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In a gesture recognition system based on surface electromyogram (sEMG) signals,

the recognition model established by existing users cannot directly generalize to the

across-user scenarios due to the individual variability of sEMG signals. In this article,

we propose an adaptive learning method to handle the problem. The muscle synergy

is chosen as the feature vector because it can well-characterize the neural origin of

movement. The initial train set is composed of representative samples extracted from

the synergy matrix of the existing user. When the new users use the system, the label is

obtained by the adaptive K nearest neighbor algorithm (KNN). The recognition process

does not require the pre-experiment for new users due to the introduction of adaptive

learning strategy, namely, the qualified data and the label of new user data evaluated by

a risk evaluator are used to update the train set and KNN weights, so as to adapt to the

new users. We have tested the algorithm in DB1 and DB5 of Ninapro databases. The

average recognition accuracy is 68.04, 73.35, and 83.05% for different types of gestures,

respectively, achieving the effects of the user-dependent method. Our study can avoid

the re-training steps and the recognition performance will improve with the increased

frequency of uses, which will further facilitate the widespread implementation of sEMG

control systems using pattern recognition techniques.

Keywords: muscle synergy, user-independent, adaptive learning, surface electromyogram, pattern recognition

1. INTRODUCTION

Surface electromyogram (sEMG) signals contain information on muscular contractions, which
is safe, non-invasive, and easy to be implemented. Hence, it has been widely utilized in human-
computer interaction (HCI) based on gesture recognition (Ding et al., 2016a; Resnik et al., 2018;
Ning et al., 2019). Compared with the image-based gesture recognition system, the sEMG-based
gesture recognition system provides better portability and real-time performance. The HCI system
based on sEMG signals consists of two main processes: first, a classification model is trained using
a train set. Then, the classification model is used for gesture recognition and the result is used as
the control input for HCI (Ding et al., 2016b). sEMG recognition method has been well studied
during past decades, which can achieve more than 90% recognition accuracy for daily gestures
(Tavakoli et al., 2018; Wahid et al., 2018; Jiang et al., 2020; Yang et al., 2021). However, due to
the different muscle geometry, skin impedance, fat content, and maximal voluntary contraction of
different users, sEMG signals can vary greatly when different users performed the same gestures
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(Jiang et al., 2012; Khushaba, 2014). Therefore, the sEMGmodel,
trained with the sEMG data acquired from a specific user, can not
perform well when applied directly to other users, which hinders
the practical application of the HCI system based on the sEMG
signals immensely.

Over the past few years, researchers have proposed two
methods to deal with the aforementioned problems: the first
method is to update the general model with a small amount of
new user data. Khushaba (2014) applied canonical correlation
analysis (CCA) in multi-user gesture recognition. Only a trial of
the test user (for each movement) was used to map the train set
and test set to a high correlation space. Xue et al. (2021) proposed
a new framework CCA-OT that combined CCA and optimal
transport (OT), which could further reduce the discrepancies in
data distribution between the transformed feature matrix from
the train set and the test set. Kim et al. (2020) introduced
a user-independent gesture recognition method based on a
muscle source activation model, which could only calibrate the
model with a small subset of motions. In our previous study, a
user-independent gesture recognition method, combined muscle
synergy and the least square method (LSM) (Zheng et al., 2021),
was proposed. The method combined a trial of the test data and
LSM to obtain a transformation matrix, which would transform
the train set. Although the above methods have an excellent
performance in cross-user scenarios, the classifier still needs to
be calibrated with some data from a new user, which will increase
the use burden of new users. To improve the experience of a new
user, some scholars shed the pre-experiment step and propose
using deep learning models to mine user-independent features.
Wei et al. (2019) proposed a multi-view convolutional neural
network framework, by which an 82% recognition accuracy was
achieved in NinaPro data sets. Chen et al. (2020) proposed a
convolutional neural network based feature extraction approach
(CNNFeat) and compared it with 25 traditional features.
The results showed that CNNFeat outperforms all the tested
traditional features in the inter-subject test. Recently, the idea
of adaptive learning has been widely used in various fields (Luo
et al., 2020; Chen et al., 2021; Wang et al., 2022). In gesture
recognition, Li et al. (2019) applied incremental learning based
on the Support Vector Machine (SVM) to solve the problem
of individual variability and time variation of sEMG signals.
The results showed that the incremental learning method could
learn new knowledge from new users and significantly improve
classification accuracy, however, the heavy training burden
remains unsolved.

