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Abstract 

Researchers estimate that electronic health record systems record roughly 2-million ambulatory adverse drug 

events and that patients suffer from adverse drug events in roughly 30% of hospital stays. Some have used 

structured databases of patient medical records and health insurance claims recently—going beyond the current 

paradigm of using spontaneous reporting systems like AERS—to detect drug-safety signals. However, most efforts 

do not use the free-text from clinical notes in monitoring for drug-safety signals. We hypothesize that drug–disease 

co-occurrences, extracted from ontology-based annotations of the clinical notes, can be examined for statistical 

enrichment and used for drug safety surveillance. When analyzing such co-occurrences of drugs and diseases, one 

major challenge is to differentiate whether the disease in a drug–disease pair represents an indication or an adverse 

event. We demonstrate that it is possible to make this distinction by combining the frequency distribution of the 

drug, the disease, and the drug-disease pair as well as the temporal ordering of the drugs and diseases in each pair 

across more than one million patients. 

 

Introduction 

Detecting adverse drug events in clinical records remains a challenging problem. The U.S. Food and Drug 
Administration (FDA) Amendments Act of 2007 requires the FDA to develop a system for using health care data to 
identify risks of marketed drugs and other medical products. In 2008 the FDA launched the Sentinel Initiative, 
which would enable the FDA to query diverse healthcare data actively—like EHRs, insurance claims databases, and 
registries—to evaluate possible medical product safety issues quickly and securely [1]. The Observational Medical 
Outcomes Partnership (OMOP) was recently designed to establish requirements for a viable national program of 
active drug safety surveillance by using observational data [2]. 

The current paradigm of drug safety surveillance is based on spontaneous reporting systems, which are databases 
containing voluntarily submitted reports of suspected adverse drug events encountered during clinical practice. In 
the USA, the primary database for such reports is the public Adverse Event Reporting System (AERS) [3] database 
hosted by the FDA. Researchers typically mine the reports in these structured databases for drug-adverse event 
associations (called safety signals) via statistical methods based on disproportionality measures, which quantify the 
magnitude of difference between observed and expected rates of particular drug-adverse event pairs [4]. The 
reporting odds ratio (ROR) is a commonly used measure of the strength of the association between a drug and an 
adverse event [4], and it is usually qualified with a 95% confidence interval (CI) to convey its accuracy and a p-
value to convey the significance. 

Researchers have estimated that roughly 30% of hospital stays experience an adverse drug event [5]. On average, 
preventable adverse drug events amongst inpatients cost $4685 per occurrence [6]—extrapolated for inflation and 
34.4 million inpatient discharges in the USA, their monetary cost was estimated to be 4.4 billion dollars in 2007 [7, 
8]. With advances in natural language processing (NLP) [9-14], testing as well as de novo detection of drug safety 
signals using textual clinical notes as well as literature is becoming possible [12, 15-18]. For example, recently, 
researchers showed that roughly half of the drug-safety signals can be detected in the literature before an official 
alert is issued [18]. The advantage of focusing on textual clinical notes is that they do not suffer from the reporting 
biases seen in spontaneous reporting systems—thus providing reliable denominator data for risk estimation.  

In our previous work, we tested the association between Vioxx and myocardial infarction (MI) using textual clinical 
notes and taking the temporal constraints depicted in Figure 1 into consideration [19]. From the patient counts, 
corresponding to the different patterns in Figure 1, we constructed a contingency table and calculated the ROR as 
described in [4]. Using first mentions of Vioxx and MI in the clinical notes before Vioxx was taken off the market in 
2005, we obtained an ROR of 2.06 with a CI of [1.80, 2.35] and an uncorrected X2 p-value lower than 10-7. This 
result demonstrates that it is possible to analyze annotations of clinical notes for testing drug safety signals [19].  
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Figure 1: The Vioxx risk pattern (P5) occurs within a 
background of Rheumatoid Arthritis (RA) patients (P1 & P2) 
that either don’t have an myocardial infarction (MI) incident 
(t0 denotes first occurrence) after Vioxx or never take Vioxx; 
and among records in which MI occurs prior to the diagnosis 
of RA (P3), or prior to Vioxx use (P4). 

