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Abstract

Double-digest restriction site-associated DNA sequencing (ddRAD-Seq) enables high-throughput

genome-wide genotyping with next-generation sequencing technology. Consequently, this method

has become popular in plant genetics and breeding. Although computational in silico prediction of

restriction sites from the genome sequence is recognized as an effective approach for choosing the

restriction enzymes to be used, few reports have evaluated the in silico predictions in actual experi-

mental data. In this study, we designed and demonstrated a workflow for in silico and empirical

ddRAD-Seq analysis in tomato, as follows: (i) in silico prediction of optimum restriction enzymes

from the reference genome, (ii) verification of the prediction by actual ddRAD-Seq data of four restric-

tion enzyme combinations, (iii) establishment of a computational data processing pipeline for high-

confidence single nucleotide polymorphism (SNP) calling, and (iv) validation of SNP accuracy by

construction of genetic linkage maps. The quality of SNPs based on de novo assembly reference

of the ddRAD-Seq reads was comparable with that of SNPs obtained using the published reference

genome of tomato. Comparisons of SNP calls in diverse tomato lines revealed that SNP density in

the genome influenced the detectability of SNPs by ddRAD-Seq. In silico prediction prior to actual

analysis contributed to optimization of the experimental conditions for ddRAD-Seq, e.g. choices of

enzymes and plant materials. Following optimization, this ddRAD-Seq pipeline could help accelerate

genetics, genomics, and molecular breeding in both model and non-model plants, including crops.

Key words: genetic linkage map, restriction-associated DNA sequencing, single nucleotide polymorphism, tomato (Solanum
lycopersicum), in silico prediction

1. Introduction

DNAmarkers are essential tools for molecular genetics and genomics.
Simple sequence repeats (SSRs, also called microsatellites) and single
nucleotide polymorphisms (SNPs) are the most powerful and widely
used DNA markers. SSRs have the advantages of being both co-
dominant and multi-allelic in nature, but they require time-consuming
gel or capillary electrophoresis analyses. On the other hand, SNPs,
most of which are co-dominant but bi-allelic, can be analysed using
time-saving gel-free techniques, e.g. TaqMan assays,1 Kompetitive

Allele-Specific PCR (KASP; LGC, London, UK), and high-resolution
melting analysis (Idaho Technology, Salt Lake City, UT). Microarray-
based SNP chip technologies, e.g. GoldenGate and Infinium (Illumina,
San Diego, CA), and Axiom (Affymetrix, Santa Clara, CA), have en-
abled high-throughput SNP genotyping and thereby contributed to
statistical genetic approaches, e.g. quantitative trait locus analyses
and genome-wide association studies.2,3 However, SNP microarrays
have a disadvantage, namely, the lack of flexibility in experimental
design. Progress in next-generation sequencing (NGS) technology
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has enabled the development of huge numbers of SNPs in both model
and non-model plant species, including crops.4 Correspondingly, SNP
genotyping by NGS, e.g. genotyping by sequencing (GBS) and restric-
tion site-associated DNA sequencing (RAD-Seq), have recently be-
come popular due to their flexibility and relatively low cost.5

GBS was initially developed in maize6 and subsequently applied to
other crop species.7 In the original GBS protocol, genomic DNA is di-
gestedwith restriction enzymes, and adapters are ligated to the restriction
ends.6 Sequencing data of single-end reads are always obtained from sites
associatedwith the restriction ends, which is a great advantage in sequen-
cing of identical loci across multiple samples. The RAD-Seq method,8

which is similar to GBS, has been applied to several plant species.5,7 In
the original RAD-Seq protocol, genomic DNA is fragmented twice by
different methods: first by a restriction enzyme, and second by physical
shearing. The resultant DNA fragments, with restriction sites on one end
and sheared ends on the other, are targeted for single-end sequencing
analysis from the restriction ends. On the other hand, paired-end se-
quence reads can be more accurately mapped onto the reference genome
than single-end reads, especially in plants, which often have large and
complex polyploid genomes.9 Double-digest restriction site-associated
DNA-Seq (ddRAD-Seq), in which a second restriction enzyme is em-
ployed for digestion of genome DNA to reduce cost and time to prepare
the sequencing libraries, enables paired-end sequencing of identical loci
across multiple samples.10 Therefore, from the point of view of high ac-
curacy read mapping even in the complex plant genomes, ddRAD-Seq
technology has the advantage over GBS and RAD-Seq. Along with the
great advances in the sequencing technology, several data processing pi-
pelines forGBS andRAD-Seq have been reported.11,12However, asmen-
tioned, plants have complex genomes due to many types of ploidy,
reproduction systems as well as various genome sizes. Therefore, data
processing methods with flexibility in manipulation would be required.