To sum up, the existing studies may have the following
shortcomings:

i. The pre-experiment is required from new users, which
will reduce the user experience. In practical application,
balancing the relationship between the cost of pre-experiment
acquisition and user experience is necessary.

ii. The large amounts of training data and complex computation
are inevitable, which increase data acquisition costs and cause
time-consuming.

iii. The time-varying nature of sEMG signals remains unsolved
(Zhai et al., 2017), so the recognition accuracy will decrease
with the onset of muscle fatigue.

In this study, a novel adaptive learning method is proposed
to deal with multiple user problems. Inspired by incremental
learning, we decide to update the train set with new user
data evaluated by a risk evaluator. Considering that the KNN
algorithm does not need a training process and can directly
classify the query based on the information provided by the train
set, the KNN algorithm is chosen as the basis of the classifier.
First, the muscle synergy is extracted by Nonnegative Matrix
Factorization (NMF) as a feature vector, and representative
samples are extracted from the synergymatrix of the existing user
using the k-means clustering algorithm. In this way, the amount
of data can be reduced greatly. Then, the label of the test data is
obtained by a designed KNN classifier that can adaptively adjust
the K-values and weights. Finally, to overcome the individual
differences of sEMG, the qualified data and their labels evaluated
by the risk evaluator are used to update the weights and train set.

Different from related studies, the main innovations and
contributions of this study lie in:

i. To avoid the pre-experiment process and to improve the
experience of new users, qualified test data and the label are
used to update the train set and KNN weight.

ii. To reduce the amount of data and the complexity of
calculations, we extract muscle synergy as robust features
and extract representative samples from the existing synergy
matrix as the basis of classification.

iii. Updating the train set can learn the latest knowledge from
new users, so it can adapt to the time-varying nature of sEMG
signals, and the recognition accuracy will gradually increase
with the frequency of uses, eventually achieving the level of
the user-dependent model.

The remaining sections are arranged as follows. In Section
2, we describe the data set and processing procedures. In
Section 3, we introduce the representative samples, adaptive
KNN and risk evaluators, and describe how we apply the
methods to our problem. Experimental results and discussions
are demonstrated in Section 4. Finally, Section 5 concludes
our study.

2. DATA SET AND DATA PROCESSING

2.1. Data Set
The Database1 (DB1) and Database5 (DB5) of the NinaPro
project (Atzori et al., 2014b) is used in this study. The DB1 and
DB5 are constructed to apply to the research and development of
the HCI system based on sEMG signals. The acquisition setups
are OttoBock MyoBock 13E200 and Myo armband, respectively,
which are placed in the extensor and flexor muscles of the fingers
below the forearm elbow. The placement of electrodes is shown
in Figure 1 and the detailed information of the database is shown
in Table 1.

From the 52 movements in the NinaPro database, we choose
22 daily gestures and divide them into three groups. Figure 2
graphically shows the selected gestures.

To compare with existing research using the same database,
the experiments of group one are conducted with the DB5, while
group two and group three are conducted with the DB1.
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FIGURE 1 | Acquisition setups and the placement: (A) DB1 OttoBock MyoBock 13E200, (B) DB5 Double Myo armband (Pizzolato et al., 2017).

TABLE 1 | Database information.

