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Competing endogenous RNA (ceRNA) interactions form a multilayered network that regulates gene
expression in various biological pathways. Recent studies have demonstrated novel roles of ceRNA
interactions in tumorigenesis, but the dynamics of the ceRNA network in cancer remain unexplored. Here,
we examine ceRNA network dynamics in prostate cancer from the perspective of alternative cleavage and
polyadenylation (APA) and reveal the principles of such changes. Analysis of exon array data revealed that
both shortened and lengthened 3’ UTRs are abundant. Consensus clustering with APA data stratified
cancers into groups with differing risks of biochemical relapse and revealed that a ceRNA subnetwork
enriched with cancer genes was specifically dysregulated in high-risk cancers. The novel connection between
3’UTR shortening and ceRNA network dysregulation was supported by the unusually high number of
microRNA response elements (MREs) shared by the dysregulated ceRNA interactions and the significantly
altered 3'UTRs. The dysregulation followed a fundamental principle in that ceRNA interactions connecting
genes that show opposite trends in expression change are preferentially dysregulated. This targeted
dysregulation is responsible for the majority of the observed expression changes in genes with significant
ceRNA dysregulation and represents a novel mechanism underlying aberrant oncogenic expression.

icroRNAs are approximately 22-nucleotide RNAs that regulate gene expression through complement-

ary binding with microRNA response elements (MREs) in target transcripts'. Although positive influ-

ences on target transcripts have been reported’, microRNAs are largely negative regulators of protein
production whose effects predominantly involve the destabilization of target mRNAs’. The coherent role of
microRNAs in mRNA regulation and their many-to-many interaction paradigm allow microRNAs to function as
common resources for which different transcripts compete®. Such interactions have been termed the ceRNA
network and represent a novel form of regulation. Multiple studies have demonstrated that ceRNA networks
regulate essentially all known biological processes, and their dysregulation could represent novel disease
mechanisms®®.

Although coding regions and 5’ UTRs have been reported to harbor MREs>°, the vast majority of microRNA-
mRNA interactions are mediated by 3'UTRs'. Polymorphism in 3'UTR regions is pervasive throughout the
human genome, as about half of all known genes are estimated to undergo polyadenylation (APA)"'. Because long
3"UTRs tend to harbor more MREs, changing the sizes of 3'UTRs could influence key biological processes by
strengthening or weakening the repressive effects of microRNAs. Sandberg et al. first described the profound role
of 3'UTR APA dynamics in T cell proliferation'®. Through clever probe-level analysis of microarray data, they
showed that proliferating T cells utilized shorter 3'UTRs compared to their resting counterparts. The shortening
of 3'UTRs enables key genes to escape microRNA repression, thus leading to higher expression and promoting
proliferation. Additionally, 3'UTR shortening has been established as a key mechanism of oncogene activation
and has demonstrated promising potential as a prognostic marker'*~'¢. In addition to 3’ UTR shortening, neural-
specific lengthening of 3'UTRs has been reported during Drosophila development and in the mammalian
brain'”*%, suggesting that there is considerable versatility in 3"UTR APA dynamics in diverse biological processes.

Because 3'UTRs are essential building blocks of the ceRNA network (together with microRNAs)®, we hypothe-
sized that the dynamics of 3"UTR APAs modulate the structure and strength of the relevant ceRNA networks. We
applied the Bayesian change point (BCP) approach'”*° to analyze tandem 3'UTR APA dynamics using a large
prostate cancer dataset®. Our results demonstrated that prostate cancers can be stratified into subsets with
differing risks of biochemical relapse according to 3'UTR APA dynamics. A densely connected sub-network
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enriched with prostate cancer genes was specifically dysregulated in
high-risk prostate cancers. The dysregulation is not random; rather,
it preferentially targets genes showing opposite expression changes,
effectively shifting the total ceRNA balance and driving gene up-/
downregulation. These results demonstrated that in addition to
direct effects on mRNAs, 3'UTR APA dynamics can exert profound
influences on ceRNA networks; furthermore, the results, revealed a
fundamental rule governing the dysregulation of the ceRNA network
in cancer.