Whole-genome sequencing (WGS) analysis of several plant species
has been accelerated by NGS technology; as of June 2015, genome se-
quence data are available from >100 plants.13 This situation makes it
possible to simulate ddRAD-Seq in silico, allowing prediction of the
numbers, sizes, and genome positions of digested fragments. Based
on in silico analysis, the optimal restriction enzymes for ddRAD-Seq
analyses are chosen.10 However, few reports have evaluated the in si-
lico predictions by comparative experiments using several combina-
tions of restriction enzymes and multiple samples with different SNP
density. Moreover, it remains unclear what fraction of the SNPs in the
whole genome can be detected by ddRAD-Seq. In this study, we per-
formed in silico simulation of ddRAD-Seq analysis in tomato (Sola-
num lycopersicum) and validated the predictions by empirical
ddRAD-Seq data using an optimized protocol. We selected tomato
for this demonstration because of the richness of available genome in-
formation14 and the diversity of available tomato lines.15 In addition,
we investigated the numbers of SNPs detected by ddRAD-Seq in six
inbred tomato lines with different densities of genome-wide SNPs.
To evaluate the quality of the SNPs, we performed linkage analyses
of the SNPs identified in an F2 mapping population and constructed
genetic linkage maps. Finally, we proposed an analytical workflow
for the ddRAD-Seq procedure including a pipeline for data processing.

2. Materials and methods

2.1. Processing data for whole-genome sequence

of tomato

Two tomato lines, Micro-Tom and Regina, were used as controls for
empirical and in silico ddRAD-Seq and establishment of computational
data processing pipelines. Published WGS data for Micro-Tom

(accession number of DRX020765: Illumina data)16 and Regina (acces-
sion numbers of DRX011585 and DRX011586: SOLiD data)15 were
used to generate a genome-wide SNP dataset. The WGS reads of the
two lines were treated to remove low-quality reads and to trim adapters
as described below (Computational processing for data from empirical
ddRAD-Seq analysis), and mapped onto the tomato (cultivar Heinz
1706) reference genome sequences, version SL2.50, with Bowtie2 (ver-
sion 2.2.3; parameters: -I 100 -X 500)17 and Bowtie (version 1.0; para-
meters: -l 15 -e 1,000),18 respectively. Subsequent SNP calling was also
performed as below (Computational processing for data from empirical
ddRAD-Seq analysis).

The genome sequence of tomato (SL2.50; https://www.sgn.cornell.
edu) as well as those of Arabidopsis thaliana (TAIR10; https://www.
arabidopsis.org), Lotus japonicus (build 3.0; http://www.kazusa.or.jp/
lotus), and Oryza sativa (Os-Nipponbare-Reference-IRGSP-1.0; http://
rapdb.dna.affrc.go.jp) were in silico treated with five restriction en-
zymes, e.g.EcoRI (recognition at site G↓AATTC),HindIII (A↓AGCTT),
MspI (C↓CGG), PstI (CTGCA↓G), and SalI (G↓TCGAC): the genome
sequence was digested into restriction fragments at the points of the rec-
ognition sites of the enzymes, and information on sizes of each fragment
was retained.

2.2. Plant materials

Six inbred tomato lines (Ailsa Craig, Micro-Tom,M82,Moneymaker,
Regina, and San Marzano) were used for ddRAD-Seq analysis. All
lines except for Regina were obtained from the National BioResource
Project through the University of Tsukuba, Japan (accession numbers:
Micro-Tom, TOMJPF00001; Moneymaker, TOMJPF00002; Ailsa
Craig, TOMJPF00004; and M82, TOMJPF00005) and the Tomato
Genetic Resource Center, University of California, Davis, USA (San
Marzano, LA3008). Regina was commercially available from Sakata
Seed Corporation (Yokohama, Japan). An F2 mapping population
RMF2, consisting of 96 lines, was derived from a cross between
Micro-Tom and Regina. Genomic DNAs were isolated from leaves
of each line using the DNeasy Plant Mini Kit (Qiagen, Hilden, Ger-
many), and quantitated using a Qubit fluorometer (Life Technologies,
Carlsbad, CA, USA).