DB1 DB5

Sample frequency 100 Hz 200 Hz

Number of channel 10 16

Number of persons 27 10

Number of repetitions 10 6

Movement 12 basic movements of the fingers

8 isometric,isotonic hand configurations

9 basic movements of the wrist

23 grasping and functional movements

2.2. Data Preprocessing
The data preprocessing includes full-wave rectification, a three-
order Butterworth low-pass filter with a cut-off frequency of
1 Hz, and active segment extraction. The envelope obtained
by low-pass filtering is used to acquire active segment data.
Taking DB5 as an example, a sliding window with a size of
200 ms (40 samples) was selected for the next steps, denoted as
E(t). The threshold value is 0.015 times the peak value in the
sliding window. When 35 samples in E(t) are all greater than the
threshold value, the window is determined as an active window;
otherwise, it is a resting window. Multiple active windows
between two resting windows constitute an active segment. To
improve the reliability of data, the active segments with apparent
differences in repeated movements are discarded.

2.3. Muscle Synergy
Muscle synergy theory explains well how the nervous system
recruit muscles to produce action. Combined with the analysis of
muscle synergy in the previous study (Zheng et al., 2021), muscle
synergy is selected as the feature of the sEMG signal.

To ensure the real-time performance of online recognition,
a sliding window with a size of 200 ms overlapped by 50 ms is
chosen for online recognition (Jaramillo-Yánez et al., 2020). For
each sliding window, the sEMG signal can be decomposed into
two matrices by NMF (Teng et al., 2021):

V = W ×H (1)

Where V is the m×n initial envelope signal matrix (m is the
number of muscles, n is the length of the muscle activation
pattern), W is the m×r synergy matrix (r is the number of
synergies), andH is the r×n coefficient matrix.

W andH can be solved by (2) and (3):

W(io) = W(io)
[VH

T](io)

[WHHT](io)
(2)

H(oj) = H(oj)
[WT

V](oj)

[WTWH](oj)
(3)

Where i = 1, 2, 3 · · ·m, o = 1, 2, 3 · · · r, and j = 1, 2, 3 · · · n.
According to the references (Zheng et al., 2021), the optimal
number of muscle synergies is 1, so r = 1.

Finally, to unify the dimensions of the features, all sEMG
features are normalized as shown in Formula (4):

Xnorm =
X − Xmin

Xmax − Xmin
(4)

Where Xnorm represents the normalized sEMG features, X

denotes the sEMG features, Xmax and Xmin, respectively, are the
maximum value and minimum value of X.

3. METHODS

3.1. The Proposed Adaptive Method for
Gesture Recognition
The overall framework of adapting learning for gesture
recognition is shown in Figure 3.

It can be seen from Figure 3, our proposed framework
consists of two parts: offline processing and online recognition.
In the offline phase, we first extract muscle synergy (denoted
as existing synergy) from existing user data by NMF algorithm.
The existing user data is removed by noise signal by data
processing in advance. Then, the clustering center of each action
is extracted using the clustering method, and the nearest sample
of the existing synergy to the clustering center is extracted as the
representative sample, which is the basis of the next steps.

In the online stage, the test data, after the same data processing
as in the offline phase, obtain the labels by the KNN classifier.
Then, the test data is evaluated by a risk evaluator, and the
qualified one and its labels are used to update the weights and
replace the remote samples of the train set, whereas those samples
that do not meet the requirements are discarded.
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FIGURE 2 | Twenty-two daily gesture: (A) four basic movements of the wrist and hand (Group one), (B) eight isometric, isotonic hand configurations (Group two), and

(C) 12 basic movements of the fingers (Group three) (Atzori et al., 2014b).

