periodic fasting and time restricted feeding,
with the view that this will improve metabolic flexibility, metabolic health and longevity, with at least
part of this effect being independent of weight loss [117,118]. Human studies of altered eating patterns
are of relatively short duration and suggest benefit. However, the capability of obese individuals
to sustain such approaches in the longer term is unknown and outcomes of further studies are
required [119] (Figure 3).

The composition of diet is also important with evidence suggesting that higher dietary carbohydrate
intake, in particular, high intake of sugar sweetened beverages is associated with greater risk of
developing MetS [120,121]. However, low carbohydrate diets associated with increased saturated fat
may have detrimental effects on lipid parameters. The Mediterranean diet in which the quality of
sourcing of macronutrients (e.g., vegetables, salads, fruit, olive oil, fish) is most important is gaining
favor [122].

Additionally, dietary habits can affect the diversity, composition, and stability of the gut
microbiome, with increasing evidence that it can contribute favorably or unfavorably to maintenance
of normal metabolic homeostasis and body weight [6,123,124]. Haro et al. have demonstrated
that long-term consumption of Mediterranean or low-fat, high-complex carbohydrate diets increase
the abundance of diabetes-protective bacterial species, therefore, resulting in better insulin sensitivity
in those at risk [125]. Furthermore, significant fat mass loss after bariatric surgery in MUO individuals
has been linked to augmented abundance of Proteobacteria and better metabolic health [126].

Exercise will assist in achieving negative energy balance and weight loss, but also will increase
general fitness, prevent sarcopenia, and reverse MetS factors independent of weight loss [127–130].
An additional mechanism of benefit from exercise may be via exercise-induced release of a variety of
beneficial myokines, such as IL-6, which increases the circulating levels of cytokines IL-10 and IL-1ra [131,
132]. IL-6 also inhibits the production of TNF-α, thus promoting an anti-inflammatory effect [133].
Other exercise-induced myokines, such as irisin and myostatin, are reported to be involved in crosstalk
between skeletal muscle and adipose tissue, with potential to have browning effects on WAT [134,135],
but require further investigation with respect to their importance in human MHO and MUO [136–138].
The benefit on MetS factors of combining exercise, caloric restriction and the Mediterranean diet was
shown after the first year of the PREDIMED-plus study [139].
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5.2. Disruptions in the Circadian Rhythm

The daily timing of waking, eating meals, physical activity, body temperature and sleeping should
have a regular pattern, with regulation by central and peripheral clocks and the neuro-hormonal
systems of the body [104,105,117]. Normal metabolic functions are tightly linked to this circadian
rhythm, with high capacity of the body to transition rapidly from the fasted to the fed state, a process that
has been described as “metabolic flexibility” [117]. MetS is associated with loss of metabolic flexibility
such that it has even been suggested that MetS be named the ‘circadian syndrome” [105]. Circadian
rhythm disturbances are likely to be the consequence of the modern-day environment [104,105,140].
For example, light pollution at night within cities and the greater individual use of electronic screen
devices into the night are proposed to be major contributors to the dysregulation [140,141]. Night
shift-work rostering is known to be strongly associated with overweight, obesity, MetS and MetS-related
diseases [142]. Furthermore, multidirectional causality between disturbances in circadian rhythm,
psychological disorders, and some medications of mental illness, overweight/obesity and MetS have
been suggested [104,106]. Therefore, interventions that include focus on circadian aspects of lifestyle
in prevention of conversion from MHO to MHO should be considered.

5.3. Potential Role of Hyperinsulinemia as Driver to MUO Phenotype

In recent years, the notion of insulin being the initial factor causing obesity and its metabolic
comorbidities has re-emerged [15]. Increasing evidence from pre-clinical and clinical studies support
a view, at least in subsets of at-risk individuals, that hyper-responsiveness of the islet β-cell to a hostile
environment (e.g., from a westernised lifestyle) drives hyperinsulinemia, and the hyperinsulinemia is
upstream to excessive weight gain and MetS, including the development of IR [15,143–146]. In mouse
models, various genetic manipulation approaches to attenuate insulin secretion protects the mice from
diet-induced obesity, IR and hyperglycemia [147,148].