Despite successes in testing a known drug safety 
signal, when examining drug–disease co-
occurrences in clinical notes to discover new 
adverse events, discerning indications from adverse 
events (AEs) for a given drug–disease pair remains 
a challenge.  

We hypothesize that statistically enriched co-
occurrences of drug–disease mentions in the clinical 
notes can be used not only to test, but also to detect 
new adverse drug event signals.  The ability to 
distinguish indications from AEs directly in a given 
drug-disease co-occurrence pair is a first-step 
towards direct data driven detection of safety 
signals from unstructured EMR data. Using the 
methods we describe below, we show that by using 
co-occurrence frequencies and by keeping track of 
the time at which a drug or disease is mentioned we 
can discriminate between drug-adverse events pairs 
from drug-indication pairs.  

In this study, we build our co-occurrence frequency models by analyzing over 9-million clinical notes for more than 
one million patients from the Stanford Clinical Data Warehouse (STRIDE). The patient records include both 
inpatient and outpatient notes, the records are from 620,946 female patients, 424,060 male patients, and 2330 cases 
where the sex information is missing; we include all note types. In terms of the age distribution, for each 10-year age 
range from 0 to 70, there are between 90,000 and 170,000 patients in each age range—in terms of age at first visit. 

We use a sample of 1,550 drug-disease pairs from Medi-Span® Adverse Drug Effects DatabaseTM (from Wolters 
Kluwer Health, Indianapolis, IN), AERS, and the National Drug File ontology (NDFRT) as gold standard. We train 
a support-vector machine (SVM) [20] classifier using the empirical data from STRIDE. Finally, we validate the 
results against an independent set of drug-indication and drug-AE pairs from the external sources. The classifier 
performs well in cross-validation (AUC=0.85) and independent validation (AUC=0.846).  

 

Methods 

Overview: 

Our study consists of two broad components: an NLP workflow that annotates textual medical records with relevant 
drug and disease terms, and a statistical framework under which we organize and classify drug-disease pairs. For the 
NLP workflow, existing work from the 2009 i2b2 medication extraction challenge appears particularly promising. 
However, because medical records are known to vary from institution to institution in style and structure, it is 
uncertain whether the medical records from STRIDE would be directly usable with the methods described in [12]. 
Moreover, our dataset is about 10,000 times larger than those used in the competition [12]. Thus, for performance 
reasons, we needed a more scalable method.  In contrast, our annotator workflow, which we describe below, 
performs a heavily optimized exact string matching which is computationally efficient. Finally, the primary purpose 
of this study is to demonstrate that it is possible to distinguish drug-indication pairs from drug-AE pairs. Once 
feasibility is established, we can focus on the question of identifying the “best” NLP system to use—which is a 
complicated task.  

For our statistical framework, we apply a novel combination of regression and classification techniques to address a 
handful of basic but salient sources of confounding so as to achieve improved accuracy in discerning drug-AE pairs 
from drug-indication pairs. Methods based purely on association strength are unable to make that distinction among 
drug-disease pairs created based on co-occurrence. 

The NCBO Annotator Workflow: 

Figure 2 illustrates the workflow to annotate the clinical text from electronic health record systems and to extract 
disease and drug mentions from the EHR. We created a standalone Annotator Workflow based upon the existing 
National Center for Biomedical Ontology (NCBO) Annotator Web Service [21]. The Annotator uses biomedical 
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terms from the NCBO BioPortal library and matches them against input text. The annotation process utilizes the 
NCBO BioPortal ontology library of over 250 ontologies to identify biomedical concepts from text using a 
dictionary of terms generated from those ontologies. For this study, we specifically configured the workflow to use 
SNOMED-CT and RxNORM. The resulting lexicon contains 1.6 million terms. Negation detection is based on 
trigger terms used in the NegEx algorithm [22]. 