2.3. ddRAD-Seq analysis

A total of 250 ng of genomic DNA for each line was double digested
with SalI and PstI, PstI and EcoRI, EcoRI and HindIII, or PstI and
MspI (FastDigest restriction enzymes; Thermo Fisher Scientific, Wal-
tham, MA, USA); ligated to adapters (Table 1) using the LigaFast
RapidDNALigation System (Promega,Madison,WI, USA); and puri-
fied using Agencourt AMPure XP (Beckman Coulter, Brea, CA, USA)
to eliminate short (<300 bp) DNA fragments. Purified DNA was di-
luted with H2O and amplified by PCR with indexed primers (Table 1
and Supplementary Table S1). The PCR mixture (50 µl) contained
0.4 ng of DNA, 0.2 µMof each indexed primer (one pair per mixture),
1× PCR buffer for KOD –plus– Ver. 2 (Toyobo, Osaka, Japan),
160 µM dNTPs, 1 mM MgSO4, and 1 U DNA polymerase (KOD –
plus–; Toyobo). Thermal cycling conditions were as follows: a 3 min
initial denaturation at 95°C; 20 cycles of 30 s of denaturation at 94°C,
30 s of annealing at 55°C, and a 60 s extension at 72°C; and a final
3 min extension at 72°C. Amplicons were pooled and separated on
a BluePippin 1.5% agarose cassette (Sage Science, Beverly, MA,
USA), and fragments of 300–900 bp were purified using the QIAGEN
Mini Elute Kit (Qiagen). Concentrations of the resultant libraries were
measured using the KAPA Library Quantification Kit (KAPA Biosys-
tems, Wilmington, MA, USA) on an ABI-7900HT real-time PCR
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system (Life Technologies). Nucleotide sequences of the libraries were
determined on a MiSeq (Illumina) in paired-end, 250 bp mode.

2.4. Computational processing for data from empirical

ddRAD-Seq analysis

In ddRAD-Seq data analysis as well as WGS ( Processing data for
whole-genome sequence of tomato), low-quality sequences were
removed and adapters were trimmed using PRINSEQ (-trim_right
1 -trim_qual_right 10 -min_len 100 -derep) and fastx_clipper
(-a AGATCGGAAGAGC -l 100 -M 10 -n) in FASTX-Toolkit (http://
hannonlab.cshl.edu/fastx_toolkit; version 0.10.1). The filtered reads,
or subsets of the reads randomly selected using seqtk (https://github.
com/lh3/seqtk), were mapped onto the reference sequences of either
contigs generated by assembly of the filtered reads using Newbler (ver-
sion 3.0; parameters: off for extend low depth overlap; Roche, Basel,
Switzerland) or the tomato genome sequence (SL2.50) using Bowtie 2
(version 2.1.0; parameters: --minins 100 --no-mixed).17 The resultant
sequence alignment/map format (SAM) files were converted to binary
sequence alignment/map format files and subjected to SNP calling
using the mpileup option of SAMtools (version 0.1.19; parameters:
-Duf)19 and the view option of BCFtools (parameters: -vcg). Lengths
of genome regions covered with more than one read at least were calcu-
lated with genomeCoverage option of BEDtools (version 2.17.0; para-
meters: -d).20 Furthermore, variant call format (VCF) files were filtered
with VCFtools (version 0.1.11; parameters: --minQ 10 --minDP 4
for the cultivars’ data, or --minQ 10 --minDP 4 --max-missing 0.2
--remove-indels for the RMF2 data).21 Missing data were imputed
using Beagle4.22 The locations of SNPs in genic and intergenic regions
were predicted using SnpEff (version 4.0e; parameters: -v SL2.50,
-no-downstream and -no-upstream),23 and those in repetitive sequences
and non-repetitive were classified in accordance with the annotation by
International Tomato Annotation Group (ITAG2.4_repeats.gff3 avail-
able from Sol Genomics Network; https://www.sgn.cornell.edu). Simi-
larity searches of marker-associated sequences against the SL2.50
tomato genome sequence were carried out using BlastN with default
parameters.24

