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Abstract

Purpose: Radiotherapy is a frequently applied treatment modality for brain tumors. Concomitant
irradiation of normal brain tissue can induce various physiological responses. The aim of this
study was to investigate whether acute and early-delayed effects of brain irradiation on glial
activation and brain metabolism can be detected with positron emission tomography (PET) and
whether these effects are correlated with behavioral changes.

Procedures: Rats underwent 0-, 10-, or 25-Gy whole-brain irradiation. At 3 and 31 days post
irradiation, 1-(2-chlorophenyl)-N-[''C]methyl-(1-methylpropyl)-3-isoquinoline carboxamide
(""C]PK11195) and 2-deoxy-2-['®Ffluoro-D-glucose (['®F]JFDG) PET scans were acquired to
detect changes in glial activation (neuroinflammation) and glucose metabolism, respectively.
The open-field test (OFT) was performed on days 6 and 27 to assess behavioral changes.
Results: Twenty-five-gray-irradiated rats showed higher [''CJPK11195 uptake in most brain regions
than controls on day 3 (striatum, hypothalamus, accumbens, septum p<0.05), although some brain
regions had lower uptake (cerebellum, parietal association/retrosplenial visual cortex, frontal association/
motor cortex, somatosensory cortex, p< 0.05). On day 31, several brain regions in 25-Gy-irradiated rats
still showed significantly higher ["'CJPK11195 uptake than controls and 10-Gy-irradiated group
(p<0.05). Within-group analysis showed that [''C]PK11195 uptake in individual brain regions of 25-
Gy treated rats remained stable or slightly increased between days 3 and 31. In contrast, a significant
reduction (p< 0.05) in tracer uptake between days 3 and 31 was found in all brain areas of controls and
10-Gy-irradiated animals. Moreover, 10-Gy treatment led to a significantly higher ['®F]FDG uptake on day
3 (p<0.05). ['®F]FDG uptake decreased between days 3 and 31 in all groups; no significant differences
between groups were observed anymore on day 31, except for increased uptake in the hypothalamus in
the 10-Gy group. The OFT did not show any significant differences between groups.

Conclusions: Non-invasive PET imaging indicated that brain irradiation induces neuroinflamma-
tion and a metabolic flare, without causing acute or early-delayed behavioral changes.
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Introduction

Cranial irradiation is a frequently applied treatment modality
for primary brain tumors and brain metastases, and as
prophylactic treatment to prevent brain metastases. Despite
its undisputed therapeutic importance, irradiation of normal
brain tissue can lead to complications [1—4]. Depending on
the time of onset, complications (intended as clinically
apparent and tissue reaction) can be classified into (i) acute
(days to weeks: sickness, nausea, vomiting, edema); (ii)
carly-delayed (1-4 months: neuroinflammation, transient
demyelination, somnolence, cognitive deficits); and (iii)
late-delayed (4—6 months to 1 year: neuroinflammation,
vascular abnormalities, demyelination, radiation necrosis,
irreversible cognitive decline) [3].

Neuroinflammation appears to be an important mecha-
nistic link in the cascade leading towards delayed compli-
cations [5—7]. Neurons damaged by ionizing radiation
release various chemokines, cytokines, and purine metabo-
lites that activate microglia [8]. Activated microglia in turn
secrete a panel of pro-inflammatory cytokines, which disrupt
neurogenic signaling and neurogenesis, meanwhile stimulat-
ing infiltration of T lymphocytes and peripheral monocytes/
macrophages [9] and inducing astrocyte activation, leading
to gliosis and glial scar formation [10]. Selective inhibition
of microglia-mediated neuroinflammation was shown to
alleviate radiation-induced cognitive impairment [11].

Another radiation-induced adverse effect is decreased
glucose metabolism. Radiotherapy was found to reduce the
glucose metabolic rate in long-term survivors of childhood
cancer [12, 13]. Indeed, radiation damage to normal cells
causes electrophysiological and biochemical alterations,
alterations in redox-sensitive processes, and direct mito-
chondrial damage resulting from the inflammatory response,
which can all decrease cellular metabolism. Metabolic
changes are likely to precede any anatomic changes like
atrophy or radionecrosis [14].