3.2. The Method of Extracting
Representative Sample Based on K-Means
Algorithm
K-means algorithm is an unsupervised clustering method (Yu

et al., 2020), which classifies the class by the distance between
sample and centroid. In this study, the K-means algorithm

is used to extract the template of each gesture, and then the

representative samples of each gesture can be obtained. Assuming
that the test data is x, the cluster is Ci ( i = 1, 2, 3 · · ·N, N is the
number of gesture categories), and the centroid of the cluster Ci

is µi, the optimization objective is to minimize the error E:

E =

N
∑

i=1

∑

x∈Ci

||x− µi||
2
2 (5)

µi =
1

|Ci|

∑

x∈Ci

x (6)

To solve the Formula (5), the vector mean of each
gesture is chosen as the initial centroid. We set the upper
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FIGURE 3 | The framework for user-independent gesture recognition.

limit of iterating as 100, and the procedure terminates
when several iterations are reached or the difference
between the centroid of the last generation and the
centroid of the previous generation is <0.02. In the
process of iterations, the centroid of each generation
was recorded.

The final centroid of each gesture is chosen as the template,

and we select the 30 samples closest to the template as a
representative sample for each gesture of each user. Taking DB5

as an example, the dimension of the initial train set is 12,312 ×

16, and the dimension of the representative sample is 1,080× 16,
which greatly reduces the amount of the train set.

3.3. Adaptive KNN Algorithm
Traditional incremental learning methods discard samples after
learning some characteristics of samples, which will result in
information loss. To make full use of the new user data, this
article proposes to update the train set directly by using the
new user data. As a typical case-based algorithm, the KNN
algorithm only needs to compare the distance between the
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FIGURE 4 | The process of adapting K-value.

test set and the train set to get the label during classification.
Therefore, there is no need to train the model again after
updating the train set, which significantly improves the efficiency
of the algorithm.

The traditional KNN algorithm searches for the points closest
to the test sample in the train set and counts the categories of the
nearest points. The category with the most significant number
is the category of the test sample. The method is simple and

effective but it also has some disadvantages: First, the K-value of
the traditional KNN algorithm is fixed, which is not suitable for
samples with uneven distribution (Mullick et al., 2018; Pan et al.,
2020). Second, the KNN algorithm has the same weight on each
neighbor point without considering the contribution of different
samples to the classification (Gou et al., 2014).

To address the problems of the traditional KNN algorithm,
this article proposes an improved method that automatically
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FIGURE 5 | Schematic diagrams of updating the weight.

selects the appropriate K-values according to the distribution of
samples and adjusts the weights according to the contribution of
samples to the classification.

The process of the adaptive K-value is shown in Figure 4.
It mainly has three stages. First, the distances between the test
sample x and the train set Y = [y1, y2, ...yn] are calculated and
sorted in ascending order:

Di =

√

(x− yi)
2 (7)

where i = 1, 2, 3 · · · q , q is the number of samples in the train set.
Then, the k value of each time is a multiple of 5, and the top

N/2 categories with the largest number in k are recorded each
time. N is the number of gesture categories.

Finally, we judge whether the largest category has remained
the same. If not, it means that the distribution of different
gestures overlaps together. In this condition, a larger K-value
indicates that more weights have to be updated, which will bring
great risks. The first intersection between the largest category and
other categories is recorded, denoted as pf . So, K can be obtained
as follow:

K =
pf

2
(8)

If there are no intersections between the largest category and
other categories, the ratio of the maximum number of categories
to the second category is calculated. If the ratio is <2, we set K =
5; If it is>2, we calculate the score of each k according to Formula
(9) and sort the score, and k corresponding to the maximum
score is K.

score =
v

max(v)
+

den

max(den)
(9)

v =
s

k
, den =

k

πd2
(10)

where s is the number of the largest category and d is the longest
distance in the largest category sample.

In Formula (10), v denotes purity, and den denotes density. It
is normalized to avoid an order of magnitude too large for one of
the parameters.

The approach to adaptive weights can be introduced through
three steps. First, the initial weight of 1 is assigned to each sample.
Then, the label of the test samples is obtained by the adaptive K-
value KNN algorithm. Finally, the label of the qualified samples
(refer to Section 3.4) is used to update the weight.