Results

Bayesian change point analysis of exon array data reveals complex
3'UTR APA dynamics in prostate cancer. We first established the
3'UTR APA landscape across a large cohort of prostate cancers
consisting of 185 exon arrays from normal samples, primary and
metastatic cancers and cell lines®’. We focused on tandem 3"UTRs
because multiple studies have supported their roles in tumorigene-
sis'*'>?, and several studies have successfully analyzed tandem
3'UTR shortening with exon array data'>”*. The exon array probes
were first mapped to hgl9 using methods similar to PLATA" and
Rmodel” (Fig. 1a). Instead of applying a modified ¢-test to individual
samples in a manner similar to those used in previous studies, we
adopted a multivariate Bayesian approach such that for each tandem
3'UTR, all samples were considered in the same calculation (see
Methods). Furthermore, the test estimated the probes’ posterior
probabilities as the change point and their posterior means in the
same Bayesian procedure, thus substantially reducing the number of
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statistical tests (Fig. 1b). The estimated 3'UTR shortening/leng-
thening values were then filtered to retain only those with signifi-
cant change probabilities and median absolute deviations (MADs),
resulting in 279 tandem 3'UTRs.

The shortening of 3'UTRs has been predominantly associated
with elevated gene expression'>'*. However, a recent study has shown
that 3’UTR sizes have limited effects on mRNA stabilities*. Taking
advantage of the large dataset, we demonstrated that the correlation
coefficient between 3'UTR shortening and gene expression clearly
followed a bimodal distribution (Fig. 1c). As expected, the majority of
the genes demonstrated a strong positive correlation. However, a
subset of 51 genes displayed a significant negative correlation, indi-
cating that longer 3"UTRs could be associated with higher gene
expression (we termed those the “negative gene set”). Those genes
included the known oncogene RUNX1 (Supplementary Fig. 1) and
prostate cancer-associated genes KLK2 and KLK3. Although func-
tional enrichment analysis did not reveal significant results, most of
those tandem 3"UTRs (42 out of 51) did fall within the same cluster
when hierarchical clustering was performed using the 3'UTR APA
dynamics data (Fig. 2c), suggesting that their 3'UTR lengths are
regulated in concert. We further explored possible mechanisms link-
ing longer 3'UTRs with increased gene expression via motif enrich-
ment analysis. Several hexamers representing C-rich elements were
significantly enriched in sequence regions that follow the identified
APA sites in the negative set genes (Supplementary Table 1). C-rich
elements are recognized by poly(C)-binding proteins and have been
predominantly designed as stabilizers of mRNAs**. Thus, this bimo-
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Figure 1 | Bayesian change point approach for APA analysis with exon array data. (a) Mapping of exon array probes to ZEB2 3'UTR. (b) BCP
analysis results. The upper panel shows the input probe intensities (dots) and posterior probe mean intensities (solid lines) for all samples. The lower
panel shows the posterior change point probabilities for the probes. (c) The correlation coefficient between gene expression and 3'UTR shortening
follows a bimodal distribution. The histogram represents the distribution of the correlation coefficient (blue). The estimated densities are shown for

individual (magenta) and combined (turquoise) distributions.
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Figure 2 | APA dynamics defines stable clusters with differing risks of biochemical relapse. (a) Consensus clustering matrix of prostate cancer samples
for k = 2 to k = 5. (b) Consensus clustering CDF for k = 2 to k = 5. (¢) Heatmap of the clustering result. (d) Survival analysis using classifications
generated from consensus clustering. Cluster 1 displays a significantly higher probability of relapse.

dal pattern indicated that mRNA stabilities are context dependent,
and both microRNAs and RNA binding proteins could be the dom-
inant factors.