In recent years, there has been a growing awareness that
neuroimaging may be used to investigate early physiological
effects after radiotherapy, thus helping to clarify the
mechanisms underlying radiation induced-brain injury [15—
19]. Positron emission tomography (PET) offers the oppor-
tunity to noninvasively measure physiological processes like
neuroinflammation and glucose metabolism. Radiolabeled
ligands targeting the 18-kDa translocator protein (TSPO) are
tools to detect glial activation [20, 21]. TSPO expression is
increased in activated microglia, activated astrocytes,
infiltrating/perivascular macrophages, and T lymphocytes.
TSPO overexpression is considered an in vivo biomarker for

neuroinflammation and can be measured with 1-(2-
chlorophenyl)-N-[''C]methyl-(1-methylpropyl)-3-
isoquinoline carboxamide ([''C]PK11195). Brain glucose
metabolism can be assessed with 2—deoxy—2—[18F]ﬂu0r0—D—
glucose (['*F]FDG).

The aim of this study was to investigate the dose
dependency of brain irradiation on acute and early-delayed
glial cell activation (neuroinflammation) and changes in
cerebral glucose metabolism using PET imaging. Since such
molecular changes could culminate into behavioral abnor-
malities, our secondary aim was to assess whether our
molecular imaging findings could be linked to behavioral
changes assessed by the open-field test (OFT).

Materials and Methods

Experimental Animals

Male Wistar—Unilever rats (weight 300 =20 g; Harlan) were
housed in groups of 2—4 in Makrolon cages with a layer of
wood shavings in a room with constant temperature (21 +
2 °C) and fixed 12-h light-dark regime. Standard laboratory
chow (RMH-B, Hope Farms) and water were available ad
libitum. After 7 days of acclimatization and 3 days of
handling, the whole brain was irradiated with an X-RAD
320 apparatus (Precision X-Ray Inc.), using a homemade
collimator (see Electronic Supplementary Materials).

Study Design

Rats were randomly divided into 3 groups: (1) sham-irradiated
controls (CTRL, n = 8); (2) irradiated with 10 Gy (10 Gy, n=
8); and (3) irradiated with 25 Gy (25 Gy, n=_8) of X-rays
(Fig. 1). All animals underwent [''C]PK 11195 and ['*F]JFDG
PET scans on days 3 and 31. After the last PET scan, rats were
sacrificed. Behavioral tests (OFT) were performed on days 6
and 27. The study was approved by the Animal Ethics
Committee of the University of Groningen (DEC 6158A).

PET Procedures

The [''C]PK11195 and ['®*F] FDG PET scans were
performed on the same day for the two investigated time
points (days 3 and 31 post irradiation). Rats were anesthe-
tized with isoflurane (5 % induction, 1.5-2 % maintenance).
In the morning, [''C]PK11195 was injected via the penile
vein (32+20 MBq), and rats were allowed to wake up in
their cage. After 40 min, rats were anesthetized again and
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Fig. 1. Study design.

positioned in a prone position in the PET camera (microPET
Focus 220; Siemens Medical Solutions) with the brain in the
field of view. Eye-salve was applied, body temperature was
maintained with heating pads, and oxygen saturation was
monitored. A 30-min emission scan was started 45 min after
tracer injection, followed by a 5-min transmission scan with
a Co-57 point source for attenuation and scatter correction.
At least 2 h after completion of the [''C]JPK11195 scan,
['*FJFDG was intraperitoneally injected in awake rats (20 +
8 MBq) to allow tracer distribution to the brain while the
animal is active, according to the standard procedure in our
department [22, 23, 24, 25]. A ['®*F]JFDG PET scan was
acquired as described above for [''C]JPK11195 PET. The

Open Field Test

remaining radioactivity derived from [''C]JPK11195 was
negligible (> 12 half-lives; <0.02 %) at the time of the
["®F]FDG PET scan.

