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Time‑frequency time‑space 
long short‑term memory 
networks for image classification 
of histopathological tissue
Tuan D. Pham

Image analysis in histopathology provides insights into the microscopic examination of tissue for 
disease diagnosis, prognosis, and biomarker discovery. Particularly for cancer research, precise 
classification of histopathological images is the ultimate objective of the image analysis. Here, 
the time‑frequency time‑space long short‑term memory network (TF‑TS LSTM) developed for 
classification of time series is applied for classifying histopathological images. The deep learning 
is empowered by the use of sequential time‑frequency and time‑space features extracted from 
the images. Furthermore, unlike conventional classification practice, a strategy for class modeling 
is designed to leverage the learning power of the TF‑TS LSTM. Tests on several datasets of 
histopathological images of haematoxylin‑and‑eosin and immunohistochemistry stains demonstrate 
the strong capability of the artificial intelligence (AI)‑based approach for producing very accurate 
classification results. The proposed approach has the potential to be an AI tool for robust classification 
of histopathological images.

Image analysis in pathology is an important task that helps provide pathologists with quantitative information to 
be discovered in complex characteristics of pathology images. Conventional pathological quantification, which 
is based on the expertise of pathologists, is subjective in assessment, time-consuming for the analysis of large 
volumes of data, and may encounter difficulties when the reproducibility of results is desired. These factors have 
arisen the need for automated quantification of digital pathology data.

Histology is the study of the microscopic anatomy of biological tissues, while histopathology is a field of 
histology that involves the study of diseased tissue. The benefits of automated image analysis of histopathologi-
cal images are multi-fold1. Not only from the perspective of the ability for rendering accurate diagnosis, but the 
automated analysis can also provide insights into disease mechanisms for understanding biological abnormalities, 
optimal clinical patient-specific treatment, and biomarker discovery.

Automated image analysis of spatial structures of histopathological images were carried out in works reported 
 in2,3. A type of advanced machine-learning method such support vector machines (SVM) was utilized to develop 
a system for classifying normal tissue and tissue lesions from liver, lung, spleen, and kidney of bovine animals 
into different histologic  categories4.

As image processing and classification using deep learning has been realized as a major direction of research 
in medical prognostics and health  management5, using the state-of-the-art methods in artificial intelligence 
(AI) for pattern classification, several deep-learning models have recently been used for classification in digital 
 pathology6,7. Some of these works include a self-designed convolutional neural network (CNN) model for necro-
sis detection in whole-slide images of gastric  cancer8, the use of a CNN model for pathology-based prediction of 
survival outcome of patients with lung  cancer9, a pre-trained CNN (Inception v3) for detecting cancer subtype or 
gene mutations from histopathological images of non-small cell lung  cancer10, pre-trained CNNs for identifying 
histologic growth patterns of lung  cancer11, and Bayesian CNN for classifying histopathological images of colo-
rectal  cancer12. More recently, fusion of deep-learning features was performed for classifying histopathological 
images of breast  tissue13; and texture features extracted from histopathological tissue images of prostate cancer 
were used for image classification with support vector machines to provide Gleason scores to the patients’ whole 
slide images, and the results found to be better than the use of deep  learning14.
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In this study, recurrent neural networks that learn time-frequency and time-space features for classification 
of time series or sequential  data15 is further developed for classifying histopathological images. The networks 
receive input as the combination of multiple features extracted in time-frequency and time-space domains of 
the time series transformed from the images. The class modeling is then designed for training the networks. 
Comparative results obtained from testing three public datasets of histopathological images, including haema-
toxylin-and-eosin (H&E) stained tissue images of colorectal cancer, H&E stained tissue images of heart failure, 
and immunohistochemistry (IHC) stained tissue images of rectal cancer, show the capability of achieving very 
accurate classification by the current approach.

Materials and methods
Image data. Three public databases are used in this study and descibed as follows.

