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INTRODUCTION

Glioblastoma (GBM), the most common primary brain tumor, 
is a highly aggressive malignancy with poor prognosis,1 despite 
multimodal treatment with surgery, radiotherapy, and chemo-
therapy.2-4 High-grade GBM exhibits a devastating malignant 
progression, characterized by resistance to conventional ther-
apies and an infiltrative, progressive nature.5,6 A major barrier to 
the effective treatment of GBM is invasion of tumor cells into 
normal brain area. It has been reported that these malignant 
characteristics of GBM are related to the presence of stem-like 
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cells at the invasive front,7 as represented in vitro by GBM tu-
morspheres (TSs).8 Accordingly, in this study, we utilized GBM 
patient-derived primary TSs and their mouse orthotopic xeno-
graft models, which have been highlighted as good model plat-
forms for testing drug effects and characterizing specific fea-
tures of GBM, including stemness and invasiveness.9-12

Although there have been many attempts to develop novel 
therapeutic strategies, these efforts have failed to improve the 
overall survival of GBM patients,13 highlighting the urgent need 
for new conceptual approaches to overcome treatment failure. 
During the invasion process, GBM cells interact with a variety 
of extracellular matrix (ECM) molecules;14,15 thus, targeting 
ECM and stromal factors has recently emerged as a therapeu-
tic strategy for circumventing the malignant behavior of GBM.16 
Mesenchymal stem cells (MSCs), typically isolated from bone 
marrow and well-known as multipotent precursors, could be 
plausible target in this regard, since mesenchymal stem-like 
cells (MSLCs) have been detected in brain tumors and rec-
ognized to play important roles in the tumor microenviron-
ment.17-19 We also reported that tumor-derived MSLCs (tMSLCs) 
promote the invasiveness of GBM through the C5a/p38 MAPK/
ZEB1 axis,20 establishing tMSLCs as prognostic indicators21 and 
potential novel therapeutic targets in the stroma.

Our previous studies suggested the subventricular zone (SVZ), 
which is distinct from the tumor region, as the origin of GBM.22-24 
Notably, MSLCs have also been isolated from ventricles; how-
ever, participation of these ventricle-derived MSLCs (vMSLCs) 
in cancer progression remains largely unexplored. Similar to 
the case for tMSLCs, we hypothesized that vMSLC are capable 
of promoting the invasion of GBM and are associated with poor 
prognosis. Here, we evaluated the contribution of vMSLCs to 
the invasiveness of GBM TSs and ventricle spheres (VSs) and 
sought to elucidate the molecular mechanisms underlying their 
pathological roles.

MATERIALS AND METHODS

Patient information and MR images
A total of seven IDH1 wild-type GBM patients, newly diag-
nosed without a prior history of treatment with surgery, che-
motherapy, or radiotherapy, were included in this study (Table 

1). MR images of patients were taken using Achieva 3.0T sys-
tem (Philips Medical Systems, Best, The Netherlands) 7 days 
or less before removal of the respective brain tumor. Axial im-
ages were planned parallel to the anterior and posterior limb 
of the corpus callosum. This study was performed in line with 
the principles of the Declaration of Helsinki. Approval was 
granted by the Institutional Review Board of Severance Hos-
pital, Yonsei University College of Medicine (4-2012-0212, 
4-2014-0649).

Isolation of GBM TSs, VSs, tMSLCs, and vMSLCs
Patient-derived GBM cells were established from fresh tissue 
specimens, as previously described.10 For culture of GBM TS 
and VS,12,25,26 cells were cultured in TS complete medium, com-
posed of DMEM/F-12 (Mediatech, Manassas, VA, USA), 1x B27 
(Invitrogen, San Diego, CA, USA), 20 ng/mL bFGF, and 20 ng/
mL EGF (Sigma-Aldrich, ST. Louis, MO, USA). For culture of 
tMSLC and vMSLC, cells were cultured in MSC complete me-
dium consisting of MEMα, 10% FBS (Lonza, Basel, Switzer-
land), 2 mM L-glutamine (Mediatech), and 100× antibiotic–
antimycotic solution (Gibco, Gaithersburg, MD, USA). For 
generation of MSLC-conditioned media (CM), medium was 
changed from MSC complete medium to TS complete medi-
um when MSLCs had adhered to the dish and reached >70% 
confluence. MSLC-cultured TS complete medium was col-
lected after 48 h, and centrifuged to exclude cell debris. Char-
acterization of MSLCs with respect to morphology, marker 
expression, mesenchymal differentiation, and tumorigenesis 
were performed as previously described.17 The surface markers 
CD105, CD31, and CD90 (eBioscience, San Diego, CA, USA), and 
CD73, CD45, and NG2 (BD Pharmingen, San Jose, CA, USA) 
were detected using flow cytometry.