Of relevance within human studies, is the Da Qing Children Cohort Study which showed that
fasting insulin at about 5 years of age, after the adjustment for age, sex, birth weight, TV-viewing
time and weight (or body mass index) at baseline, predicted weight gain from age 5 to 10 years [149].
Furthermore, higher insulin levels at 5 years of age were also predictive of higher levels of systolic blood
pressure, fasting plasma glucose, IR as determined by the homeostasis model, and TG at 10 years of age,
all features of MetS [149]. The findings were similar to those in a study of Pima Indian children [150].
Pharmacological approaches with diazoxide or the somatostatin analogue octreotide-LAR to suppress
insulin secretion in humans, also support the view that hyperinsulinemia may have more of a primary
role in MetS [151,152]. Thus, therapies aimed to reduce insulin hypersecretion in obese subjects,
particularly in its early stages of development, may have the potential to prevent progression to MUO.

5.4. Altered Whole Body Amino Acid Metabolism

Metabolomic and transcriptomic analysis of plasma samples also reveal distinct amino acid
profiles between lean, MHO and MUO groups, suggesting a potential interplay between amino acid
metabolism, obesity and metabolic status [153,154]. Branched-chain amino acids (BCAA) valine,
isoleucine and leucine were increased in MHO and MUO compared to lean groups, with MUO
tending to have higher levels than MHO [153]. Positive associations between the BCAA isoleucine
and IR and HbA1c have also been described, indicating possible use of BCAA as markers for early
identification of IR [154]. Reduced levels of glycine, an indicator of increased gluconeogenesis and IR,
were also observed in MUO [153,154]. Tyrosine and phenylalanine aromatic amino acids were elevated
in both MHO and MUO compared to lean subjects [153]. While multiple tissues including gut, liver,
skeletal muscle and kidney are clearly involved in amino acid metabolism, transcriptome analysis of
adipose tissue obtained from these groups showed impaired expression of several genes associated
with BCAA catabolism [154]. It is unclear whether the amino acid changes predictive of moving
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between the states of MHO to MUO are pathogenically involved in this transition, as this would
provide support for approaches to manipulate their levels in prevention strategies.

6. Approaches to Prevent or Reverse the Progression from MHO to MUO

As discussed above, transition between MHO and MUO is possible, such that prevention
and reversal of progression from MHO to MUO should be a therapeutic goal [23,155,156]. Identifying
those at greatest risk of progression needs to be considered, as focus of more intensive intervention
efforts on these individuals will likely be rewarding. Therapeutic approaches can be divided into
those that prevent or reverse progression with no or minimal weight loss, and those that are directed
at achieving major weight loss. For all approaches, it is important to not consider each therapy in
isolation, as combining therapies to gain synergism of actions is likely to provide greater benefit.

6.1. Predicting Subjects at Risk of Progression to MUO

Within a Japanese population, greater visceral adipose area as measured by computerized
tomography, together with lower levels of HDL-cholesterol, higher plasma insulin and female sex
predicted progression from MHO to MUO over a 10-year period [156]. Similarly, within a Korean
population, a visceral adiposity index derived from BMI, waist circumference, HDL-cholesterol
and plasma TG also predicted this progression [157]. Of blood biomarkers, uric acid was an independent
variable that could predict progression [157]. Further development of risk prediction tools of progression
between MHO to MUO taking into account ethnic differences, is likely to be worthwhile.

6.2. Lifestyle Interventions with no or Minimal Weight Loss

The evidence suggests that dietary and exercise measures that affect some minimal weight loss are
beneficial. For example, Magkos et al. reported that a 5% lifestyle-induced body weight reduction has
some beneficial metabolic outcomes of improved insulin sensitivity and islet β-cell function; but 10–15%
weight reduction has additional benefits, such as reduction in hepatic steatosis and in adipose tissue
expression of genes involved in oxidative stress and extracellular matrix production [111]. Meta analyses
of lifestyle studies in the management of NAFLD and PCOS are consistent with the beneficial effects of
healthy diet and exercise that affect at least some weight loss [158,159].