Scans were iteratively reconstructed (OSEM2D, 4 itera-
tions, and 16 subsets) into a single frame of 30 min and
corrected for attenuation, scatter, random coincidences, and
radioactive decay. The images had a matrix of 128 x 128 x
95 mm, 0.475-mm pixel width, and 0.796-mm slice thickness
and were analyzed using PMOD-3.8 software (PMOD Tech-
nologies Ltd). The scans were automatically registered to
tracer-specific PET templates [26]. Volumes of interest (VOIs)
were constructed for several previously defined brain regions
[26]. The radioactivity concentration was calculated for each
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Fig. 2. Effects of whole-brain irradiation on body weight. Both 10-Gy and 25-Gy irradiation caused a significant (o <0.001)

reduction in body weight (n =8 rats per group).
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Fig. 3. aWhole-brain [''C]PK11195 uptake, expressed as % injected dose/gram, on days 3 and 31 after sham (n = 7 and n = 8), 10-Gy
(n=6and n =8), or 25-Gy (n = 8 and n = 7) whole-brain irradiation. b Whole-brain ['®F]FDG uptake, expressed as % injected dose/gram
(mean + SD), on days 3 and 31 after sham (n =7 and n =8), 10-Gy (n =8 and n = 8), or 25-Gy (n = 8 and n = 8) whole-brain irradiation.

VOI and converted into percentage of injected dose/gram
(%ID/g), which are defined as follows: (radioactivity concen-
tration in tissue [Bq/cm3] % 100%)/(injected dose [Bq]). All
data presented was obtained from image analysis; no ex vivo
biodistribution was performed.

Behavioral Study

The open-field test (OFT) was performed during the light
phase. The rat was placed in the center of an ellipsoid arena
(126 x 88 cm) and allowed to explore for 5 min. Animal
behavior was recorded on video. The videos were analyzed
with EthoVision XT9 software (Noldus Information Technol-
ogy, Wageningen) and total distance moved was analyzed.

Statistical Analysis

All data is presented as mean + standard deviation.
Statistical analysis was performed using IBM SPSS Statis-
tics-23. Between-group comparisons were used to detect the
effect of whole-brain irradiation on body weight,
["'C]PK11195 uptake, ['*F]JFDG uptake, and behavior for

individual time points. Within-group comparisons were used
to assess time-dependent changes in the above-mentioned
parameters. Between-group and within-group differences
were analyzed using the generalized estimated equation
model using the pairwise comparison option. A p value <
0.05 was considered statistically significant.

Results

Body weight

Body weight was measured daily to assess the effect of brain
irradiation (Fig. 2). Statistically significant (p <0.001)
effects were observed for the factors “time” and “group.”
Irradiation with either 10 Gy or 25 Gy of X-rays caused a
significant reduction in body weight as compared with
controls (p <0.001). Both control and 10 Gy rats showed a
gradual increase in body weight throughout the experiment.
In contrast, rats receiving 25 Gy showed a continuous
weight loss during the first 10 days (—22.8 % compared
with day 0) and a subsequent weight gain, without reaching
the body weight of the control and 10 Gy group.
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Table 1. [''C]PK 11195 uptake, expressed as % injected dose/gram (mean + SD), in different rat brain regions, at different irradiation dose, at 3 and 31 days