The output of the annotation workflow is a set of negated and non-negated terms from each note. As a result, for 
each patient we end up with a temporal series of “symbols” or tags comprising of the terms derived from the notes 
(red denotes negated terms in Figure 2) and the coded data collected at each patient encounter. Because each 
encounter’s date is recorded, we can order each set of terms for a patient to create a timeline view of their record. 
Using the tags as features, we can define patterns of interest such patients with rheumatoid arthritis, who took 
rofecoxib, and then suffered from myocardial infarction, which we studied previously [19]. Our goal in this study is 
to focus on discriminating the drug-adverse event pairs from the drug-indication pairs. 

Creating Drug–disease Associations:  

For every patient, we scan through their 
notes chronologically and record the first 
mention of every drug and disease. Drugs 
and diseases will re-appear throughout a 
patient’s timeline, yet we only note the 
very first occurrence (denoted T0 for 
initial time). All subsequent mentions of 
the noted term are ignored. This 
simplifies computation and captures the 
temporal ordering between the first 
mentions of drugs and diseases. 

For the brevity of subsequent 
explanations, we introduce two 
definitions: co-mentions, and drug-first 

fractions. For any drug-disease pair, the 
co-mention count is the number of 
distinct patients for whom both the drug and
such co-mentions, there is one first-mention

There are three possible cases for each dru
record: either the drug is mentioned before t
the disease are mentioned at the same time (
 
 

Figure 3. Associating diseases with drugs using first occurrences: 
for every patient, note the first occurrence (denoted T0) of a drug or 
disease mention by scanning forward in time through all of their sets 
of notes. The three cases for a drug–disease pair are:  drug mentioned 
before disease, drug mentioned after disease, and drug mentioned at 
the same time as disease. 
 
 

Figure 2. The NCBO Annotator Workflow tags clinical records with terms from ontologies: (1) We obtain a 
lexicon of 1.6 million terms from the NCBO BioPortal library. (2) We use the NCBO Annotator to rapidly find 
those terms in clinical notes—which we call annotations (3) We apply NegEx trigger rules to determine negated 
concepts. (4) We compile terms (both positive and negative) into a temporally ordered series of sets for each 
patient and combine them with coded and structured data when possible. (5) We reason over the structure of the 
ontologies to normalize and to aggregate terms for further analysis.  
 

 

 disease are mentioned in their record—in any chronological order. For 
 for the drug and one first-mention for the disease in a patient’s record. 
g–disease pair when examining the first mentions in a single patient’s 
he disease, or the disease is mentioned before the drug; or the drug and 
Figure 3). A fraction of the patients will support the first case: where the 

49



 
Figure 4. Analysis Workflow: (1, 2) We start by creating the patient timelines and generating drug-disease 
association frequencies. (3) Next, we filter drug-disease pairs to those having at least one thousand common patients. 
(4) This count of 492 thousand pairs roughly doubles when we aggregate up the SNOMED-CT hierarchy. (5) Then, 
we apply regression techniques to generate features. (6, 7) These features then feed into an SVM that classifies 
whether the disease in a given drug disease pair is an indication or adverse event. 
 

  

first mention of the drug precedes the first mention of the disease. The numerical fraction of patients with this 
specific temporal ordering is defined as the drug-first fraction for a particular drug-disease pair. The drug-first 
fraction characterizes the temporal ordering between the first mentions of the drugs versus the first mentions of the 
diseases. This study shows that disproportionalities in the counts of co-mentions and the drug-first fractions will 
sufficiently characterize drug-disease pairs to classify them into drugs-AEs and drug-indications.  

Normalizing, Filtering and Aggregation: 

To reduce the computation load, we normalize the drug and disease terms early on in our analysis workflow, as 
shown in Figure 4. For drugs, we normalize drugs into ingredients using RxNORM relations like “has_ingredient.” 
In many cases, such as rofecoxib, drugs contain only one ingredient. Alternatively, multiple drugs may share a 
common ingredient, and multiple ingredients may be present in a single drug. For example, Excedrin has 
acetaminophen, aspirin, and caffeine, whereas Midol Complete has acetaminophen, caffeine, and pyrilamine 
maleate. Although drug normalization is a many-to-many mapping, ultimately the resulting number of unique 
ingredients in subsequent analysis is smaller. Thus, in subsequent analysis, we are ultimately comparing ingredient-

disease pairs. In our analysis and interpretation of indications and adverse events, we treat drug ingredients as drugs. 