Consensus clustering of 3'UTR changes defines distinct prostate
cancer subtypes with differing risks of relapse. We then
investigated whether 3'UTR shortening data can produce
biologically relevant stratification of prostate cancers. Consensus
clustering generated four stable clusters (Fig. 2a, 2b). There are
strong differences in biochemical relapse probabilities among the
four subtypes (Fig. 2d). For the cluster with highest relapse
probability, the samples were mostly metastatic tumors. The high-
risk cluster also displayed the largest absolute change in 3'UTR
shortening/lengthening (Fig. 2c). Prostate cancer cell lines also
appeared in the same cluster. Moreover, all high-risk samples are
from the two copy number variation (CNV) clusters with the
largest CNV changes that have been reported previously®, thus
confirming their status as advanced tumors. For the majority of
the genes (including known oncogenes such as MYC, RUNXI,
etc.), the high-risk cluster samples showed the highest expression
of those genes (having shorter 3'UTRs, or longer 3'UTRs for the
negative set genes). However, a subset of genes showed the

opposite trend (Fig. 2¢): high-risk cluster samples and metastatic
samples displayed lower expression (longer 3'UTRs). This subset
contained several EMT-related genes such as PDGFC, TGFBR1
and ZEB2. Because ZEB2 has been designated as a key regulator of
EMT via the antagonizing microRNA 200 family members®, we
further investigated the 3'UTR lengthening of ZEB2 in metastatic
samples and cell lines (Supplementary Fig. 1d). We also analyzed the
expression of PDGFD, a known growth factor expressed in normal
prostate tissues that could upregulate ZEB2*. Those two genes
displayed a significant positive correlation, and both genes were
expressed at a lower level in cell lines and metastatic tumors
(Supplementary Fig. le). This finding raised the interesting
possibility that reduced expression of the PDGFD-ZEB2 axis may
render cells more sensitive to EMT stimuli, thus leading to higher
relapse probabilities.

Targeted dysregulation of ceRNA networks in high-risk prostate
cancers. We next examined the dysregulation of the ceRNA network
in these subtypes via a mutual information- (MI-) based approach. A
subnetwork of 5,185 significantly dysregulated ceRNA interactions
was identified in the high-risk cluster (Fig. 3a, Table 1). The
directions of the changes were homogeneous, in that removing
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high-risk samples substantially increased MIs for all dysregulated
gene pairs (Table 1), indicating that the ceRNA network was
uniformly weakened in high-risk cancers. In contrast to the high-
risk cluster, minimal numbers of significantly dysregulated ceRNA
interactions were identified for the other three groups (Table 1). This
observation suggested that substantial dysregulations of the ceRNA
network are only evident in samples with large 3'UTR length dyna-
mics, supporting our initial hypothesis. In addition, the medium-risk
group was dominated by genes utilizing longer 3'UTRs (Fig. 2c,
cluster 4) and was the only group with significantly strengthened
ceRNA interactions (Table 1). This pattern further supported the
idea that shortening 3'UTRs would release microRNAs and
weaken the relevant ceRNA interactions.

The dysregulated network in high-risk prostate cancers defined
182 genes with unusually high numbers of dysregulated ceRNA
interactions (Fig. 3a). These included well-known cancer genes such
as PTEN, AKT3 and CDC25A. We first looked for pathways
enriched in these 182 dysregulated genes. DAVID*® analysis iden-
tified 21 pathways (q-value < 0.05, Supplementary Table 2). Among
the top identified were key pathways involved in tumorigenesis,
including those in prostate cancer. We next analyzed the number
of prostate cancer records in PubMed that were associated with these
182 genes. Compared to simulated random gene sets, the set of 182
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genes returned on average 20.47 PubMed records, which was signifi-
cantly higher than the random gene sets (p-value = 4.19E-11). These
results confirmed that the dysregulated ceRNA network in high-risk
prostate cancers specifically targeted cancer-related genes and
pathways.