after whole-brain (sham-)irradiation

Time point = Day 3 Day 31

Group—> CTRL (n=7) 10 Gy (n=6) 25 Gy (n=8) CTRL (n=8) 10Gy (n=8) 25Gy (n=7)
Whole brain 0.17 £ 0.02 0.16 = 0.02 0.16%0.02 0.13+0.02" 0.13+0.027 0.16+0.03*"
Cerebellum 0.22 £ 0.03 0.20 £ 0.03 0.18+0.03* 0.18 £0.03* 0.17£0.03* 0.18+0.03
Frontal association and motor cortex 0.24 + 0.05 0.19 £0.03 * 0.19+0.03* 0.18 +0.04% 0.16+0.03* 0.214+0.04"
Somatosensory cortex 0.19 £ 0.03 0.17 £ 0.03 0.16+0.02* 0.14+0.03" 0.14+0.027 0.17+0.03*%"
Parietal asso. + retrosplenial + visual cortex 0.22 + 0.04 0.20 £ 0.03 0.19+0.03* 0.19+0.04* 0.17+0.03" 0.20+0.03"
Striatum 0.11 £ 0.02 0.13 = 0.02 0.1440.01* 0.09 +0.02" 0.10+0.01% 0.14+0.03*"
Thalamus 0.12 + 0.02 0.13 £ 0.02 0.1440.02 0.11+0.02* 0.11+0.01% 0.14+0.03*"
Hypothalamus 0.13 + 0.02 0.14 + 0.02 0.15+0.02* 0.11+0.02" 0.10+0.01% 0.15+0.03*"
Hippocampus 0.13 + 0.02 0.13 + 0.02 0.14+0.01 0.11+0.02" 0.11+0.01% 0.14+0.02%"
Brainstem 0.16 + 0.02 0.17 + 0.02 0.16+0.02 0.13£0.02" 0.13+0.01% 0.18 £0.05*"
Midbrain 0.13 £ 0.02 0.14 + 0.02 0.14+0.02 0.11+0.02% 0.11+0.01% 0.15+0.04*"
Cingulate 0.15 + 0.03 0.14 + 0.03 0.16+0.03 0.13+0.02" 0.11+0.02% 0.16+0.02%"
Accumbens 0.12 + 0.02 0.13 + 0.02 0.14+0.02* 0.09+0.01% 0.10+0.01% 0.14+0.03*"
Prefrontal + orbital cortex 0.16 + 0.02 0.16 + 0.03 0.16+0.02 0.12+0.02# 0.12+0.02% 0.15+0.02%"
Septum 0.12 + 0.02 0.15+0.01*  0.17+0.02*~  0.11+£0.02" 0.11+0.01% 0.16+0.02*"
Insula 0.16 £ 0.03 0.14 £ 0.03 0.16+0.02 0.12+0.02* 0.12+0.02% 0.14+0.03*"
Auditory + temporal asso. cortex 0.17 + 0.02 0.16 + 0.03 0.17+0.02 0.12+0.02" 0.13+0.01% 0.15+0.03%"#
Amygdala 0.16 + 0.02 0.16 + 0.03 0.16+0.02 0.12+0.02" 0.12+0.01% 0.16+0.05*
Entorhinal olfactory 0.17 + 0.03 0.17 + 0.02 0.17+0.02 0.13 +0.02* 0.16+0.01% 0.16+0.05

Statistically significant difference between groups at the same time point: *»<0.05 25 Gy or 10 Gy vs CTRL; "p<0.05 25 Gy vs 10 Gy
Statistically significant reduction between time points: “p <0.05 day 3 vs day 31

["'C]PK11195 PET

A total of 8 rats per group were used, but not all were included in
the [''CJPK 11195 analysis because of tracer injection failure. As
such, one control rat and two rats irradiated with 10 Gy were
excluded for the analysis of day 3, and one rat irradiated with
25 Gy for the analysis of day 31.

As shown in Fig. 3a, whole-brain [''C]PK11195 uptake
on day 3 was comparable in all groups (10 Gy, 0.16+0.02

%ID/g; 25 Gy, 0.16 £0.02 %ID/g; CTRL, 0.17+0.02 %ID/
g). Whole-brain [''C]PK 11195 uptake in the 25 Gy group
did not significantly change between days 3 and 31 (+
1.5 %, p=0.84), whereas whole-brain uptake in controls
(— 21.2 %; p<0.001) and the 10 Gy group (—19.7 %; p <
0.001) significantly decreased in this period. Consequently,
a significant difference in [''C]JPK11195 uptake was
observed on day 31 between the 25 Gy group (0.16+0.03
%ID/g) and the 10 Gy group (0.13+0.016 %ID/g; p=