H&E colorectal‑cancer data. The colorectal-cancer (CRC) histology data used in this study were originally 
studied  in16. The H&E stained tissue images of the CRC are publicly available at URL: http:// doi. org/ 10. 5281/ 
zenodo. 53169. The dataset consists of ten anonymized H&E stained CRC tissue slides. Tumors of both low grade 
and high grade were included in the dataset. The slides were first digitized, then contiguous tissue areas were 
manually annotated and tessellated to produce 625 non-overlapping tissue images of 150× 150 pixels for each of 
8 types of tissue, resulting in a set of 5000 images. There are 8 tissue types for classification, which are: (1) tumor 
epithelium (tumor), (2) simple stroma (stroma), (3) complex stroma (complex), (4) immune cells (lymphoid), 
(5) debris, (6) normal mucosal glands (mucosa), (7) adipose tissue (adipose), and (8) background (no tissue or 
empty).

Figure 1 shows selected samples of the H&E stained CRC tissue images of the dataset.

H&E heart‑failure data. The H&E stained heart-failure tissue image dataset, which includes left ventricular 
tissue from 209 patients was originally studied  in17. The H&E stained tissue images of human heart failure are 
publicly available at the following URL: https:// idr. openm icros copy. org/ webcl ient. The dataset consists of two 
cohorts of patients: (1) heart failure (N = 94) and (2) without heart failure (N = 115). The heart-failure tissue 
was collected from patients with clinically diagnosed ischemic cardiomyopathy (N = 51) or idiopathic dilated 
cardiomyopathy (N = 43). The non-failing patients were organ donors without a history of heart failure. All 
tissue types were sectioned, stained, and scanned during the data acquisition. The whole slide image of each 
patient was down sampled to 5 × magnification, where eleven non-overlapping images considered as the regions 
of interest were extracted and the tissue border was manually refined. The total number of images for the heart-
failure and non-heart-failure cohorts are 1034 and 1265, respectively, resulting in a dataset of 2299 images of 
250× 250 pixels.

Figure 2 shows selected samples of H&E stained sections of heart-failure and non-heart-failure tissue types.

(a) adipose (b) complex (c) empty (d) debris

(e) lymphoid (f) mucosa (g) stroma (h) tumor

Figure 1.  H&E stained tissue images of colorectal cancer.

http://doi.org/10.5281/zenodo.53169
http://doi.org/10.5281/zenodo.53169
https://idr.openmicroscopy.org/webclient
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IHC rectal‑cancer data. The data were obtained from a cohort of 143 patients with rectal cancer from the Swed-
ish rectal cancer trial of preoperative radiotherapy (pRT) between 1987 and  199018. All patients were performed 
locally curative resection. Among them, 77 patients received tumor resection alone, and 59 received pRT fol-
lowed by surgical tumor resection. The pRT was given at a total dose of 25 Gy in 5 fractions over a median of 8 
days (6–14 days) before the surgery. The surgical tumor resection was carried out in a median of 4 days (range 
0–8 days) after the pRT. Samples were collected from biopsy ( n = 96 ), primary cancer or surgically resected 
tumor ( n = 136 ), adjacent normal mucosa ( n = 79 ), and distant normal mucosa ( n = 119 ). The distant normal 
mucosa was taken from proximal or distal margin (4–35 cm from the primary tumor) of the resected rectum 
and was histologically free from tumor. The adjacent normal mucosa sample was taken adjacent to the primary 
tumor and was histologically free from tumor. None of the patients received preoperative or adjuvant chemo-
therapy. The mean follow-up period or the patients was 107 months (range 0–309 months).

The whole dataset has 235 images, where the size for each image is about 2500× 2700 pixels. The image 
subsets consist of 40 and 14 images of biopsy without pRT having survival rate greater and less than 5 years, 
respectively; 32 and 11 images of biopsy with pRT having survival rate greater and less than 5 years, respectively; 
54 and 25 images of tumor without pRT having survival rate greater and less than 5 years, respectively; and 36 
and 23 images of tumor with pRT having survival rate greater and less than 5 years, respectively. Details about 
the procedure for the image extraction and the publicly available dataset for investigating the prediction and 
prognosis of DNp73 were described  in19.