In addition to normalizing drugs, we also normalize the diseases. Using UMLS provided “source-stated synonymy” 
relations, we normalize multiple disease terms into a single disease concept. Disease normalization constitutes a 
many-to-one mapping. Being part of UMLS, SNOMED-CT provides a subsumption hierarchy via “is-a” relations. 
Specialized child concepts (e.g., malignant melanoma) relate to their generalized parent concepts (e.g. malignant 
neoplasm) via this relation. When a specific child concept appears in text, we can count that mention as a mention of 
that concept’s parent terms. Using such hierarchical relations, we perform aggregation by accepting mentions of a 
child concept when searching for mentions of an ancestor concept—a process referred to as computing the transitive 
closure of the concept counts over the is-a hierarchy. Materializing this closure is computationally intensive, so we 
perform an optimization for speed: when a disease concept is never mentioned in STRIDE, we exclude that disease 
concept from being considered further. In separate work, our group has shown that the majority of UMLS concepts 
do not appear in clinical text and by removing them from the analysis, we gain computational efficiency [23]. 

From over 9 million notes, we detect 29,551 SNOMED-CT diseases and 2,926 drug ingredients, thus resulting in 
86.5 million possible drug-disease pairs. Only 22.5 million actually occur in the data. We only consider pairs that 
occur in at least a thousand patients, which reduces our set to 492,115 pairs. After we perform aggregation based on 
SNOMED-CT, the count of pairs grows to 986,850 because of inclusion of general terms in the drug-disease pairs. 
These 986,850 pairs constitute the basis of all subsequent analysis.  

Using LOESS Regression to Generate Z-scores for Co-mentions and Drug-first Fractions: 

While the ROR is the traditional measure for disproportionlity [4], it does not adequately capture the temporal 
ordering, which is necessary in discerning an adverse event from an indication. Moreover, RORs assume 
independence, which is too restrictive; confounding factors can affect the frequencies of co-occurrences as well as 
temporal ordering. For example, neonatal diseases will appear disproportionately in the earlier parts of the medical 
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record; thus, all temporal associations made subsequently as an adult will be skewed. To compensate, we fit local 
regression (LOESS) models [24] to define our baselines, substituting for the commonly used independence 
assumption (Step 5 in Figure 4; expanded in Figure 5). 

As an example, suppose that we are trying to calculate the drug-first fraction of Vioxx versus myocardial infarction 
(MI). We have an observed drug-first fraction from the STRIDE data. Then, fixing the disease (MI) for every drug X 
in our vocabulary associated with MI, we count each drug-first fraction (X-MI) measured against the overall 
frequencies of each drug. We then fit a locally weighted smoothing regression (LOESS) [24] across all X-MI pairs 
(from the 986,850 pairs) to estimate  the drug-first fraction for Vioxx-MI. This estimate serves as an expected value, 
which represents the null hypothesis that drugs with frequencies similar to Vioxx would have similar drug-first 
fractions against MI. We are interested in quantifying deviations from this expected value. 

Given a LOESS estimate of drug-first fraction for MI across various drug frequencies, we define the observed error 
as difference between the LOESS estimate and the true observed value. The squares of these quantities are observed 

squared errors. We subsequently compute the observed local variance by running a separate LOESS fit on the 
observed squared errors with respect to the drug frequencies. The square roots of the local variances are the local 

standard deviations. Finally, we define the local z-scores as the quotients of the local errors divided by the local 
standard deviations. 

In the previous step, we fix the disease – MI– and estimate the drug-first fraction with respect to drug frequencies. 
Next, we fix the drug – Vioxx– and analogously fit a LOESS regression of the drug-first fraction measured against 
disease frequencies across all diseases to generate a second estimate for the drug-first fraction for Vioxx-MI. This is 
illustrated in figure 5. We now have two distinct estimates, two distinct local variances, and two distinct local z-
scores for the drug-first fraction of the pair Vioxx-MI. The two estimates, if compared to the actual observed drug-
first fraction of Vioxx-MI, serve as baseline expected values. Moreover, the two local z-scores serve as measures by 
which the frequency of observed Vioxx-MI deviates from our expectations. The two LOESS local z-scores, 
alongside the observed drug-first fraction, capture the temporal ordering information implicit in the Vioxx-MI 

pairing.  