The weight of the sample will increase if it is chosen by the
classification steps and its label is the same as the label of qualified
samples. To avoid the weight of one sample being too large to
cover other samples, it is considered to add amplitude limiting.
The increased weight is as follows:

qnew1 =
3

1+ e−qold
(11)

On the contrary,we reduce the weight of our sample if these
samples are selected by the classification steps but its label is
different from that of qualified ones. The weight should not be
negative, so the weight is reduced proportionally.

qnew2 =
qold

4
(12)

In the case of K = 10, the diagram of updating the weight is
shown in Figure 5. As can be seen from the graph, the number
of Category 1 is greater than the number of Category 2, so the
test sample is classified as Category 1. In the circle of K = 10,
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FIGURE 6 | Envelope and activity segment.

the weight of Category 1 is updated by qnew1, and the weight of
Category 2 is updated by qnew2.

3.4. Risk Assessors
In this study, we decide to update the train set with new user data,
so the new user data should be evaluated by the risk evaluator.
Only qualified samples can be used to update the train set. The
process of evaluating is as follows: First, the partial train set
corresponding to the label of the test sample is extracted, and
the farthest point between the partial train set and the template
is calculated and denoted as ps.

Then, let test sample x and ps be A and calculate the risk using
the following Formula (13).

risk =
1

m
∑

i
Aiµ1i

√

m
∑

i=1
A2
i

√

m
∑

i=1
µ
2
1i

+
4

∑

j=2

√

m
∑

i
(Ai − µji)

2

(13)

where µ1 represents the templates of the categories
corresponding to the labels, µj(j = 2, 3 · · ·N) represents
the templates of the other categories. Additionally, the number
of musclesm is the characteristic length.

In the above formula, the first term of the denominator
represents the degree of similarity intra the class, and the second
term represents the degree of difference inter the classes.

In the case that the risk value of the test sample is less than the
farthest point, we think that the test sample has better inter class
distance and intra class distance. Therefore, the farthest point
is replaced by the test sample to update the train set, making
the train set constantly learn new user features. Meanwhile, the
weight of the qualified sample is initialized.

3.5. Evaluation
The classification performance of the algorithm in DB1 and
DB5 is evaluated by the classification accuracy, i.e., the number
of correctly classified samples divided by the total number
of samples.

The data processing and classification using MATLAB
R2018A, and a one-way Analysis of Variance (ANOVA) are
used to analyze the experimental results. The p < 0.05 shows a
significant difference.

3.6. Cross-Validation
To verify whether the recognition accuracy will improve with
the increased frequency of uses, each time a group of repetitive
actions of new users is randomly selected for testing until all the
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FIGURE 7 | Relationship between average recognition accuracy and test times.

groups of repetitions are tested, which is recorded as a cycle. To
make the results more objective, 10 cycles are conducted, and the
average of 10 cycles is the final recognition rate of the new user.

To avoid the influence of random selection on the objectivity
of the results, we use M-fold cross-validation, M is the number
of users. Each time M-1 user is selected as an existing user,
and the remaining user is considered as a new user. This
process is repeated M times until each user is treated as a new
user. Finally, the average value of the result is the accuracy of
gesture recognition.

4. RESULTS AND DISCUSSION

4.1. The Results of Extracting the Envelope
and Active Segment
Taking the hand closed motion of DB5 as an example, according
to the method in Section 2, the result of signal preprocessing is
shown in Figure 6. It can be seen that the algorithm can extract
the active segment well and make the signal more smoother,
which is conducive to subsequent classification.

4.2. The Relationship Between Frequency
of Use and Recognition Accuracy
The adaptive learning proposed in this article is mainly
reflected in replacing poor samples with qualified samples in
the train set and updating weights. Since the classifier learns the
characteristics of new users, the recognition performance should
increase with the frequency of use. The average recognition
accuracy of 10 users (DB5) and 27 users (DB1) improves with
the increased frequency of use, as shown in Figure 7.