It is unclear whether a particular diet or exercise program, assuming equivalent amount of weight
loss, is superior to others. Considering the potential role of hyperinsulinemia in progression of MHO
to MUO, meal plans associated with lower post-prandial insulin increments should potentially be of
advantage. This may underlie movement towards lower content of sugars and carbohydrate in general
and avoidance of Western dietary patterns [15,160,161]. This may also be a factor contributing to
the success of the Mediterranean diet in MetS and NAFLD [162]. Additionally, the pattern of food intake
may also be an important means to reduce insulin levels. The prospective role for intermittent fasting
and time-restricted eating on preventing MHO progressing to MUO needs to be further investigated,
as these approaches have been shown to reduce basal insulin secretion [163,164].

The potential impact of improving sleep hygiene to normalize circadian rhythm, in order to
lessen MetS features and prevent progression to MUO, deserves attention [105,106]. Improved use of
psychotropic medications linked to weight gain should also be a priority.

6.3. Pharmaceutical Interventions with no or Minimal Weight Loss

The biguanide metformin, which is used as a first line glucose-lowering agent in T2D, may have
a role in preventing progression to MUO. In the long-term follow up of the Diabetes Prevention
Program, metformin reduced T2D incidence rate in high risk individuals by 17–36% (using glucose
and HbA1c criteria, respectively) [165]. In PCOS, metformin has also been shown to be of benefit,
but with minimal effects on liver abnormalities in NAFLD [162,166]. It is safe and could be particularly
valuable when used in combination with other therapies, as is often the approach with metformin in
treatment of T2D.
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PPAR-α, β/δ and γ agonists affect transcription of metabolic genes in adipose and other tissues
and have been extensively investigated in MetS related conditions [167,168]. The thiazolidinediones
(TZDs) are PPAR-γ agonists that are well known to be whole body insulin sensitizers. TZDs have potent
direct beneficial effects on adipose tissue, promoting adipocyte differentiation, insulin sensitivity, lipid
storage capacity and adiponectin production, and lowering the release of inflammatory cytokines at both
local and systemic inflammation [168,169]. Fibrates are PPARα agonists used for their capacity to lessen
the dyslipidemia of MetS characterized by elevated TG and reduced HDL-cholesterol levels [167,168].
They are known activators of fatty acid oxidation pathways in tissues such as liver, heart, skeletal
muscle and BAT [167,168]. Activation of PPAR-β/δ also activate fatty acid oxidation, predominantly
in skeletal muscle. There are currently no PPAR-β/δ agonists used in clinical practice. Therefore,
PPAR receptor agonists have enormous potential in reversing multiple components of MetS, whether
used as singular, dual or pan agonists or selective PPAR modulators (SPPARMs). However, many
candidate agents have failed due to adverse side effect profiles [167,168]. The TZD agents rosiglitazone
and pioglitazone were highly favorable glucose lowering drugs, but their use has been dramatically
curtailed due to issues with weight gain, fluid retention, heart failure, bone fractures and possible
increases in cardiovascular event risk (rosiglitazone) and bladder cancer (pioglitazone) [170]. There is
still some support for using pioglitazone in T2D for cardiovascular protection, but the adverse side
effects make it less attractive for prevention of MUO [169,170].

Some new PPAR agonist agents do show promise. The SPPARMα agent pemafibrate, which
is in clinical use in Japan, is more potent than fenafibrate at reversing the atherogenic dyslipidemia
of MetS and T2D, and shows promise in being beneficial in NAFLD, without evidence of liver or
renal toxicity [171,172]. A dual PPAR-α/γ agonist saroglitazar is in clinical use in India for diabetic
dyslipidemia. Saroglitazar has been shown to have beneficial effects on TG and HDL-cholesterol levels
as well as HbA1c, without the issues of weight gain and fluid accumulation as occurs with the singular
PPAR-γ agonists [173,174].