Figure 3 shows selected samples of IHC stained images of the rectal cancer obtained for biopsy and primary 
tumor samples with and without pRT.

Image vectorization. Because LSTM networks were designed for learning order dependence in time 
series or sequential data, the conversion of time-independent images into time series is necessary for extracting 
sequential features that will be used as input into the network. To extract features of the time series of histopatho-
logical images in time-frequency and time-space domains, the color (3D) images were first converted into gray-
scale (2D) images. Using the grayscale images, the vectorization of a 2D image or matrix is a linear transforma-
tion that converts the image into a column vector. Specifically, the vectorization of an M × N image I, denoted 
as J, is the MN × 1 column vector obtained by stacking the columns of the image I on top of one another, giving

Thus, J results in a time series of image I, which is ready for feature extraction in time-frequency and time-space 
domains, which are described in the following sections.

LSTM learning with time‑frequency and time‑space features of images. LSTM  networks20, 
which are a special type of the recurrence neural network (RNN), are mainly applied for classifying time series 

(1)J = [I11, . . . , IM1, I12, . . . ,M2 , I1N , . . . , IMN ]
T .

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.  H&E stained heart tissue sections: (a)–(d) normal condition, and (e)–(h) failure.
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or sequential data such as language modeling and speech-to-text  translation21,22. The LSTM network was devel-
oped to solve the vanishing gradients problem encountered by the RNN. The essence of the LSTM design is the 
introduction of data-dependent configurations into the RNN cells to prevent the gradient of its objective func-
tion from vanishing during the data  training20. As a result of the redesign, LSTM networks can be more robust 
and versatile than  RNNs23.

As an extension of applications of the time-frequency and time-space LSTM (TF-TS LSTM) recently intro-
duced in literature for classifying physiological  signals15, images of histopathological tissue are vectorized into 
time series whose TF and TS features can be extracted for learning by the TF-TS LSTM. The extractions of the 
TF features that are the instantaneous frequency (IF) and spectral entropy (SE), and the TS features that are the 
fuzzy recurrence image entropy (FRIE) and fuzzy recurrence entropy (FRE) were described in detail  in15. Details 
on how TF and TS features are used for learning by the TF-TS LSTM can also be found  in15.

The procedure for implementing the TF-TS LSTM for image classification is as follows. 

1. Vectorize an image into time series.
2. Extract IF and SE from the time series.
3. Construct the fuzzy recurrence plot (FRP) of the time series.
4. Extract FRIE and FRE of the FRP.
5. Train the LSTM with the extracted TF and TS features.

The IF of a time series, which is the average of frequencies f over time instant t, is expressed as

where P(t, f) is the power spectrum.
Because Eq. (2) applies to infinitely long signal, the IF for a signal of a finite length needs to be numerically 

estimated. A method for estimating the IF and adopted herein was described  in15.
The SE at time t is computed as

where the probability at time t and frequency m is

(2)IF(t) =

∫∞

−∞
fP(t, f )df

∫∞

−∞
P(t, f )df

,

(3)SE = −

N∑

m=1

p(t,m) log2 p(t,m).