According to this histogram, with the increase of the
number of tests, the average recognition accuracy of the
three group’s gestures increase steadily, which proves that
the method of replacing the bad samples with the qualified
samples can effectively improve the recognition accuracy, and
it can adapt to the time-varying characteristics of sEMG during
exercise. However, Figure 7 also reflects the slow growth rate
of the accuracy. The possible reason is that the classifier
has learned enough new user features, and the recognition
accuracy is close to the user-dependent model. Therefore,
the increase of data is of limited help to improve the
recognition accuracy.
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FIGURE 8 | Changes in channel weights at different stages of (A) the existing samples, (B) the initial train set, (C) the updated train set, and (D) test samples.

4.3. Changes of Channel Weights at
Different Stages
If the user-independent gesture recognition method wants to
reach a good recognition accuracy, the distribution of the train set
must be similar to the test set. In this article, we use the weights
of the channels to measure the similarity of the dataset with the
new user data at different stages. The changes in weight are shown
in Figure 8.

Figure 8 shows that different hand gestures will activate
different channels. In Figure 8D, for test data, hand closed
movement mainly activates channel 9, hand open movement
mainly activates channels 8 and 10, wrist flexion movement
mainly activates channels 1, 5, and 9, and wrist extension
movement mainly activates channels 1 and 9. For the existing
data without processing, as shown in Figure 8A, the activated
channels are significantly different from the test sample. It can be
seen from Figure 8B, the representative sample (denoted initial
train set) discards remote samples from the existing synergy
matrix, so the channel weights are more similar to the test
set, but the initial train set does not learn the distribution
of the test sample, so it still fails to meet the requirements.
Test samples that pass the risk evaluator evaluation can be
used to replace remote samples in the initial train set, so
the updated train set begins to resemble the distribution of
the test set. As can be seen from Figure 8C, hand closed
movement mainly activates channel 9, hand closed movement
mainly activates channels 8 and 10, wrist flexion movement

mainly activates channels 1, 5, and 9, and wrist extension
movement mainly activates 1, 2, and 9. Although there are
differences in the degree of activation, the differences are at an
acceptable level.

4.4. Gesture Recognition Results
4.4.1. Comparison With Benchmark Algorithm
To verify the effectiveness, advantages, and performance
of the proposed algorithm, three benchmark comparison
schemes, including two user-independent schemes and one user-
dependent scheme, are set up as follows:

Scheme A (user-independent): one user is selected at a time as
a new user, and the remaining user is an existing user. Muscle
synergy is extracted as the feature, and muscle synergy of all
existing users is used to train the model, while muscle synergy
of new users is used to test the model.

Scheme B (user-independent): one user is selected as the new
user, and the remaining user is the existing user. Muscle synergy
is taken as a feature. Representative samples of existing user data
are extracted according to Section 3.2. The representative samples
are used to train the model, and muscle synergy of new users is
used to test the model.

Scheme C (user-dependent): for each user, muscle synergy is
extracted as a feature, 70% of all synergy is used to train the
model, and the remaining 30% is used to test the model.

Scheme D is the algorithm presented in this article.
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FIGURE 9 | Comparison of significance among different schemes (*p<0.05).

TABLE 2 | Comparison of results with other searches.

Group Data source Method Sample

frequency

Recognition

accuracy (%)

Group one DB5 Zheng et al.,

2021

200 83.25

DB5 Our 200 83.05

DB1 Patricia et al.,

2014

100 40.00

Group two DB1 Du et al., 2017 100 67.40

DB1 Padhy, 2020 100 75.23

DB1 Our 100 73.35

DB1 Patricia et al.,

2014

100 25.00

Group three DB1 Atzori et al.,

2014a

100 55.00

DB1 Ketykó et al.,

2019

100 65.45

DB1 Our 100 68.04

The bold values represent the literature in the same group with the highest accuracy.