Dysregulation of the ceRNA network is associated with 3'UTR
APA dynamics. A straightforward explanation for the observed dys-
regulation is that the mediating microRNAs for those interactions
are upregulated. To test this possibility, we first compared the
microRNA expression in samples strongly displaying ceRNA net-
work dysregulation (cluster 1) with those showing few ceRNA
network changes (clusters 2, 3 and 4) (Supplementary Fig. 2a).
Significant Analysis of Microarray®® (SAM) identified 29 different-
ially expressed microRNAs (q-value < 0.01). Among those micro-
RNAs, only 6 were over-expressed in dysregulated samples. This
result indicated that in this particular dataset, differentially
expressed microRNAs are not likely to dysregulate the ceRNA
network because a reduced (but not depleted) level of microRNAs
helps to strengthen ceRNA interactions. Additionally, we compared
the set of differentially expressed microRNAs with the microRNAs
that had been predicted to mediate the dysregulated ceRNA
interactions (Supplementary Fig. 2b). Only approximately 2.3% of
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Figure 3 | Targeted dysregulation of the ceRNA network. (a) The dysregulated ceRNA network in high-risk prostate cancers with 5,185 dysregulated
ceRNA interactions. Node colors represent expression changes, and edge colors represent the significance of AMI. The node sizes of the 182 significantly
dysregulated genes are proportional to the number of dysregulated ceRNA interactions. The node sizes for the non-significant genes are set to a small
value to allow visual separation between significant and non-significant genes. (b, ¢ and d) Enrichment of genes displaying opposite expression
change in dysregulated ceRNA interactions for PTEN (b), CDC42 (c) and AKT3 (d). Only genes with significant expression change between high-risk and
low-risk cancer samples were considered (SAM q-value < 0.05). Numbers under arrows indicate the counts for upregulated (upward facing arrows,
magenta) and downregulated (downward facing arrows, turquoise) genes. (e) Expression changes of dysregulated genes display a strong correlation with
the enrichment of genes with opposite directions of expression change in their dysregulated ceRNA interactions. The size of each dysregulated gene is
proportional to its -log10(enrichment p-value). The dotted line represents the cutoff for significant enrichment (p-value = 0.01).
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Table 1 | Distribution of dysregulated ceRNA network signatures
Gain/loss of Ml indicates that the removal of a particular cluster
from the MI calculation increases/decreases the MI between
ceRNA interactions

Significantly
Consensus cluster dysregulated genes  Loss of Ml Gain of M
Cluster 1 (high-risk) 182 0 5185
Cluster 2 (low-risk) 20 0 162
Cluster 3 (low-risk) 7 0 22
Cluster 4 (medium-risk) 29 109 4

the dysregulated ceRNA interactions had more than 20% overlap
with the differentially expressed microRNAs. This small overlap
further supported the conclusion that differentially expressed
microRNAs are not responsible for the observed ceRNA network
dysregulation.

We next examined whether the 279 3"UTRs with significant APA
dynamics shared any microRNAs with the set of dysregulated
ceRNA interactions. The MREs in the extended 3'UTR regions of
the 279 genes were collected from computational predictions
(TargetScan®, PITA* and miRanda®). Overlaps between this set
of MREs and the MREs predicted to mediate dysregulated ceRNA
interactions were computed (Supplementary Fig. 2¢, 2d). Compared
to randomly selected ceRNA network interactions, the disrupted
interactions in high-risk prostate cancers displayed a significantly
higher number of total overlaps, as well as a strong bias toward a
larger number of overlapping MREs, further strengthening the idea
that 3"UTR dynamics could mediate the dysregulation of the ccRNA
network.