(a) pRT, ≤ 5 years (b) No pRT, ≤ 5 years (c) pRT, > 5 years (d) No pRT, > 5 years

(e) pRT, ≤ 5 years (f) no pRT, ≤ 5 years (g) pRT, > 5 years (h) No pRT, > 5 years

Figure 3.  IHC stained tissue images of rectal cancer: (a) biopsy, and (b) tumor.
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in which f ∈ [0, fs/2] , and fs is the sampling frequency.
Next, given a time series, an embedding dimension, and a time delay, the phase space of the corresponding 

dynamical system can be constructed and represented with a collection of vectors X = (x1, . . . , xN ) . Elements 
of an FRP are defined  as24

where µ(xi , xj) ∈ [0, 1] is the fuzzy membership of similarity between xi and xj.
By partitioning X into c clusters using the fuzzy c-means  algorithm25, an FRP has the following three 

properties: 

1. Reflexivity: 

2. Symmetry: 

3. Transitivity: 

The FRIE is then computed as

where L is the number of gray levels of the FRP (represented by the fuzzy membership grades), and pl is the 
probability associated with gray level l.

Using the concept of the entropy of a fuzzy  set26, the FRE of an FRP is calculated  as27

Class modeling and performance measures
Deep‑learning based class modeling. In machine learning, methods for class modeling or one-class 
 classification28 aim to recognize samples of a particular class among all other class samples by focusing on the 
learning from a training set containing only the samples belonging to that class. This approach is different from 
conventional classification methods, which learn to differentiate two or more classes with training data contain-
ing samples from all the classes.

In this study, the bi-LSTM network was used for the class modeling. The network learned samples from a 
particular class while creating an equal number of samples for other class(es) from a single sample for each of 
other class(es). This design was based on the capability of the bi-LSTM network to enhance its learning from 
multiple copies of the same sample. Not only this design of class modeling can enhance the learning capabil-
ity of the network, it can also address the problem of data imbalance often encountered in the classification of 
histopathological  images29. This deep-learning approach is referred to as image-LSTM.

The network layer was specified with an output size = 100, fully connected layer = number of classes, and, 
while the sigmoid function is used for the LSTM gate activation, the network ends with a fully connected 
layer, a softmax layer, and a classification output layer. Training options of the bi-LSTM were set as optimizer 
= ‘Adam’ (adaptive moment estimation), including L2 regularization factor, maximum number of epochs = 80 
for the 2-class classification of the H&E CRC, H&E heart-failure, and IHC rectal cancer data, and 180 for the 
8-class classification of the H&E CRC data, minimum batch size = 150, initial learning rate = 0.01, and gradient 
threshold = 1.

To compute the instantaneous frequency and spectral entropy, the sampling frequency fs = 300 Hz, and 
frequency range = [0, fs/2]. In this study, the value for the sampling frequency is arbitrarily chosen to extract 
the time-frequency features of the transformed time series of the images, but commonly used for physiological 
signals (https:// physi onet. org/ chall enge/ 2017/). To compute the Shannon entropy and fuzzy entropy of an FRP, 
embedding dimension = 1, time delay = 1, and number of clusters = 3. For consistent input to the bi-LSTM, 
the length of the sequences of the time-space features (FRIE and FRE) was designed to match with that of the 
time-frequency (IF and SE) sequences by segmenting the transformed time series into the number of segments 
being equal to the length of the time-frequency sequences. Each segment of the time series was then sequentially 
processed to obtain the time-space sequences.

Figure 4 shows the architecture and sequential procedure of the image-LSTM for classifying histopathologi-
cal images.

(4)p(t,m) =
P(t,m)∑
f P(t, f )

,

(5)FRP(i, j) = µ(xi , xj), i, j = 1, . . . ,N ,

(6)µ(xi , xi) = 1, i = 1, . . . ,N .

(7)µ(xi , vq) = µ(vq, xi), i = 1, . . . ,N , q = 1, . . . , c.

(8)µ(xi , xj) = max[min{µ(xi , vq),µ(xj , vq)}], q = 1, . . . , c.