In addition to the drug-first fraction, we also produce 
analogous estimates and analogous z-scores for the co-
mention counts. Continuing the Vioxx-MI example, we 
would produce two estimates and two local z-scores of 
the Vioxx-MI co-occurrence frequency. One estimate is 
based on drug-MI co-occurrences across all drugs. The 
other estimate is based on Vioxx-disease co-occurrences 
across all diseases. In summary, we introduce six 
quantities: two LOESS estimates for drug-first fraction, 
the actual drug-first fraction, two estimates for the co-
occurrence count, and the actual observed co-occurrence 
count.  

Accounted Sources of Confounding: 

The LOESS estimates are designed to alleviate drug-
specific, disease-specific, and frequency-based sources 
of confounding. From purely a statistical point of view, 
for a fixed disease, and across many drugs, the more 
frequent the drug, the higher the drug-first fraction we 
should expect. Similarly, for a fixed drug, across many 
diseases, the more frequent the disease, the lower the 
drug-first fraction we should expect. For co-mentions, 
both increasing the drug frequency and increasing the 
disease frequency should lead to a higher co-mention 
estimate.  

Our LOESS estimates account for these sources of 
confounding by anticipating their effects. Functions that 
 
 

Figure 5. LOESS provides a baseline (e.g., Vioxx 

versus all diseases): for each disease Z, we plot on 
the x-axis the total count of patients whose record ever 
mentions disease Z. The y-axis is the drug-first 
fraction for Vioxx-Z. Predictably, common disease 
concepts, have lower baseline expected value for 
drug-first fraction. The local one standard deviation 
lines are also shown.  
 

  

only increase or only decrease are known as monotonic 
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functions; in the aforementioned sources of confounding, the regression fits should be monotonic. When estimating 
monotonic functions, simply enforcing the monotone property by sorting the y-values improves the estimate [25] 
and does no harm. We apply this technique in our LOESS calculations. 

Classification: 

For each drug-disease pair, we have described six per-pair quantities as features. Three are based on the notion of 
the drug-first fraction—the fraction of pairs in which the mention of the drug precedes the mention of the disease; 
and the other three are based on the co-occurrence. We take the logarithm of the co-occurrences to place these 
quantities into logarithmic space. Table 1 lists all features we use for classification. 

 

Table 1. Features used in classification. 

Linear Space Features Logarithmic Space Features 

Drug frequency Drug frequency 

Disease frequency Disease frequency 

Observed drug-first fraction Observed co-mention count 

Drug-first fraction z-score (fixed drug) Co-mention count z-score (fixed drug) 

Drug-first fraction z-score (fixed disease) Co-mention count z-score (fixed disease)  

 

Our training set consists of 1,550 samples: 980 indications and 570 adverse events. Next, we normalize each feature 
to have mean zero and variance one for these 1,550 drug-disease pairs. Finally, we apply a support vector machine 
(SVM) on the ten features to produce a classifier that can classify any given drug-disease pair into drug-indication 
and drug-AE classes if given the ten feature quantities for that pair. We used SVMs for the primary reason that 
SVMs make fewer assumptions about the classification boundary than traditional methods like logistic regression. 
Another consideration was that our classifier should at least consider a strict superset of decision boundaries 
available to traditional ROR disproportionality studies. SVMs models can encompass linear relations with respect to 
its features. Intuitively, we see that the log reporting odds ratio is encoded by a linear combination of three of our 
log-space features: drug frequency, disease frequency, and observed co-mention count. 

Validation: 

To evaluate our results, we applied 100-fold cross-validation. We also applied independent validation using a set of 
known drug-indications and drug-adverse events—which were not used in training. The external source of 
indications was a list of indications from the Medi-Span Drug Indication DatabaseTM, which were not used in 
training. The external list of adverse events was taken from the public version of Adverse Event Reporting System 
(AERS). To filter out spurious relations, we restrict our attention to reports that contain either only one suspect drug, 
or only one adverse event. Furthermore, we restricted our attention to pairs that have a raw frequency of at least 500 
to further filter spurious relations. 