Dysregulated ceRNA interactions preferentially target genes with
opposite directions of expression change. Because the core function
of the ceRNA network is to regulate gene expression, we next
investigated the principles governing the observed dysregulations.
We first applied SAM to identify genes that were differentially
expressed between high-risk and low-risk cancers (g-value <
0.05). We then examined the PTEN ceRNA network in detail
because it is one of the most well-studied cancer genes. As
expected, PTEN was slightly downregulated in high-risk prostate
cancers (fold change = —0.40, SAM q-value = 0.12), which is
consistent with its known haploinsufficiency®. We then compared
differentially expressed genes that are directly connected with PTEN
in dysregulated and unchanged ceRNA interactions. While there are
larger numbers of downregulated genes in the unchanged ceRNA
interactions, there are twice as many genes upregulated in the
dysregulated interactions (Fig. 3b). Although the difference is not
significant (p-value = 0.24), the trend indicates that dysregulated
ceRNA interactions preferentially interrupt the regulatory relation-
ship between PTEN (downregulated) and upregulated genes. The
trends are much more obvious for CDC42 (Fig. 3¢c) and AKT3
(Fig. 3d). Both demonstrated significant enrichment of genes
having opposite trends in expression change in dysregulated
ceRNA interactions. To gain a systems-level insight, we analyzed
all 182 significantly dysregulated genes for such enrichment
(Fig. 3e). For 145 of the 182 dysregulated genes, significant (p-
value < 0.05) consistent enrichments were observed: if the gene is
up/downregulated, the dysregulated ceRNA interactions are en-
riched for down/upregulated genes. Re-sampling analysis indicated
that over 94% of SAM identified genes were consistently observed,
confirmed that the observed dysregulation principle is not due to
variations in differential expression detection. Twenty-six genes
showed a consistent (albeit not significant) trend similar to that of
PTEN. Only 11 of the 182 dysregulated genes exhibited the opposite
trend (four were significant) of dysregulated ceRNA interactions

enriched for genes with the same trend in expression change as the
dysregulated gene. However, none of the 11 dysregulated genes
displayed a significant change in expression (smallest SAM g-value
= 0.17), and the magnitudes of fold change were all close to zero,
suggesting that those anomalies are not representative.

We next investigated whether the enrichment of genes with
opposite expression change could contribute to the observed
expression change of the 182 significantly dysregulated genes. We
first examined the contribution by driving CNV to the observed
expression changes. Although there was a significant positive cor-
relation between CNV and expression change for the 182 dysregu-
lated genes, the correlation coefficient was smaller and less
significant than that of ceRNA dysregulation enrichment (0.49 vs.
—0.64, Supplementary Fig. 3). Moreover, multivariate linear regres-
sion analysis demonstrated that more than 60% of the explained
variance was due to ceRNA dysregulation enrichment (Supplement-
ary Fig. 4). This result clearly showed that for the 182 genes with
significant ceRNA dysregulation, their expression changes were
mostly due to preferential disruption of ceRNA interactions connect-
ing genes with opposite trends in expression changes. Overall, 84 of
the 182 dysregulated genes displayed significant expression changes
(SAM g-value < 0.05). The list can be further expanded with hap-
loinsufficient genes such as PTEN, indicating that ceRNA dysregula-
tion could have a significant impact on aberrant gene expression in
high-risk prostate cancers.

Discussion

In contrast to the well-studied signal transduction and transcription
regulatory networks, the properties and dynamics of the emerging
ceRNA network remain elusive. Recent studies have shown that
ceRNA network interactions are strongest when the interaction part-
ners are expressed near threshold level®, indicating that the under-
lying ceRNA network could be considerably dynamic. From the
perspective of the ceRNA network, gene expression levels reflect
the dynamic balance among the many ceRNA regulatory partners**.
In contrast to single gene-based disruptions such as upregulation of
TGFBR3 by HMGA2*, we showed, from a systems perspective, that
ceRNA-based aberrant oncogenic expression can also be achieved by
specifically removing genes with opposite trends in expression from
the ceRNA equation. Despite the presence of thousands of dysregu-
lated ceRNA interactions, we demonstrated that simple rules govern
such changes. These findings not only substantially enhance our
understanding of ceRNA networks but also could serve as inspira-
tions to reveal the rules governing the dynamics of other types of
biological networks.