Table 2 ['®F]FDG uptake, expressed as % injected dose/g (mean = SD), in different rat brain regions, at different irradiation dose, at 3 and 31 days after

whole-brain (sham-)irradiation

Time point = Day 3 Day 31

Group 2 CTRL (n=7) 10 Gy (n=8) 25Gy m=8) CTRL n=8) 10Gy n=8) 25 Gy (n=8)
Whole brain 0.91 +0.21 1.16 £ 0.21* 1.08 022  0.68+0.20" 0.79+0.16" 0.73+0.19%
Cerebellum 0.76 = 0.18 1.00 + 0.18* 0.92+0.19  0.58+0.16" 0.71+0.13" 0.61+0.15"
Frontal association and motor cortex 0.79 + 0.19 0.98 + 0.18* 091 +0.17  0.59+0.18" 0.66+0.13" 0.60+0.16"
Somatosensory cortex 0.88 + 0.20 1.11 £ 0.19% 1.05+021  0.66+0.18" 0.73+0.15" 0.70+0.20"
Parietal asso. + retrosplenial + visual cortex 0.82 +0.19 1.04 +0.18* 098 +0.19  0.58+0. 81" 0.69+0.13" 0.61+0.15"
Striatum 1.10 £ 0.22 1.39 + 0.26* 1274026  0.81+0.26" 0.94+0.20" 0.88+0.25%
Thalamus 1.03 £ 0.23 1.35 + 0.26* 1.24+027  0.76+0.25" 0.92+0.21% 0.84 +0.24%
Hypothalamus 0.80 + 0.19 1.05 + 0.22% 098 +021  0.58+0.20" 0.75+0.15"*  0.64+0.16"
Hippocampus 1.01 £0.23 1.27 £ 0.24% 1.19£025  0.75+0.24" 0.87+0.19" 0.80+0.21%
Brainstem 0.82 +0.22 1.08 + 0.22% 0.99+0.19  0.64+0.16" 0.77+0.15" 0.66+0.16"
Midbrain 0.96 + 0.24 1.28 + 0.25* 1.18 024  0.72+0.24" 0.88+0.19" 0.80+0.20%
Cingulate 1.10 £ 0.26 1.35 + 0.24* 129+ 024  0.81+0.26" 0.91+0.19" 0.82+0.22%
Accumbens 1.08 + 0.24 1.37 + 0.25% 1264028  0.79+0.26" 0.92+0.19" 0.86 +0.23"
Prefrontal + orbital cortex 1.15+ 026 1.44 + 0.24% 1344027 087+0.27" 0.95+0.20" 0.93+0.24"
Septum 0.99 + 0.22 1.26 + 0.24* 1.17£025  0.70+0.24" 0.85+0.18" 0.78 +0.23%
Insula 0.94 + 0.21 1.18 + 0.19* 1.12+024  0.74+0.20" 0.77 £0.16" 0.84+0.27"
Auditory + temporal asso. cortex 0.87 + 0.20 1.13 +0.21* 1.03+021  0.67+0.17" 0.76+0.17" 0.74+0.23%
Amygdala 0.87 £ 0.19 1.12 + 0.21* 1.04+022  0.66+0.20" 0.74+0.15" 0.70 +0.19"
Entorhinal olfactory 0.90 + 0.20 1.15 + 0.20% 1.08+022  0.67+0.20% 0.77 +0.16" 0.72+0.18*

Statistically significant difference between groups at the same time point: *» <0.05 25 Gy or 10 Gy vs CTRL

Statistically significant reduction between time points: “p <0.05 day 3 vs day 31
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0.008) and between the 25 Gy group and controls (0.13 +
0.021 %ID/g; p=0.025).