3D invasion assay
Each well of a 96-well plate was filled with matrix composed 
of Matrigel, collagen type I (Corning Incorporated, Tewksbury, 
MA, USA), and TS complete media. Single spheroids were 
seeded inside the matrix prior to gelation, after which TS com-
plete media was applied over the gelled matrix to prevent dry-
ing. The invaded area was quantified as follows: occupied area 
at (72 h–0 h)/occupied area at 0 h.

Table 1. Clinical Characteristics of the Samples in This Study

Case Used cell type Sex Age IDH1 mutation MGMT promoter 1p/19q
09–03 tMSLC M 39 Wild-type Methylated Intact
13–15 tMSLC, vMSLC M 60 Wild-type Unmethylated Intact
14–15 TS M 67 Wild-type Methylated Intact
14–46 tMSLC M 61 Wild-type Unmethylated Intact
15–88 TS, VS M 61 Wild-type Unmethylated Intact
16–27 vMSLC M 50 Wild-type Unmethylated Intact
17–16 vMSLC M 53 Wild-type Methylated Intact

tMSLC, tumor-derived mesenchymal stem-like cell; vMSLC, ventricle-derived mesenchymal stem-like cell; TS, tumorsphere; VS, ventricle sphere. 
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Gene expression microarray datasets and analysis
Total RNA was extracted from GBM TSs and their matched pa-
tient tissues using a Qiagen RNeasy Plus Mini kit according to 
the manufacturer’s protocol, and loaded onto an Illumina Hu-
manHT-12 v4 Expression BeadChip (Illumina, San Diego, CA, 
USA). After applying a variance-stabilizing transformation, 
data were quantile-normalized using the R/Bioconductor lumi 
package.27 Heat maps were generated using GENE-E software. 
Genes were functionally annotated by over-representation 
analysis using GO gene sets, and then visualized as an enrich-

ment map using Cytoscape with ClueGO28 plug-in. Enriched 
GO terms were categorized according to their kappa scores 
(>0.4). Statistical significance was determined using a two-sid-
ed hypergeometric test, and only nodes with a Bonferroni-ad-
justed p-value<0.01 were displayed. The datasets generated 
during and/or analyzed during the current study are available 
from the corresponding author upon reasonable request.

Western blotting
Cell lysates were separated by SDS-PAGE on 10% Tris-Glycine 

Fig. 1. Isolation of GBM patients-derived cells. (A) Schematic diagram of brain anatomy and cell isolation. TSs and tMSLCs were isolated from the tumor 
region (yellow), and VSs and vMSLCs were isolated from the trigone of the lateral ventricle region (red). (B-D) Representative T1 contrast-enhanced MR 
images obtained from case 13–15. (B) Postoperative axial image. (C) Preoperative axial image. (D) Preoperative coronal image. tMSLC, tumor-derived 
mesenchymal stem-like cell; vMSLC, ventricle-derived mesenchymal stem-like cell; TS, tumorsphere; VS, ventricle sphere; GBM, glioblastoma.
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Fig. 2. Characterization of tMSLCs and vMSLCs. (A) Morphology of MSLCs were captured under MSC culture conditions (scale bar=500 μm). (B) Un-
der trilineage differentiation condition, calcium deposition was stained with Alizarin Red (upper panel), intracellular lipid droplets were stained with 
Oil Red O (middle panel), and proteoglycans and glycosaminoglycans in the pellet were stained with Toluidine Blue (lower panel). Scale bar=200 μm. (C) 
Expressions of surface antigens were evaluated by flow cytometry for mesenchymal (CD105, CD90, and CD73), leukocyte (CD45), endothelial (CD31), 
and pericyte (NG2) markers. (D) Sections of mouse brains were obtained from euthanized mice at 6 months post-injection of MSLCs and H&E stained 
to determine tumorigenesis capacity (scale bar=1000 μm). tMSLC, tumor-derived mesenchymal stem-like cell; vMSLC, ventricle-derived mesenchymal 
stem-like cell; MSC, mesenchymal stem cell.
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gels. Proteins were transferred to nitrocellulose membranes 
and probed with antibodies against β-catenin (BD Biosciences, 
San Jose, CA, USA), N-cadherin (R&D Systems, Minneapolis, 
MN, USA), Zeb1 (Sigma-Aldrich), CD44 (Cell Signaling Tech-
nology, Beverly, MA, USA), and GAPDH (Santa Cruz Biotech-
nology, Santa Cruz, CA, USA). Proteins were detected using 
horseradish peroxidase-conjugated IgG (Santa Cruz Biotechnol-
ogy) with Western Lightning Plus-enhanced chemiluminescence 
reagent (PerkinElmer, Waltham, MA, USA). Images were cap-
tured using ImageQuant LAS 4000 mini (GE Healthcare Life 
Sciences, Little Chalfont, UK). Bands were quantified by densi-
tometry using ImageJ software.