Results 

The adverse events in our training set consist of 570 known adverse events taken from Medi-Span. We used only 
adverse events marked by Medi-Span to be in the most severe category and most frequent category. Our 980 
indications consist of drug-disease pairs from the NDFRT ontology connected by “may_treat” relations. For both 
the adverse events and the indications, the only criterion of admittance into our training set was based on having at 
least 1,000 co-occurrences within STRIDE. This filter criterion applies to our independent validation set as well. 

Figure 6 shows that we achieve good performance in distinguishing adverse events from indications. Our area under 
the receiver operating curve (AUC) was 0.85 in cross-validation and 0.846 in independent validation. To 
independently validate, we used a database of 79,966 pairs of known indications from Medi-Span (43,159 from 
FDA labels, 16,639 commonly accepted off-label uses, and 20,178 off-label uses having limited evidence). Subject 
to the 1,000 co-occurrences threshold in STRIDE, our analysis workflow retains 28,015 pairs. Analogously, from 
851 AERS adverse event pairs that occurred at least 500 times in AERS, our analysis workflow retained 385 pairs. 
The classifier trained on the original training set achieved an AUC of 0.846 in this independent validation. The 
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classifier uses only ten features and retains 
performance on independent validation; thus, our 
method does not suffer from significant over-
fitting. 

 

Discussion  

Given the amount of data available in AERS [26], 
researchers are developing methods for detecting 
new or latent multi-drug adverse events [27, 28], 
for detecting multi-item adverse events [28, 29], 
and for discovering drug groups that share a 
common set of adverse events [30]. Biclustering 
and association rule mining are able to capture 
many-to-many relations between drugs and 
adverse events [29, 30]. Increasingly there are 
efforts to use other data sources, such as EHRs, for 
the purpose of detecting potential new AEs [31] in 
order to counterbalance the biases inherent in 
AERS [32] and to discover multi-drug AEs [33]. 
Researchers have also attempted to use billing and 
claims data for active drug safety surveillance [14, 
34], applied literature mining for drug safety [18], 
and tried reasoning over published literature to 
discover drug-drug interactions based on 
properties of drug metabolism [35]. 

We take a complementary approach that begins 
from the medical record. To our advantage, medical records provide backgrounds frequencies unaffected by some of 
the reporting biases that afflict AERS—thus providing reliable denominator data. We use the frequency distribution 
and the temporal ordering of drug-disease pairs in a large corpus to define ten features based on which we can 
identify known drug-indication and drug-AE pairs with high accuracy. Approaching the problem in this manner 
allows us to comprehensively track the drug and disease contexts in which the AE patterns occur; and use those 
patterns to evaluate putative new AEs.  The ability to distinguish indications from adverse events directly opens up 
the possibility of detecting new drug-AE pairs. Finally, this capability is a first-step towards the data driven 
detection of multi-drug-multi-disease associations.  

Our results hinge upon the efficacy of the annotation mechanism. We have previously conducted a comparative 
evaluation of the concept recognizer—Mgrep—which is used in the NCBO Annotator [21]. The precision of 
concept recognition varies depending on the text in each resource and type of entity being recognized: from 87% for 
recognizing disease terms in descriptions of clinical trials to 23% for PubMed abstracts, with an average of 68% 
across four different sources of text. We are currently conducting evaluations for text in clinical reports. Early 
results show, a 93% recall for detecting drug mentions in clinical text using RXNORM. In future work, we will 
perform manual chart review for random samples of reports to validate our ability to recognize drugs and diseases in 
medical records. As mentioned before, our dataset is about 10,000 times larger than those used in the i2b2 NLP 
challenges [12]. Thus, for performance reasons, we used our annotator workflow, which performs a heavily 
optimized exact string matching which is computationally efficient. Finally, the primary purpose of this study is to 
demonstrate that it is possible to distinguish drug-indication pairs from drug-AE pairs. Once feasibility is 
established, we can focus on the question of identifying the “best” NLP system to use. We expect better NLP 
methods to improve our results. 