The above schemes are applied to three groups of gesture
recognition experiments, and the result is shown in Figure 9.

According to Figure 9, in the three groups of gesture
experiments, the recognition accuracy of the proposed method
(scheme D) is 35% higher than scheme A. Meanwhile, there
is a significant difference between scheme A and scheme D
(p = 1.17e-08, p = 3.35e-17, p = 5.69e-23). The result indicates
that the proposed method can significantly improve the user-
independent recognition performance.

The averaged classification rates in three groups of gesture
experiments are 61.31 and 74.67%, corresponding to scheme B
and scheme D. Our method achieves significantly better results
as validated by an ANOVA test with the achieved p< 0.05 against

scheme B (p = 0.005, p = 0.001, and p = 0.0004). The comparison
results show that based on representative samples in this article,
updating the train set and weight can effectively improve the
recognition accuracy.

Although the recognition accuracy is lower than scheme C,
there is no significant difference between scheme C and scheme
D (p = 0.09, p = 0.07, and p = 0.05). This shows that the
performance of the proposed method can achieve the level of the
user-dependent model, which also confirms the conjecture that
we proposed in the analysis of Figure 7. From a methodological
point of view, although using qualified samples to replace remote
samples directly can improve the recognition accuracy, some
samples will inevitably be updated with the wrong labels. This
part of the sample results in the accuracy being lower than the
user-dependent model.

4.4.2. Comparison of Results With Other Research
The research results of user-independent gesture recognition
using the same database as in this article are shown in Table 2.

Table 2 shows that the recognition accuracy of the proposed
method is slightly lower than the references Padhy (2020) and
Zheng et al. (2021) in Group one and Group two, but it
is higher than the existing literature in Group three. Padhy
(2020) proposed a tensor-based approach using multilinear
singular value decomposition (MLSVD) for hand gesture
recognition. This method achieved good recognition accuracy
in user-independent gesture recognition, but it required larger
computational resources because of the complex transformation
relationship. Meanwhile, the sliding window length was 150 ms,
and the average processing time of each channel was 199 ms. It
demonstrated that the recognition time of a single gesture was
over 300 ms, which did not meet the requirements of real-time
for gesture recognition. Zheng et al. (2021) was preliminary work
of our team. The combination of a trial (for each movement)
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for new users and LSM was adopted to update the train set.
This method had great recognition accuracy and computation
advantages compared with other studies. In this article, we extract
representative samples to reduce the amount of data further. At
the same time, we use adaptive learning to adapt to the feature
distribution of new users, which can avoid the pre-experiment
step for new users. We optimize preliminary work in two aspects,
and the final recognition accuracy is only slightly lower than the
preliminary work. Therefore, the optimization strategy proposed
in this article is effective, and the biggest advantage of thismethod
is that it completely avoids the pre-experiment process required
in other studies.

5. CONCLUSION

In this article, an adaptive learning gesture recognition method is
proposed to solve the user-independent problem. To simplify the
calculation and eliminate abnormal samples, K-means clustering
is first used to extract representative samples from existing
synergy. Then, the label of the test data can be obtained
by the adaptive KNN classifier. Finally, we evaluate the test
sample by risk evaluator, and the qualified samples and their
labels are used to update the weight and train set. Our
method is analyzed by three comparisons in different directions,
such as before-and-after processing comparison, comparison of
various schemes, and comparison of different algorithms. All
the results prove the effectiveness of the proposed method.
The method proposed in this article not only improves the
classification accuracy but also adapts to the time variability

of the sEMG signal. In the practical application, the pre-
experiment does not request new users, which is conducive to the
promotion of sEMG signal-based HCI systems. Inspired by the
literature (Zeng et al., 2020, 2021), the optimization of the risk
evaluator, the template, and the neighborhood will be our next
investigation to further enhance the user-independent sEMG
classification results.
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