(9)FRIE = −

L∑

l=1

pl log2 pl ,

(10)FRE =

N∑

i=

N∑

j=1

−µ(xi , xj) log2 µ(xi , xj)− [1− µ(xi , xj)] log2[1− µ(xi , xj)].

https://physionet.org/challenge/2017/
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Evaluation metrics. Accuracy (ACC), sensitivity (SEN), specitivity (SPE), precision (PRE), and F1 score 
were adopted as statistical measures of the tissue classification performance. ACC is defined as

where TP, TN, P, and N refer to true positive, true negative, condition positive, and condition negative, respec-
tively. In this study, for each tissue class considered as positive, TP is the number of positive samples correctly 
classified as positive, TN the number of correctly classified negative samples, P the total number of positive 
samples, and N the total number of negative samples.

SEN is defined as

SPE is defined as

PRE is calculated as

(11)ACC =
TP+TN

P+N
,

(12)SEN =
TP

P
.

(13)SPE =
TN

N
.

(14)PRE =
TP

TP+FP
.

Figure 4.  image-LSTM: (a) architecture, and (b) data pipeline.
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F1 score is the harmonic mean of precision and sensitivity and determined as

where FP is the number of negative samples incorrectly classified as positive, and FN the number of positive 
samples incorrectly classified as negative.

For the prediction and prognosis of DNp73 in rectal cancer, survival rates of more and less than 5 years are 
defined as true positive rate (TPR) and true negative rate (TNR), respectively, which are calculated as

Results
To carry out the image data pre-processing for sequential feature extraction described earlier, because of the large 
size of the IHC slides of rectal cancer, these images were resized to 250× 250× 3 pixels to reduce the time for 
subsequent computations and network training. Figures 5, 6, and 7 show examples of the conversions of images 
into time series, time-frequency features, and time-space features using H&E CRC, H&E heart-failure, and IHC 
rectal cancer datasets, respectively. These features of the images were combined to constitute multi-dimensional 
sequences and used as the input into the bi-LSTM for learning and classification.

Tables 1 and 2 show the classification results obtained from different methods using the H&E CRC and heart-
failure data obtained as averages of ten runs of tenfold cross-validation (CV), H&E heart-failure data as averages 
of ten runs of twofold (for comparison with previously reported results) and threefold CVs (for comparison 
with previously reported results), and IHC rectal-cancer data as averages of ten runs of tenfold CV, respectively.

For the 2-classification (stroma and tumor) of the H&E CRC data, the image-LSTM provided perfect results 
in terms of accuracy, sensitivity, specificity, precision, and F1 score, where applicable, and outperformed other 

(15)F1 =
2TP

2TP+FP+FN
,

(16)TPR =
TP

P
.

(17)TNR =
TN

N
.

Figure 5.  Time-frequency and time-space features extracted from time series of a grayscale image of H&E 
tumor tissue of colorectal cancer.
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classification methods (support vector machines and histogram = SVM-histogram, and support vector machines 
and local binary patterns = SVM-LBP) using the same dataset reported in  literature16.

Similarly, the image-LSTM outperformed the random forest (RF) and convolutional neural network (CNN) 
classifiers studied  in17 in testing the H&E heart-failure dataset using twofold and threefold cross-validation 
procedures for evaluating the performance of classifiers.

Once again, the image-LSTM provided excellent and better results (100%) than many pre-trained convolu-
tional neural network (CNN) models recently  reported19 for classifying the biopsy and tumor samples with and 
without pRT in terms of accuracy, and survival rates > and ≤ 5 years.

To examine how quickly the image-LSTM accuracy was improving, and whether the network trainings could 
be overfitted with the training data, Fig. 8 shows the plots of the model training histories in terms of accuracy 
and loss using six different datasets for the tenfold CV. In general, if the loss keeps decreasing, the model could 
be overfitted; and when the loss becomes equal (decreasing to a point of stability), the model is considered either 
to be of a good fit or reaches a local minimum. By observing the plots for different datasets, the model quickly 
improved the accuracy and all the trainings did not result in overfitting.