Because 3'UTRs are the main entities containing MREs and are
thus the essential building blocks of the ceRNA network, the theory
that changes in 3"UTRs could influence the underlying ceRNA net-
work is logically grounded. However, given the enormous diversity in
3'UTRs and the large number of participating microRNAs, global
changes in 3'UTRs must be non-random to induce dysregulation of
the ceRNA network. Our analysis of 3'UTR shortening patterns as
well as the unusually high number of shared MREs between altered
3’UTRs and dysregulated ceRNA interactions support this hypo-
thesis. Although our analysis was constrained to only a subset of
all possible 3'UTRs due to the limited genomic coverage of exon
array probes, the presence of dysregulated ceRNA networks in
high-risk prostate cancers indicates that 3'UTR dynamics directly
influence the ceRNA network by modulating the pool of microRNAs
targeting dysregulated ceRNA interactions. The novel connection
between alternative splicing and ceRNA network dysregulation fur-
ther highlights the advantages of approaching tumorigenesis from a
systems perspective.

A key observation from our findings with important clinical impli-
cations is that significant ceRNA dysregulation is evident only in
high-risk prostate cancers; this finding may indicate that remarkable
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dynamic robustness exists in the ceRNA network. Such robustness is
partly due to the scale-free topology™ similar to that in many other
biological networks, and it could be further enhanced by the intrinsic
redundancy among ceRNA interactions. This observation suggests
that constraining ccRNA may be one of the more difficult barriers to
overcome during tumorigenesis, and as a late-stage event, its dysre-
gulation may serve as a novel biomarker for prognosis.

Methods

Generation of tandem 3" UTR dataset. To identify the set of transcripts with tandem
3"UTRs that could be analyzed with the Affymetrix Human Exon 1.0 ST Array, we
first queried the Ensembl database with the following filters: Transcript count >=2
and with Affymetrix Microarray huex 1.0 st v2 probeset IDs. We then used the UCSC
table browser to retrieve the 3"UTRs of the returned Ensembl Transcript IDs. For
each gene, the genomic coordinates of its 3"UTRs were compared, and tandem
3'UTRs were identified (3"UTRs with the same start position and different APA
sites).

We used a similar approach, as described previously, to identify probes that could
measure 3"UTR APA dynamics'>*. Briefly, the probes of the Affymetrix Human
Exon 1.0 ST Array were mapped to the hgl9 genome. Probes mapped to multiple
genomic locations were discarded. The number of uniquely mapped probes in each
tandem 3"UTR was examined. The set of tandem 3'UTRs with at least two probes
before and after APAs was kept for 3'UTR expression analysis, resulting in 7,059
tandem 3'UTRs.

Microarray Data. The raw Affymetrix Human Exon 1.0 ST Array data files were
obtained from the Gene Expression Omnibus (GEO) accession GSE21034. The
processed mRNA and microRNA expression data from the same study were
downloaded from the MSKCC Prostate Cancer Genomics Data Portal (http://cbio.
mskcc.org/prostate-portal/, Date of access: 10/10/2011). Gene level CNV data were
obtained from cBioPortal®”.

Exon array data analysis. The CEL files were processed with aroma.affymetrix*
using RMA background correction and quantile normalization. The processed probe
intensities were extracted from the intermediate CEL files to allow probe-level
analysis. The extracted probe intensities were first log2 transformed. We then applied
a similar approach to that outlined in PLATA'? to normalize the probe-level data.
Briefly, the probe intensities were first normalized to the median intensity of all
probes mapped to the transcript. The gene-level normalized probe intensities were
then mean centered to remove probe-specific effects.

Calculation of tandem 3'UTR APA expression changes. The cancer sample probe
intensities were first normalized to the median of the normal sample probe intensities
to create relative fold changes. We then modeled the tandem 3'"UTR APA dynamics
problem as a change point problem and utilized the R package BCP* to perform
Bayesian analysis of the change points. Briefly, the approach treated all samples for a
tandem 3"UTR as a multivariate series with a common change point, and an n
(number of probes for the 3"UTR) by m (number of samples) matrix was provided as
algorithm input. The position (probe) with the highest posterior change probability
was chosen as the change point. The probes were then partitioned into common and
extended groups using the identified change point. For each group, the median of the
posterior means of all probes was calculated, and the fold change in the expression
between the common and extended regions was calculated as the difference between
the two medians. Positive numbers indicated higher expression of common regions
(shortening), and negative numbers indicted higher expression of extended regions
(lengthening).