Temporal ordering of first mentions in medical records is subject to sources of confounding. Clinically, some 
diseases like dementia or cancer tend to afflict older populations, so their first mentions are more likely to 
temporally follow drugs in general. From purely a statistical perspective, common concepts are more likely to have 
an earlier first-mention than rare concepts. Our LOESS regression estimate explicitly accounts for the above sources 
of confounding. Confounding by co-morbidity is not addressed directly by our current method, and we plan to 
directly account for it in our future work.  

 
 

Figure 6. Receiver operating curve (ROC) for our SVM 

Classifier shows that we can distinguish between drug–
indication pairs from drug–AE pairs. The area under the 
curve (AUC) evaluates classification quality in a more 
comprehensive manner than accuracy. 
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Beyond indications and adverse events, we plan to generalize our method to recognize, for example, likely off-label 
drug usages. Concurrent with this work, we studied the use of a temporal sliding window (as opposed to first 
mentions) with promising results for detecting off-label drug usage [36]. Given that some adverse effects may 
surface only years after the treatment, while others are acute. Adjustable windowing may refine our ability to 
characterize and distinguish adverse events in the future. Clinical notes also contain rich contextual markers like 
section headings (e.g., family medical history) that could improve the precision of the analysis when taken into 
account. Thus, we plan to use this information in future iterations of our analysis workflows.  

Several limitations apply to this work. We restricted our analysis to drug-disease pairs with at least 1000 co-
mentions; while it ensures the statistical significance of our observations, this restriction also prevents us from 
detecting rare severe adverse events. This problem can be alleviated if we can apply our analysis to larger (e.g. 
regional and national level) databases, or if we apply computationally expensive algorithms that can statistically 
“salvage” some of the pairs that we exclude in this work. Another limitation is that our framework does not attempt 
to discern adverse drug events from drug side effects. Finally, we treated drugs as drug ingredients, which is at a 
very fine granularity; it may be valuable to perform aggregation and do analysis at the drug, drug class, and drug 

combination levels.   

Our disease terms were restricted to SNOMED-CT because SNOMED-CT is the domain of disease concepts 
connected by “may_treat” relations as defined in NDFRT. Our workflow relied on the “may_treat” relations to train 
our SVM to recognize indications. In contrast to NDFRT, AERS specifies its diseases using the Medical Dictionary 
for Regulatory Activities (MedDRA) ontology. To map these AERS disease terms to SNOMED-CT, we applied our 
annotation workflow on the AERS text itself as well as used the synonymy relations between MedDRA and 
SNOMED-CT found in UMLS. In our annotation of the medical records, we used these synonymy relations so as to 
include additional synonyms and linguistically colloquial phrases offered by MedDRA.  

In the current work, MedDRA terms unmapped to SNOMED-CT were excluded. We decided to choose a single 
ontology because this makes the hierarchical aggregation easier to interpret. Aggregation is one of the most 
computationally expensive tasks; having successfully applied our methods using SNOMED-CT, the largest of the 
ontologies, we are confident that we will be able to apply the same methods to reason simultaneously over many 
more ontologies in the future.  Finally, compared to SNOMED-CT, MedDRA is not as exhaustive in enumerating 
plural forms and synonyms; using MedDRA would reduce the recall of our annotation workflow, which relies on 
exact matches. Thus, we ultimately chose SNOMED-CT as our primary ontology for disease terms and included 
MedDRA terms that could be mapped to it. 

 

Conclusion 

Statistically significant co-occurrences of drug–disease mentions in the clinical notes can potentially be used to 
detect drug safety signals. Currently, when examining pairs of drug–disease co-occurrences from textual clinical 
notes, a major challenge is to discern indications from adverse events (AEs) in a drug–disease pair. We demonstrate 
that it is possible to make this distinction by combining the frequency distribution of the drug, the disease, and the 
drug-disease pair as well as the temporal ordering of the drugs and diseases in each pair across more than one 
million patients. 

By using LOESS regression models derived from one million patients’ records, which does not make independence 
assumptions built into traditional disproportionality based methods, we account for basic sources of confounding. 
Through a novel combination of using large datasets, annotation, and analytics, we discern drug indications from 
adverse events with good independent validation performance.  
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