Discussion
Regarding the classification of the H&E CRC data, there are much larger differences in the average accuracy 
obtained from the SVM-histogram (about 15% difference) and SVM-LPB (about 20% difference) classifiers for 
2-class and 8-class classifications, where the latter case is lower than the former. The average accuracy provided by 
the image-LSTM classifier for the 8-class classification (99.96%) is almost the same as for the 2-class classification 
(100%). The better performance of the image-LSTM suggests that while the sequential features of the time series 
transformed from the original images helped increase the differentiation of the class properties, the formation of 
multi-dimensional sequential features allows the enhancement of the deep learning of long-term dependencies 
in more than one dimension. In fact, an important task of an LSTM is to decide what information to forget and 
keep from the cell state, and these two things are combined to make an update to the state. The time-frequency 
and time-space features enabled the updating process more effective, resulting in a better classifier.

The transformation of images into time series for extracting time-frequency and time-space features and 
class modeling using the bi-LSTM have shown the classification design effective as the results obtained from 

Figure 6.  Time-frequency and time-space features extracted from time series of a grayscale image of H&E 
heart tissue.
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Figure 7.  Time-frequency and time-space features extracted from time series of a grayscale image of IHC 
rectal-cancer tissue obtained from a patient having survival rate ≤ 5 years.

Table 1.  Classification results. n/m not mentioned, n/a not applicable.

Method ACC (%) SEN (%) SPE (%) PRE (%) F1

H&E colorectal cancer: 2 Classes, tenfold CV

SVM-histogram16 95.70 ± n/m n/m n/m n/m n/m

SVM-LBP16 94.90 ± n/m n/m n/m n/m n/m

image-LSTM 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 1 ± 0.0

H&E colorectal cancer: 8 Classes, tenfold CV

SVM-histogram16 80.80 ± n/m n/a n/a n/a n/a

SVM-LBP16 76.20 ± n/m n/a n/a n/a n/a

image-LSTM 99.96 ± 0.08 n/a n/a n/a n/a

H&E heart-failure: tenfold CV

image-LSTM 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 1 ± 0.0

H&E heart-failure: twofold CV

RF17 86.20 ± 1.00 90.90 ± 2.00 82.30 ± 3.00 n/m n/m

CNN17 93.20 ± 1.00 98.50 ± 1.00 90.00 ± 0.20 n/m n/m

image-LSTM 99.87 ± 0.23 99.74 ± 0.46 100.00 ± 0.00 100.00 ± 0.00 0.999 ± 0.002

H&E heart-failure: threefold CV

RF17 87.60 ± 5.00 88.10 ± 7.00 87.20 ± 4.00 n/m n/m

CNN17 95.90 ± 2.00 97.10 ± 1.00 94.90 ± 5.00 n/m n/m

image-LSTM 99.87 ± 0.15 99.73 ± 0.31 100.00 ± 0.00 100.00 ± 0.00 0.999 ± 0.002
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the image-LSTM outperformed the CNN, which is also a deep-learning model and used the direct input of the 
images, in both twofold and threefold cross-validations.

H&E stained slides are used by pathologists for disease diagnosis and patient treatment. Images of cancer tis-
sue are routinely examined by pathologists for cancer type identification and prognosis. The power of the precise 
classification of H&E stained images provided by the image-LSTM offers a useful AI tool to assist pathologists 
in carrying out timely analysis of large volumes of images.

The prediction and prognosis power of the protein marker DNp73 in rectal cancer can be discovered with the 
use of the image-LSTM for differentiating both biopsy and tumor samples of the rectal-cancer patients between 
with and without pRT. Recent  results19 showed the usefulness of several pre-trained CNN models for discovering 
the function of DNp73 in rectal cancer. In comparison with the pre-trained CNN models, the present classifica-
tion results obtained from the image-LSTM not only confirm the recent findings but also provide a better AI tool 
for clinical decision making and accurate forecast of the future course of the cancer under pRT.