Individual brain regions showed in general similar trends
in ["'C]PK11195 uptake as whole brain, with some
exceptions (Table 1). On day 3, for example, in contrast to
the whole-brain value, a significant reduction in
["'CJPK 11195 uptake compared with controls was observed
in frontal association and motor cortex in the 10 Gy group.
Meanwhile, in the 25 Gy group, significant reductions were
found in the cerebellum, frontal association, motor, somato-
sensory, parietal association, and retrosplenial and visual
cortex compared with controls. In contrast, a significant
increase [''CJPK11195 uptake compared with controls was
observed in the septum in the 10 Gy group and in the
striatum, hypothalamus, accumbens, and septum in the
25 Gy group. Within-group analysis revealed a significant
reduction in [''C]PK11195 uptake in all individual brain
regions in the control and 10 Gy group between days 3 and
31, except for septum in controls. In contrast, the 25 Gy
group only showed a significant reduction in tracer uptake in
the insula and auditory and temporal association cortex.
Consequently, no significant differences in any brain region
between the control and 10 Gy group were observed on day
31. In contrast, on day 31, the 25 Gy group showed a
significantly higher [''C]PK11195 uptake in all individual
brain regions than controls, with the exception of the
cerebellum, entorhinal olfactory, frontal association, and
motor cortex. On day 31, [''C]JPK11195 uptake in all brain
regions in the 25 Gy group was also significantly higher than
in the 10 Gy group, except for the cerebellum, insula,
amygdala, and entorhinal olfactory.

["*FJFDG PET

A total of 8 rats per group were used, but not all were
included in the ['"®F]JFDG analysis because of tracer injection
failure. As such, one control rat was excluded for the
analysis of day 3.

As shown in Fig. 3b, whole-brain ['*F]JFDG uptake on
day 3 was significantly higher in rats irradiated with 10 Gy
(1.16 £0.21 %ID/g, p=0.011) than in controls (0.91+0.21
%ID/g). Tracer uptake in the 25 Gy group (1.08 +0.22 %ID/
g) on day 3 was also higher than in controls, but this
difference was not statistically significant (p =0.091). In all
groups, whole-brain tracer uptake significantly decreased
between day 3 and 31 (intragroup: 10 Gy, —32.1 %, p<
0.001; 25 Gy, —32.8 %, p<0.001; CTRL, —25.2 %, p=
0.011). In general, all individual brain regions showed
similar ['"®FJFDG uptake changes as shown for the whole
brain (Table 2). In particular, all brain regions in the 10 Gy
group showed significantly higher ['*F] FDG uptake than
controls on day 3, whereas none of the brain regions in the
25 Gy group showed any significant difference in tracer
uptake as compared with controls. On day 31, none of the
individual brain regions showed any significant difference in
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["®F]FDG uptake between groups, except for the hypothal-
amus in the 10 Gy group, which showed significantly higher
["®F]FDG uptake than controls.

Behavioral Assessment

In the open-field test on day 6, no significant differences in
total distance moved were observed between groups (Fig. 4).
Animals from all groups moved significantly less on day 27
than on day 6 (control, —45 %, p<0.001; 10 Gy, —43 %,
p=0.021; 25 Gy, —45 %, p=0.045), but no significant
differences between experimental groups were observed.

Discussion

The primary aim of this study was to investigate the acute
and early-delayed, dose-dependent effects of brain irradia-
tion on glial cell activation and cerebral glucose metabolism.
We observed that whole-brain irradiation in healthy rats
caused a dose-dependent reduction in body weight; a
transient metabolic flair in the brain, especially in the
10Gy group; and a delayed neuroinflammatory response, in
particular in the high-dose group.

The radiolabeled TSPO ligand [''C]PK11195 was se-
lected as in vivo brain inflammation marker [22, 27],
because TSPO expression is increased in activated microg-
lia/astrocytes, infiltrating/perivascular macrophages/lympho-
cytes, and infiltrating neutrophils in response to
neuroinflammatory stimuli. Radiotherapy can induce dam-
age to the brain, and stress signals from damaged cells can

Behavioral test

Open Field Test
N Groups
4.000 - 2 : [] CTRL
: * | [ 10Gy
3.500 M 25Gy
| 1
3.000 1
2.500 4 [

2000 J T

1.500

1.000 J

500 -

Total distance moved (cm)