6.4. Pharmaceutical Interventions with greater effect on Weight Loss

As positive energy balance is associated with worsening of MetS, therapies that achieve substantial
negative energy balance should be beneficial [109,110]. The glucagon-like-peptide 1 (GLP-1) agonists
have an established role in management of T2D, with evidence of reduced occurrence of major
cardiovascular events and death [175]. GLP-1 agonists also have an established role in obesity due
to their effects on appetite and food intake from their actions in the gut to delay gastric emptying
and in the brain [176]. In small studies, the GLP-1 receptor agonist liraglutide has been shown to
have beneficial effects in both NAFLD and PCOS [177,178]. The beneficial effects may be secondary to
weight loss rather than direct effects on insulin sensitivity and cellular metabolic pathways. This is
consistent with the results of a study of liraglutide in obese adolescents in which weight loss was
achieved without significant change in other MetS parameters, such as insulin sensitivity and lipid
levels [179]. The GLP-1 receptor agonists are safe but associated with significant symptoms of nausea
and vomiting in some subjects [176].

In recent years, technological advances in drug discovery has led to the development of a series of
peptide hormone receptor co-agonists, including several GLP-1/glucagon and GLP-1/gastrointestinal
insulinotropic polypeptide (GIP) receptor co-agonists, that have potent anti-obesity effects and are
in various phases of clinical trials [180]. An example of such agents progressing through clinical
trials is the GLP-1/GIP receptor co-agonist tirzepatide (LY3298176), which was found in a phase-two
study to result in greater weight loss and improvements in glycemic control than the GLP-1 agonist
dulaglutide, with acceptable safety and tolerability [181]. In a post-hoc analysis of this trial, tirzepatide
was shown to be beneficial on biomarkers of nonalcoholic steatohepatitis (NASH) and fibrosis [182].
The anti-obesity drug development pipeline focuses on multiple targets, including those that act
by increasing metabolic rate, such as via the fibroblast growth factor 21 (FGF21) signaling pathway



Cells 2020, 9, 1596 13 of 23

and browning of adipose tissue [183]. Many will have the potential to prevent and reverse progression
from MHO to MUO, but it is important to consider the safety and cost benefit of these agents.

6.5. Bariatric Surgery

Bariatric surgery continues to be the most effective means to achieve substantial sustainable weight
loss and should be considered in the management of individuals with MUO. As already discussed, it is
capable of reversing MetS characteristics and for this reason should also be effective in preventing
and reversing progression of MHO to MUO [116,184]. Of note, within only one week following RYGB
an impressive reduction in fasting insulin levels is observed prior to changes in body mass [185].

6.6. Preventing Insulin Hypersecretion

All therapies that are successful in reversing of MetS can also lower insulin levels and improve
insulin sensitivity. This raises the question as to whether more focus of therapies to prevent
MetS and MUO, should be on their effects on hyperinsulinemia, either through lifestyle measures
or pharmacological treatments. Further to this, considering the possible up-stream role that
hyperinsulinemia could be playing in MetS, treatments that reduce insulin secretion more directly may
be beneficial, particularly early in obesity before it progresses to MUO [15,145,146,186].

7. Conclusions

Preventing and reversing the transition between MHO into MUO is a worthy target for reducing
the burden of obesity. Understanding the underlying pathophysiological mechanisms is clearly
important, with these mechanisms being both intrinsic and extrinsic to the adipocyte. The re-emergence
of the concept that pancreatic beta-cells’ insulin hyper-responsiveness to nutrient-stimulus might
be the factor triggering obesity, warrants further investigation. On a population basis, improving
lifestyle factors related to diet, exercise and sleep health should be a priority. For overweight and obese
individuals, combining lifestyle measures with pharmaceutical therapies, looking for synergism in
effects should be the goal. There are exciting new drug treatments on the horizon that are either highly
effective at weight loss and/or at reversing defects of MUO at the cellular level. However, there is
much more work required to ensure safety. This is particularly important if these drugs are to be used
in relatively young people with obesity. While waiting for some of the highly potent weight loss drugs
to be deemed safe, bariatric surgery will remain the most effective treatment for those individuals
at highest risk of MUO progression.

A major limitation in moving forward is the lack of internationally accepted definitions of MHO
and MUO, including practical diagnostic criteria, that does not allow accurate comparison of studies.
International consensus is required. The greatest challenge is to prevent, not only MUO, but obesity
in general. A population level approach is required that takes into account known and unknown
environmental detrimental effects. More focus on factors influencing early development, including
through epigenetic changes, will be important.
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