The high performance of the image-LSTM in classifying IHC slides can be very useful for timely biomarker 
discovery. Current practice in pathology relies on manual scoring of protein expression mainly based on colors 
to assess the capability of prediction and prognosis of the candidate protein as a biomarker. The classification 
accuracies based on the expressions of DNp73 with pRT and without pRT suggest the power of the present AI 
method with an implication that if the examination of a tissue taken from a rectal cancer patient is predicted 
to have a short survival ( ≤ 5 years), then the clinical decision would be to recommend the patient to be treated 
with  pRT30.

While traditional IHC analysis did not provide any predictive and prognostic information of DNp73 expres-
sion in the rectal cancer patients without or with  pRT19, both predictive and prognostic power of DNp73 expres-
sion can be discovered by the current AI approach. Such a discovery is very useful for optimal treatment and 
clinical decision making in pRT. The AI approach reported herein is not only useful for studying the protein 
expression in rectal cancer patients but can also be applied for discovering biomarkers in other types of cancer. 
A certain advantage discovered from the findings regarding the computer implementation of the AI is that accu-
rate classification results can be achieved without the need for the manual extraction of regions of interest from 
whole-slide images. Such a freedom from the manual analysis is particularly useful for guaranteeing objective 
and reproducible results as well as alleviating time-consuming work to help life-science researchers focus on 
more important aspects in their  study30.

Conclusion
An approach for classifying histopathological images by feeding the LSTM with sequential features extracted 
from time-frequency and time-space domains together with the class modeling has been presented and dis-
cussed in the foregoing sections. The key attribute is the capture of effective sequential features of texture-rich 
images in pathology that can leverage the power of the LSTM in learning sequential characteristics for pattern 
recognition. Classification results obtained from testing the new approach with both H&E and IHC image data 

Table 2.  Prediction and prognosis of DNp73: IHC rectal-cancer data.

Method ACC (%) > 5 years (%) ≤ 5 years (%)

Biopsy with pRT

ResNet10119 92.50 ± 12.08 100.00 ± 0.00 70.00 ± 48.30

DenseNet20119 92.50 ± 16.87 96.67 ± 10.54 80.00 ± 42.16

image-LSTM 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Biopsy without pRT

ResNet5019 94.00 ± 9.66 70.00 ± 48.30 100.00 ± 0.00

VGG1619 94.00 ± 9.66 80.00 ± 42.16 97.50 ± 7.91

DenseNet20119 96.00 ± 8.43 90.00 ± 31.62 97.50 ± 7.91

image-LSTM 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Tumor with pRT

ResNet10119 90.00 ± 16.10 92.50 ± 12.08 85.00 ± 33.74

InceptionV319 93.33 ± 11.65 95.00 ± 10.54 90.00 ± 31.62

DenseNet20119 93.33 ± 16.10 92.50 ± 16.87 95.00 ± 15.81

NasNetLarge19 93.33 ± 16.10 95.00 ± 15.81 90.00 ± 21.08

image-LSTM 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Tumor without pRT

GoogLeNet19 94.29 ± 18.07 96.00 ± 12.65 90.00 ± 31.63

ResNet5019 94.29 ± 12.05 96.00 ± 8.43 90.00 ± 21.08

DenseNet20119 94.29 ± 13.80 96.00 ± 8.43 90.00 ± 31.62

InceptionV319 94.29 ± 12.05 100.00 ± 0.00 80.00 ± 42.16

ResNet10119 95.71 ± 9.64 98.00 ± 6.32 90.00 ± 21.08

image-LSTM 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
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outperformed other baseline methods. The image-LSTM appears to be a useful AI tool in the big data analysis 
of digital pathology for disease diagnosis, prognosis, and biomarker discovery, where the effective handling of 
big data can significantly contribute to modern healthcare  systems31. The tool presented herein can be applied 
for classifying other types of microscope images of cells or tissues.

Data availability
The computer software written in MATLAB for the image-LSTM tool is publicly available at the author’s personal 
homepage: https:// sites. google. com/ view/ tuan-d- pham/ codes.
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