0 T T

Day 6 Day 27
Error Bars: +/- 1 SD

Day Post Irradiation
* = p<0.05; *** = p<0.001
Fig. 4. Open-field test, showing no significant differences
between the experimental groups, but a significant difference
between the two time points (control group, p <0.001; 10 Gy
group, p =0.021; 25 Gy group p =0.045; n = 8).
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trigger the activation of glial cells, which is accompanied by
an increase in TSPO expression. Moreover, radiotherapy can
induce the production of reactive oxygen species (ROS).
TSPO is known to form polymers in the presence of ROS
and these polymers bind [''C]PK 11195 with higher affinity
than the monomer [28]. For these reasons, we expected
cranial irradiation to increase [''C]JPK11195 binding in the
brain. Although whole-brain [''CJPK11195 uptake in the
acute phase was not significantly different between groups,
to our surprise, whole-brain irradiation caused an acute,
transient decrease in [''C]JPK11195 accumulation in the
cerebellum and several cortical regions in the 25 Gy group.
It is known that, under normal physiological conditions, low
levels of TSPO expression can be detected in glial cells, but
also in other cells in the brain, such as cerebrovascular/
endothelial cells, and smooth muscle cells [29, 30]. The
TSPO-expressing cells in the brain can be damaged by high
doses of radiation and go into apoptosis. A possible
explanation for the acute reduction in the [''C]JPK11195
signal in these brain regions early after irradiation could
therefore be a temporary reduction in the number of glial
and/or endothelial cells due to radiation-induced cell death
[31-34]. This result is in agreement with a flow cytometry
study in mice that demonstrated that the number of CD11b-
expressing microglia was significantly reduced 7 and 14 days
after cranial radiation (10Gy), but had recovered to control
levels on day 28 [33]. Besides brain regions with reduced
[''C]PK 11195 uptake, the 25 Gy group also has regions in
the brain with increased tracer uptake on day 3. The regions
with increased tracer uptake are more centrally located than
the regions with reduced tracer uptake. So, an alternative
explanation for our [''C]PK11195 PET findings on day 3
could be glial cells migrating from cortical brain regions to
the midbrain in response to 25-Gy irradiation.

On day 31, our study showed that [''C]PK 11195 uptake
was significantly higher in almost all brain regions in the 25-
Gy-irradiated animals than in controls, with the exception of
the cerebellum and some cortical areas. Interestingly, these
exceptions were the brain regions that had shown reduced
tracer uptake on day 3. These data suggest a delayed
activation of glial cells in most brain regions and a
normalization of the concentration of glial cells in regions
that were depleted of TSPO-expressing cells on day 3 after
the acute phase.

In contrast to the 25-Gy group, rats that were irradiated
with 10 Gy had [''CJPK11195 uptake similar to that in
controls in almost all regions, both on days 3 and 31.
Apparently, the lower irradiation dose is not sufficient to
induce any detectable glial activation. Dose-dependent
differences in the severity of the radiation-induced tissue
damage also seem to be reflected in the effect of brain
irradiation on body weight, as the high 25-Gy dose caused
significant weight loss (Fig. 1), whereas the lower 10-Gy
dose had a much smaller effect on body weight. Similar
effects of cranial irradiation on rodent body weight have
previously been reported [35, 36].
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Noteworthy, the decline in [''C]PK11195 uptake be-
tween days 3 and 31 in control and 10 Gy treated could be
pointing to a combination of repeated animal handling and
stress induced to them in a short time due to the
experimental procedures, i.e., pre-whole-brain (sham-)irradi-
ation anesthesia by intraperitoneal injection, (sham-)irradia-
tion procedures (rats hanging by upper incisors for about
18 min), the slow recovery from anesthesia, and transport to
the PET center, as well the xylazine/ketamine administration
for the irradiation procedure. Indeed, a single administration
of ketamine increased the protein levels of IL-6, IL-1, and
TNF-a, in mice brain 6 h post intraperitoneal injection [37].