Mouse orthotopic xenograft model
Male athymic nude mice (6 weeks old; Central Lab. Animal Inc., 
Seoul, Korea) were used in this study. Mice were housed in 
micro-isolator cages under sterile conditions, and observed for 
at least 1 week before the study initiation to ensure proper 

health. Lighting, temperature, and humidity were controlled 
centrally. Dissociated GBM TSs (5×105 cells/mice; usual cell 
number for GBM patient-derived TSs) and the same number of 
tMSLCs or vMSLCs were implanted into the right frontal lobe of 
mice at a depth of 4.5 mm using the guide-screw system. If body 
weight decreased by more than 15% compared to the maxi-
mum, mice were euthanized according to the approved proto-
col. For immunohistochemistry, 5-μm-thick sections were ob-
tained using a microtome and transferred onto adhesive slides. 
Antigen retrieval and antibody attachment were performed 
using an automated instrument (Discovery XT). Zeb1 was de-
tected using a peroxidase/DAB staining system. All experimen-
tal procedures involving animals were approved by the Yonsei 
University College of Medicine Institutional Animal Care and 
Use Committee (2017-0347). Informed consent was obtained 
from all individual participants included in the study.
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RESULTS

Isolation and characterization of GBM patient-derived 
cells
To evaluate the effects of vMSLCs on GBM, we isolated several 
types of GBM patient-derived cells, including TSs (n=2) and 
tMSLCs (n=3) from the tumor region of GBM patients, and 
VSs (n=1) and vMSLCs (n=3) from the trigone of the lateral 
ventricle region (Fig. 1 and Table 1). We next characterized 
tMSLCs and vMSLCs to determine whether they showed typi-
cal characteristics of human MSCs.29 Both cell types were 
spindle shaped and adherent to plastic, with an overall mor-
phology similar to that of MSCs (Fig. 2A). Upon culture in tri-
lineage-inducing media, these cells underwent osteogenesis, 
adipogenesis, and chondrogenesis, indicating their human 
MSC-like mesenchymal differentiation capacity (Fig. 2B). Al-
though no common pathognomonic markers for human MSCs 
are available, it is generally agreed that MSCs are positive for 
CD105, CD90, and CD73, and negative for CD45.17,29 Both 
MSLC types met these surface marker criteria (Fig. 2C). Since 
MSCs from normal mouse brains and glioma xenografts are 

located around the vessels,30 we also sought to determine their 
relationship to perivascular cells by evaluating the expression 
of CD31 (endothelial marker) and NG2 (pericyte/smooth 
muscle cell marker). Both MSLC types were negative for CD31 
and NG2 (Fig. 2C). Notably, both types of stromal cells lacked 
tumorigenesis capacity in an in vivo mouse orthotopic xeno-
graft model, distinguishing these cells from tumor cells such as 
GBM TSs (Fig. 2D). These data suggest that tMSLCs and 
vMSLCs have characteristics that are very similar to those of 
human MSCs in terms of morphology, differentiation capacity, 
expression of surface markers, and absence of tumorigenesis 
capacity.

vMSLC-induced acceleration of invasion in GBM TSs 
and VSs
To assess the effects of vMSLCs on the invasiveness of GBM 
TSs, we first collected CM from MSLC-cultured dishes. We then 
compared the invasiveness of GBM TSs using collagen-based 
3D invasion assays in the presence or absence of MSLC-CM 
(Fig. 3A). In TSs derived from both case 14-15 (TS14-15) and 
case 15-88 (TS15-88), tMSLC-CM significantly enhanced in-
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vasiveness compared with the control, whereas vMSLC-CM 
enhanced invasion to an even greater extent. Three different 
tMSLC (case 09-03, 13-15, 14-46) and vMSLC (case 13-15, 16-

27, 17-16) isolates showed consistent patterns, indicative of 
strong vMSLC-mediated acceleration of invasion in GBM TSs 
(Fig. 3B). Western blotting showed augmented expression of 
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invasion-associated proteins in response to tMSLC-CM and 
even greater augmentation in response to vMSLC-CM, con-
sistent with 3D invasion assays (Fig. 3C and D). vMSLC-CM 
also significantly increased the invasiveness of mouse VS and 
human VS (VS15-88) to a greater extent than tMSLC-CM or 
control groups, implying that MSLC-secreted factors, especial-
ly from vMSLCs, can cause VSs to acquire an infiltrative pheno-
type, reflecting their shared physiological location (Fig. 4A and 
B). Consistent with functional assays, western blotting of VS15-
88 showed augmented expression of invasion-associated pro-
teins in response to tMSLC-CM and even greater augmentation 
in response to vMSLC-CM (Fig. 4C and D). These data suggest 
that vMSLCs accelerate the invasiveness of GBM TSs and VSs.