Tandem UTR expression data filtering. Several filtering steps were applied to
remove unreliably measured tandem 3"UTR expression changes. We first selected
tandem 3"UTRs with significant change points. The largest change point posterior
probabilities for all tested tandem 3"UTRs were collected. Assuming that the majority
of the detected changes were not significant, we estimated the mean and standard
deviation by fitting the data to a normal distribution. The z-score for each change
point according to the estimated normal distribution was then calculated. We then
applied a cutoff of z-score > 2 to select tandem 3'UTRs harboring significant
changes. Similarly, tandem 3'UTRs with a MAD z-score = 2 were excluded from
further analysis. We then examined the selected tandem 3"UTRs for multiple
significant change points. If such change points in a tandem 3"UTR were
discontinuous, the tandem 3’'UTR was excluded from further analysis because the
discontinuity represented complex splicing patterns and did not reflect simple 3"UTR
shortening or lengthening.

Clustering analysis. We utilized the Bioconductor package ConsensusClusterPlus®
to identify robust clusters. Hierarchical clustering was performed with Ward’s

minimum variance method and Euclidean distance. The procedure was run using the
279 filtered tandem 3'UTRs over 1000 iterations and with a sub-sampling ratio of 0.8.

Dysregulation analysis of ceRNA networks. The ceRNA network developed by
Sumazin et al.* was downloaded from the publication website. We used an approach
similar to the IDEA algorithm* developed by Mani et al. to analyze the perturbation

of the ceRNA network coupled with 3'UTR APA dynamics. Briefly, MIs between
ceRNA gene pairs were first calculated using all prostate cancer samples (MI,).
Samples for each subtype identified in the consensus clustering analysis were then
removed, and the MIs were recalculated (ML,;.). A positive AMI (ML - ML)
indicated that samples of subtype k weakened the underlying ceRNA interaction. We
then calculated the significance of AMI using the permutation approach outlined in
the IEAD method and applied a Bonferroni-corrected p-value of 0.01 to select
significantly altered ceRNA interactions. We further filtered the identified
interactions and retained only those with positive correlation because they
represented modulators with a strong sponge effect. Finally, Fisher’s exact test was
performed to select genes with a significant number of dysregulated ceRNA
interactions using a Bonferroni-corrected p-value of 0.01. The final dysregulated
network was filtered to only contain those genes that were directly connected to the
significant genes.

Differential expression and driving CNV analysis. We adopted the re-sampling
approach outlined in Multiple Survival Screening (MSS)*' to identify the set of genes
demonstrating robust differential expression. Briefly, the ratio of high-risk vs. low-
risk cancer samples was maintained and 1000 rounds of re-sampling were performed
with a sub-sampling ration of 0.8. For driving CNV analysis, we adopted the
definition established by Zaman et al.*>. Briefly, a driving CNV has a GISTIC score >
0.3, plus among top (for amplification) or bottom (for deletion) 50% of the expressed
genes.

Statistical and microRNA analysis of dysregulated ceRNA networks. Network
visualizations were produced with Cytoscape®. The pathway enrichment analysis was
performed with the NCBI DAVID tool**. For PubMed analysis, PubMed records were
retrieved using the keywords “prostate cancer” and the query gene’s official gene
symbol. For genes whose names matched regular English words (such as REST or
SET), the full gene names were used. Significance was assessed with 10,000
simulations using randomly selected genes. To calculate the significance of
overlapping microRNAs between dysregulated ceRNA network interactions and the
279 3'UTRs, a Chi-squared test was performed using the average overlapping data
from 10,000 random ceRNA networks as a reference distribution. All statistical
computations were performed in R.
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