Taken together, all the procedures before the first PET
scan could stress the animals resulting in a microglia
imprinting that leads to some inflammatory response in the
brain that gradually disappeared, or was not detectable
anymore on day 31, in healthy and 10-Gy irradiated animals.
This is also in line with the higher ["*F]FDG value found on
day 3 vs 31, where the inflammatory response could increase
["®F]FDG uptake on day 3 [38]. That this decline was not
observed in the rats irradiated with 25Gy might be related to
an inflammatory response to the irradiation, resulting in
increased [''CJPK11195 uptake compensating the decline
observed in the control and 10-Gy-treated group.

Whole-brain irradiation increased brain glucose metabo-
lism on day 3. This could be ascribed to an early adaptive
response of the brain to meet the energy demand for repair
of radiation-induced tissue damage [39] or induction of
GLUTI! transporter expression [40]. Remarkably, the effect
of cranial irradiation on glucose metabolism was more
pronounced in the 10-Gy group than in the 25-Gy group.
This difference in metabolic response might be explained by
the extent of damage induced by the treatment [41].
Radiation induces a peak in apoptosis 6 h after irradiation,
and apoptosis continues for another 24—48 h, while radiation
also can increase cell proliferation between 1 and 7 days
after irradiation [42, 43]. It seems plausible that the impact
of apoptosis is more important in the 25-Gy group than in
the 10-Gy group, resulting in a smaller net energy demand
for repair and thus a smaller increase in glucose metabolism
in the high-dose group. Between days 3 and 31, cerebral
['"®F]FDG uptake in all groups decreased. This reduction in
cerebral glucose metabolism may be due to a general
reduction in activity of the rats upon aging. This is in line
with our findings of reduced mobility in the OFT.

The PET data suggest that whole-brain irradiation causes
a transient “flare” response of glucose metabolism, in
combination with delayed activation of glial cells in the
brain. These physiological effects, however, did not seem to
be associated with behavioral changes as assessed by the
OFT. The OFT tests did not show any significant radiation-
induced behavioral differences between control and irradi-
ated animals. So, either the functional changes observed by
PET are too subtle to induce behavioral changes, or the
statistical power of the experiment was insufficient to reveal
the subtle behavioral changes. In general, inter-individual
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variability in behavioral studies is larger than that in PET
studies. Consequently, a larger group size would be required
for behavioral tests. Other studies, however, have shown late
behavioral changes after cranial irradiation [44, 45]. It is
possible that other types of behavioral changes (e.g.,
impairment cognition) were induced than could be detected
in the OFT. Therefore, future research should aim to
correlate PET imaging with late behavioral changes, in
particular with more appropriate behavioral tests, like
memory tests such as Y-maze, Morrison maze, or novel
object/spatial recognition tests. The OFT in this study did
show a reduction in locomotion between days 6 and 27 in all
groups, but no differences between groups. The reduction in
exploratory behavior between both time points could be
ascribed to recognition of the arena in the repeated test.
Moreover, animals tend to move less when they get older.
The latter explanation is in line with the general reduction in
glucose metabolism in all groups observed by ["*FIFDG
PET, suggesting a general reduction in activity.

A limitation of our study is that imaging findings were
not confirmed by ex vivo histology or immunohistochemis-
try, due to the longitudinal study design. Another limitation
is the lack of cell-type (e.g., microglia, macrophage,
astrocyte) and phenotype specificity (M1, M2) of
["'CJPK11195 PET. Attempts to develop more specific
tracers are in progress. Finally, the sample size in this study
may have been too small to reveal statistically significant
behavioral changes, and the open-field behavioral test may
not have been suitable to demonstrate radiation-induced
cognitive impairment.

Conclusion

Taken together, this study has demonstrated dose-dependent
acute and early-delayed changes in cerebral physiology after
radiotherapy. PET proved an adequate method to monitor
these changes in a longitudinal manner, as non-invasive PET
imaging revealed that whole-brain irradiation of healthy rats
induces a transient metabolic flare and delayed neuroinflam-
mation (glial activation), without causing acute or early-
delayed behavioral changes. Additional studies, using
different (fractionated) dosing schemes, are required to
evaluate the impact of the observed physiological changes
on the development of late-delayed clinical complications
and the mechanisms that are involved in this process.
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