2.5. Linkage analysis and construction of genetic

linkage maps

Linkage analysis was carried out with the imputed SNP dataset for
RMF2. The segregated data were classified into groups using the

grouping module of JoinMap425 with LOD scores of 3–6. The marker
order and relative map distances were calculated using the regression-
mapping algorithm with the following parameters: Haldane’s mapping
function, recombination frequency ≤0.35, and LOD score ≥2.0. The
graphical maps were drawn using the MapChart program.26

3. Results

3.1. Establishment of a genome-wide SNP dataset

WGS data for Micro-Tom16 and Regina15 were used to generate a
genome-wide SNP dataset by mapping the reads onto the tomato refer-
ence sequence, version SL2.50,14,27 as described inMaterials andMeth-
ods. Mapping rate and fraction of aligned regions of the SL2.50 were
97.9 and 99.2%, respectively, in Micro-Tom, while those were 61.1
and 98.8%, respectively, in Regina. A total of 1,187,941 high-quality
SNPs between the two lines were discovered by filtering with the follow-
ing parameters (Supplementary Table S2): SNP quality, >10, and depth
of coverage, ≥4. The SNP loci were unevenly distributed over the gen-
ome, with numbers ranging from 10,170 SNPs on chromosome 6
(chromosome length of 49.8 Mb in total) to 277,708 SNPs on chromo-
some 4 (66.5 Mb in total) (Supplementary Table S2). Only 13.5 and
39.1% of the 1,187,941 SNPs were found on genic regions and non-
repeat sequences (Supplementary Fig. S1 and Table S2), respectively,
both of which are biologically important sequences in the genome
(see Distribution of SNPs in genic/intergenic regions and repeat/non-
repeat sequences for details).

3.2. In silico restriction digestion to determine optimal

restriction enzymes

To identify the optimal restriction enzymes for experimental ddRAD-
Seq analysis, we performed in silico restriction digestion. For this ana-
lysis, we selected five enzymes (SalI, PstI, EcoRI, HindIII, and MspI)
with different frequencies of recognition sites in the tomato genome,
low in SalI and PstI, middle in EcoRI and HindIII, and high in MspI
(Fig. 1A). Four combinations of the enzymes (a combination of low
and low: SalI/PstI; low and middle: PstI/EcoRI; middle and middle:
EcoRI/HindIII; and middle and high: PstI/MspI) were used for in silico
digestion of the genome sequence. The numbers of fragments with
300–900 bases, our target for experimental ddRAD-Seq experiment,
covered the entire tomato genome evenly (Supplementary Fig. S2), but
varied from 5,082 for SalI/PstI to 65,104 for EcoRI/HindIII (Fig. 1B

Table 1. Sequences of oligonucleotides used in ddRAD-Seq

Names Sequence (5′ – 3′)

Restriction enzyme
PstI TCTTTCCCTACACGACGCTCTTCCGATCTGCA

GATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT
EcoRI CTGGAGTTCAGACGTGTGCTCTTCCGATCT

AATTAGATCGGAAGAGCACACGTCTGAACTCCAGTCAC
HindIII TCTTTCCCTACACGACGCTCTTCCGATCT

AGCTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT
SalI CTGGAGTTCAGACGTGTGCTCTTCCGATC

TCGAGATCGGAAGAGCACACGTCTGAACTCCAGTCAC
MspI CTGGAGTTCAGACGTGTGCTCTTCCGATCT

CGAGATCGGAAGAGCACACGTCTGAACTCCAGTCAC
Indexed primers for PCRa

Forward primer AATGATACGGCGACCACCGAGATCTACACXXXXXXXXACACTCTTTCCCTACACGACGCTCTTCC
Reverse primer CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTGACTGGAGTTCAGACGTGTGCTCTTC

aIndex bases are indicated by X, which sequences are listed in Supplementary Table S1.
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and Supplementary Fig. S2 and Table S2). The distributions of SNPs on
each chromosome corresponded to those obtained from WGS data,
although the total numbers of the SNPs decreased drastically, to only
3,553 (0.3%) for SalI/PstI and 47,768 (4.0%) for EcoRI/HindIII
(Supplementary Fig. S1 and Table S2). While proportions of SNPs on
genic regions to the detected SNPs were ranging from 16.3% (EcoRI/
HindIII) to 29.0% (PstI/EcoRI), those of SNPs in non-repeat sequences
to whole genome were from 26.7% (SalI/PstI) to 45.0% (PstI/EcoRI)
(Supplementary Fig. S1 and Table S2). The in silico analysis was applied
to other plant species, e.g.A. thaliana, L. japonicus, andO. sativa. The
result indicated that the tendencywas similar to those ofA. thaliana and
L. japonicus except for O. sativa in which number of PstI/MspI
fragments were predominant (Supplementary Fig. S3).

3.3. Establishment of data processing pipeline

for ddRAD-Seq

A data processing pipeline for SNP discovery was established using
actual MiSeq reads of Micro-Tom and Regina ddRAD-Seq libraries
generated using the PstI/MspI combination (PM libraries). Briefly, se-
quence reads were processed by removing low-quality reads and trim-
ming adapters, and then mapped onto the reference sequence to detect
SNP candidates (see Materials and Methods for details). When 1.9
and 2.2 M paired-reads for Micro-Tom and Regina, respectively,
were analysed using this pipeline, 1.2 and 1.4 M high-quality reads
were obtained, and 83,011 SNP candidates, including 20,689 homo-
zygous and 62,322 loci with genotypes called as ‘heterozygous’, were
detected prior to filtering. Because the two lines are inbred, the ‘hetero-
zygous’ SNPs were excluded because they were likely to reflect sequen-
cing or alignment errors. Of the 20,689 homozygous SNPs, 19,969
SNPs with quality values >10 were selected as high-confidence SNP
loci. Out of them, 15,746 SNPs (78.9%) were identical to those
from WGS data, whereas the remaining 4,223 SNPs (22.1%) were
not found due to sites of insufficient read coverage in the WGS data.

3.4. Experimental validation of SNP candidates

detected by in silico analysis

To validate the accuracy of the in silico predictions that the numbers of
SNPs detected in ddRAD-Seq would be depending on choice of

restriction enzymes, additional MiSeq reads were obtained from
Micro-Tom and Regina ddRAD-Seq libraries generated using three
more restriction enzyme combinations, SalI/PstI (SP), PstI/EcoRI
(PE), and EcoRI/HindIII (EH) as well as PM as above. After removal
of low-quality sequences and trimming of adapters, a subset of 100k
to 900k high-quality paired-end reads were generated for all four li-
braries. Each subset was mapped onto the reference genome sequence,
SL2.50, and high-quality SNP candidates were selected by filtering
using the criteria described above. As expected, the number of SNPs
in each dataset increased as the number of reads increased (Fig. 2A).
However, this tendency differed considerably among the enzyme com-
binations. The number of SNPs of PM increased linearly up to ∼8,000
when 900k reads were used, whereas that of EH gradually reached
∼20,000. In contrast, despite their higher numbers of reads, the PE
and SP libraries had far fewer SNPs: 4,000 for PE and <100 for SP.
As in the in silico prediction, the EH and PM libraries gave much
more SNPs than the PE and SP.

3.5. Distribution of SNPs in genic/intergenic regions

and repeat/non-repeat sequences

Since SNPs in genes and non-repetitive sequences are biologically
meaningful in comparison with those in intergenic and repetitive re-
gions. Not only proportions of genic and intergenic SNPs detected
in the empirical ddRAD-Seq but also those of unique and repeat se-
quences in the tomato genome were investigated. The result indicated
remarkable differences of the proportions among the restriction en-
zyme combinations (Fig. 3A). In the PE libraries, 70.1% of SNPs
were derived from genic regions. This rate is much higher than those
from the in silico prediction, which suggested that 29.0% of SNPs oc-
curred in genic regions (Supplementary Fig. S1). Furthermore, the PM
and SP libraries were enriched for genic SNPs. In contrast, the EH li-
brary had SNP frequencies comparable with those obtained from the
prediction. The proportions of the SNPs in the repeat/unique se-
quences were also markedly different among the libraries (Fig. 3B
and Supplementary Fig. S1): SNPs from the SP, PE, and PM libraries
were enriched in the unique sequences in comparison with the predic-
tion, while the proportion of the EH library was comparable with the
prediction.We concluded that the PMand PE libraries had advantages

Figure 1. Numbers of restriction sites and restriction fragments in the tomato genome (SL2.50). Bars indicate the numbers of restriction sites (A) and 300–900 bp

restriction fragments (B) predicted from the SL2.50 tomato genome sequence by in silico analysis.
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to detect SNPs in gene regions and non-repetitive sequences in the
tomato genome.

3.6. ddRAD-Seq in genetically diverse tomato lines

Micro-Tom and Regina show larger genetic distances to Heinz 1706 in
comparison with the other cultivated tomato lines.28 To assess the num-
bers of SNPs in genetically diverse samples, the six lines, i.e. Ailsa Craig,
M82, Moneymaker, and San Marzano as well as Micro-Tom and Re-
gina, were further analysed with ddRAD-Seq. The PstI/MspI combin-
ation was employed in accordance with the results of the validation
test, expecting to gain as many SNPs in genes and unique sequences of
the tomato genome as possible. The high-quality sequence data from the
six PM libraries were divided into subsets of 100k–900k paired-end
reads andmapped onto the reference genome. As expected, the numbers
of SNPs with respect to Heinz 1706 (SL2.50) detected by experimental
ddRAD-Seq in Regina and Micro-Tom increased linearly up to
∼25,000, whereas those in the other four cultivars reached 5,000 or
less (Fig. 2B), indicating that SNP density in the genome influenced the
detectability of SNPs by ddRAD-Seq. A graphical genotypes based on
the result from the ddRAD-Seq with 900k paired-end reads indicated
that the distribution of the SNPs was highly biased on the genome as re-
ported in our previous study (Supplementary Fig. S4).14 The SNP dens-
ities relative to SL2.40, a previous version of the tomato genome
sequence with the same base compositions to the SL2.50,27 were esti-
mated to be one SNP per 651 bp in Regina,15 803 bp in Micro-Tom,16

1,011 bp in M82,15 3,105 bp in Moneymaker,29 4,347 bp in San Mar-
zano,30 and 8,387 bp in Ailsa Craig.15 The percentages of SNPs detected
by ddRAD-Seq analysis per genome-wide SNPs by the WGS were al-
most even in these six lines: 2.0% genome-wide SNPs on average, ran-
ging from0.5% inM82 to 3.6% in SanMarzano, and proportion of the
SNPs in gene regions and repeat sequences from the six lines were similar
to those from a combination ofMicro-Tom and Regina (Fig. 3A and B).

3.7. ddRAD-Seq in an F2 mapping population

to construct genetic maps

Accuracy of SNP genotypes called from the ddRAD-Seq pipeline was
validated by construction of genetic linkage maps. Because miss-called

SNPs would be rejected from the maps, mapping rate of SNPs is an
indicator of the accuracy.

For the same reason as above to obtain as many SNPs as possible
from gene and non-repetitive regions, the PstI/MspI was selected as the
optimal enzyme combination for library construction for the F2
mapping population (n = 96), RMF2, derived from a cross between
Micro-Tom and Regina. Ninety-six libraries of RMF2 with index
tags distinguishing each line (Table 1 and Supplementary Table S1)
were pooled and sequenced on an IlluminaMiSeq, yielding an average
of 268k paired-end reads (=134 Mb, 0.14× genome coverage) per line.
After removal of low-quality sequences and trimming of adapters,
226k high-quality reads on average in each line were mapped onto
SL2.50 along with the reads from the parental lines. Mapping rates
of Micro-Tom and Regina were 94.3 and 92.9%, respectively, while
that in the F2 populationwas 91.0%on average. Of 155,992 SNP can-
didates between the parental lines, 60,512 loci with quality of≤10 and
depth of <4 were eliminated; furthermore, 89,241 ‘heterozygous’
SNPs, probably resulting from sequencing and/or alignment errors
as noted above, were also removed. Ultimately, 6,239 loci were se-
lected. By allowing 20% missing data for each SNP locus across the
96 F2 lines, 1,845 positions (depth of coverage of 13.5 on average)
of the 6,239 loci were selected as high-confidence segregating SNPs
in the F2 population. Prior to linkage analysis, the missing genotypes
were imputed in accordance with genotype data from the parental
lines. Subsequently, 528 genetic loci similar to others were eliminated.
Of the remaining 1,317 non-redundant SNP loci, 1,297 (98.5%) were
classified into 13 groups, each of which corresponded to one tomato
chromosome (with the exception of chromosome 10, which was repre-
sented by two groups). Linkage analysis generated a genetic map con-
sisting of 13 linkage groups, with 1,257 loci (95.4%) covering a total
of 1,693.2 cM (Table 2 and Fig. 4). The distributions of mapped loci
were biased both inter- and intra-chromosomally, reflecting the biases
in genome-wide SNP distributions. The order of the mapped loci were
consistent with their physical positions in SL2.50 (Fig. 4).

Next, we investigated the accuracy of SNP calling without a refer-
ence genome sequence. The experimental ddRAD-Seq reads of the par-
ental lines were assembled de novo into 44,764 contigs with a total
length of 12,443,360 bases, and the high-quality ddRAD-Seq reads

Figure 2. Number of SNPs detected from empirical ddRAD-Seq analysis. Line chart indicates numbers of SNPs between Micro-Tom and Regina with four

combinations of restriction enzymes (A) and SNPs of six cultivars with respect to SL2.50 using the PstI/MspI combination (B).
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for the parents and the 96 F2 lines were subsequently aligned onto the
contigs with mapping rates of 65.0% inMicro-Tom, 62.8% in Regina,
and 59.0% in the F2 population. The genome positions of the marker
loci on the tomato genome were determined by sequence similarity
searches against the SL2.50 sequences. Using the same filtering process
described above, a total of 1,017 high-confidence SNPs were selected
between the parents, and 781 were identified as non-redundant SNP
loci in RMF2. Linkage analysis of the 781 SNPs generated a genetic
map comprising 14 linkage groups (Table 2 and Fig. 4), each of
which corresponded to one tomato chromosome (except for chromo-
somes 10 and 11, which were represented by two groups apiece). The

resultant map consisted of 686 SNP loci (87.8%) covering a total of
1,691.8 cM, and the order of the loci were consistent with their physical
positions in the reference genome (Fig. 4). As for the SNPs identified on
SL2.50, the distributions of mapped loci were highly biased both be-
tween chromosomes and within individual chromosomes. The two
mapping studies indicated that the accuracy of SNPs from our ddRAD-
Seq pipeline was ∼90% or more.

4. Discussion

We propose an analytic workflow for the ddRAD-Seq procedure
(Fig. 5). During the establishment experimental and computational
data processing pipelines, we found that the prediction of SNP detect-
ability in ddRAD-Seq facilitated optimization of experimental condi-
tions, e.g. choices of enzymes and the density of SNPs in the genome.
Although all libraries contained the same amount of sequence data,
the numbers of SNPs detected by experimental ddRAD-Seq varied de-
pending on both the combination of restriction enzymes and the dens-
ity of SNPs in the genome (Fig. 2A and B). In silico prediction should
be also useful for optimizing experimental conditions in other plant
species for which reference genome sequences and sequencing data
are available. On the other hand, in plant species for which less gen-
omic information has accumulated, small-scale pilot experiments with
several combinations of restriction enzymes should be performed to
determine the optimal enzymes for ddRAD-Seq experiment.

Gene-associated SNPs located on non-repetitive sequences would
be biologically meaningful, being beneficial for functional genomics,
molecular genetics, andmarker-assisted selection in breeding. Interest-
ingly, the rate of gene SNPs detected by the empirical ddRAD-Seq was
higher than the predicted rate when PstI was employed for library con-
struction, e.g. PE, PM, and SP libraries (Fig. 3A, B and Supplementary
Fig. S1). Therefore, this point as well as the number of SNPs should be

Figure 3. Proportions of SNPs detected from empirical ddRAD-Seq analysis. SNPs from empirical ddRAD-Seq libraries are distributed in genic and intergenic

regions (A) and repeat and non-repeat sequences (B). Proportions of SNPs between Micro-Tom and Regina (MT vs REG) detected from WGS data is shown as a

control.

Table 2. Number of mapped loci and length of genetic linkage maps

Linkage
group

Reference-based map De novo map

#Mapped
loci

Map length
(cM)

#Mapped
loci

Map length
(cM)

1 151 230.1 86 253.6
2 58 120.9 32 60.6
3 126 176.7 66 177.8
4 240 203.3 139 199.0
5 85 98.7 38 103.0
6 25 26.6 13 28.1
7 212 176.4 99 169.4
8 25 94.1 11 107.6
9 70 145.5 44 174.6
10 68a 111.8a 43a 135.4a

11 93 147.7 50a 130.2a

12 104 161.3 65 152.5
Total 1,257 1,693.2 686 1,691.8

aThese numbers reflect the total values of divided linkage groups.
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Figure 4. Genetic linkage maps of RMF2, an F2 population derived from a cross between Micro-Tom and Regina. Bars on the left and right sides indicate linkage

group maps based on SNP loci detected in the tomato reference genome (red lines) and a de novo assembly of ddRAD-Seq data (blue lines). Bars between the two

maps indicate the physical map of the tomato genome. The density of SNPs detected using WGS data for the two cultivars is indicated by the darkness of green

lines. Loci that are identical between the genetic and physical maps are connected by lines.

Figure 5. The ddRAD-Seq analytical workflow based on empirical and in silico optimization.
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considered to select optimum restriction enzymes. It seems likely that
the strong enrichment of euchromatic genes in the libraries is corre-
lated to the methylation sensitivity of restriction enzymes.5 Whole-
genome bisulphite sequencing analysis would be helpful to verify
this hypothesis.

Genome complexity, i.e. ploidy and zygosity, is another important
factor that influences the choice of restriction enzymes. For inbred
lines and haploids without any heterozygous loci, SNP loci can in
principle be correctly genotyped with coverage of at least one high-
quality read. In such cases, to obtain as many SNPs as possible, a com-
bination of enzymes should be selected that yields SNP numbers that
increase linearly with the number of sequence reads (EH library in
Fig. 2A). In contrast, plants with highly heterozygous genomes, e.g.
hybrid and polyploid lines, require deep read coverage for accurate
SNP detection. Therefore, to distinguish homo- and heterozygous gen-
otypes (or, for polyploids, homologous and homoeologous geno-
types), an enzyme combination should be selected that yields a
gradually increasing number of SNPs (PE library in Fig. 2A).

Reference sequences are essential for SNP detection, but they re-
main unavailable for many plant species. In the absence of a reference
sequence, de novo assembly of actual ddRAD-Seq reads should be
used as a reference. To simulate this situation, we performed de
novo assembly of the ddRAD-Seq reads generated in this study. The
numbers of high-quality SNP loci, non-redundant segregated data,
and SNPs located on genetic maps based on the de novo assemblies
were ∼50% of those based on the SL2.50 reference (Table 2). How-
ever, the total lengths of the resultant genetic maps were almost iden-
tical, indicating that both genetic maps were saturated. These results
indicate that de novo assembly of the ddRAD-Seq reads is sufficient
to establish saturated genetic maps. Alternatively, considering recent
advances in NGS technologies, whole-genome sequence data from
close relatives of a target species might be available,13 and it is gener-
ally also possible to generate WGS of the target species itself.

The numbers of SNPs detected by ddRAD-Seq varied depending
on SNP density in the genome (Fig. 2B). In other words, SNP density
is a key factor influencing SNP detectability by ddRAD-Seq. Unfortu-
nately, a strong bias in distribution of SNPs over the genome was ob-
served between Micro-Tom and Regina (Fig. 4 and Table 2), the
resultant genetic map with large gaps failed to cover the entire gen-
ome. Therefore, either the in silico ddRAD-Seq analysis or small-scale
experiments with several combinations of restriction enzymes are re-
commended to predict SNP availability from actual large-scale
ddRAD-Seq analysis before generating mapping populations. How-
ever, if this is impossible, increasing the variety of sequencing libraries
is another possible way to increase the numbers of SNPs. For instance,
although 0.3% (SP) to 4.6% (EH) of SNPs in the genome were theor-
etically detectable using a single sequencing library, this fraction
reached a maximum of 7.6% when four libraries (SP, PE, EH, and
PM) were analysed simultaneously. For plants with ultra-low SNP
density in the genomes fromwhich few SNPs are expected, alternative-
ly, the SNP chip technologies and/or target capture or target amplicon
sequencing technology,31 which tags SNPs regardless of their dis-
tances from restriction sites, might be useful; however, this approach
would be more costly than ddRAD-Seq. Therefore, prediction of the
expected number of SNPs based on SNP density throughout the
genome would be helpful to maximize the efficiency of ddRAD-Seq
analysis.

In conclusion, the ddRAD-Seq technology has the potential to sim-
ultaneously genotype SNPs throughout the genome in multiple sam-
ples.5,6,8,10 The ddRAD-Seq analytical workflow and the pipeline
for the data processing developed in this study (Fig. 5), including the

empirical and in silico optimization processes, could be used to ad-
vance genetics, genomics, and molecular breeding in both model
and non-model plant species, including crops.

5. Availability

All sequence data obtained in this study are available from the DDBJ
Sequence Read Archive under accession number DRA003569 and Ka-
zusa Tomato Genomics DataBase (KaTomicsDB: http://www.kazusa.
or.jp/tomato).32
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