Transcriptome analysis of vMSLCs
To elucidate the molecular mechanisms underlying the inva-
sion-promoting effects of vMSLCs, we analyzed the gene ex-
pression profiles of tMSLCs and vMSLCs using microarrays.31 
Unsupervised clustering using the tSNE method showed that 
whole-gene expression profiles were similar between tMSLCs 
and vMSLCs (Fig. 5A). Therefore, we analyzed 643 differential-
ly expressed genes between tMSLCs and vMSLCs (Fig. 5B). 
Among them, 362 vMSLC-upregulated genes were significant-
ly enriched in gene sets closely related to invasiveness, includ-
ing those associated with cell migration, chemokine produc-
tion, and chemotaxis (Fig. 5C). Specifically, several cytokines 
investigated in our previous study,20 including IL6, CXCL8, 
and CCL2, showed significantly higher expression levels in 
vMSLCs than tMSLCs (Fig. 5D). In addition, other cytokines 
that are associated with chemotaxis, migration, and invasion, 
including VEGFC, CXCL2, CCL2, CXCL5, and IL1A, showed 
significantly higher expression levels in vMSLCs than tMSLCs 
(Fig. 5E). These results imply that several chemokines secreted 
by vMSLCs contribute to the invasiveness of GBM TSs and VSs.

Validation in a mouse orthotopic xenograft model
For in vivo validation of the invasion-promoting effects of 
vMSLCs, we used a mouse orthotopic xenograft model. Each 
mouse was implanted with GBM TSs (TS15-88), together with 
tMSLCs or vMSLCs, and invasiveness relative to the TS-only 
implanted group was determined based on immunostaining 
for Zeb1 (Fig. 6A). The TS+vMSLC group showed a signifi-
cantly greater invaded area compared to the TS only and TS+ 
tMSLC groups (Fig. 6B), recapitulating results from in vitro 3D 
invasion assays.

DISCUSSION

Cancer treatment strategies have commonly focused on the 
tumor parenchyma itself. However, considered as an organ, the 
tumor contains not only proliferating cancer cells, but also di-
verse non-tumor stromal cells, such as fibroblasts, macro-
phages, and endothelial cells, that establish crosstalk with each 
other. In the present study, we provide the first characteriza-
tion of GBM patient-derived vMSLCs in both functional and 
molecular terms, identifying these cells as stromal interaction 
partners of GBM.

The detection of MSLCs in the tumor microenvironment has 
raised interest in their role in tumor progression. However, the 
evidences on this point are often contradictory, presumably 
owing to differences in the origin and type of tumors.32,33 The 
SVZ was recently proposed as the region of cellular origin of 
GBM,23,24 notwithstanding the fact that cells in the SVZ are 
pathologically normal. Since vMSLCs are derived from this re-
gion, it is possible to infer that the interactions between vMSLCs 
and potential GBM cells-of-origin are physiologically reason-
able. Although intermediary steps and molecular processes 
from cell-of-origin to GBM remain to be elucidated, vMSLC-
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mediated acquisition of an infiltrative phenotype in the SVZ and 
subsequent movement to the cortex region to form the GBM 
mass could be a plausible scenario. The vMSLC-mediated ac-
celeration of invasiveness in mouse and human VSs as well as 
GBM TSs (Fig. 4) supports this idea.

The invasive capabilities of tumors, together with mesenchy-
mal transition and distant metastasis, are hallmarks of most 
solid tumors.34 Invasiveness is a major challenge in the clinical 
management of GBM patients.6,35 In addition, our previous re-
search showed that the invasive subtype of GBM is associated 
with a worse prognosis than the mitotic subtype,36 suggesting 
that invasiveness could be a robust classifier of GBM that re-
flects biological phenotype and patient prognosis, despite the 
intertumoral heterogeneity of GBM. However, no therapeutic 
interventions targeting invasion are available for the treatment 
of GBM patients. Despite the enormous efforts devoted to de-
veloping targeted therapies for GBM, no chemical agents are 
available for GBM patients except temozolomide (TMZ), a cy-
totoxic agent that causes several side effects. We propose that 
targeting vMSLCs and vMSLC-secreted cytokines would con-
stitute a novel invasion-inhibiting therapeutic strategy.

The goals of future studies are to develop and assess vMSLC-
targeting therapeutic strategies for GBM. Prudence should guide 
attempts to increase the extent of resection (EOR) in GBM pa-
tients, owing to the anatomical and functional characteristics 
of the brain. Since targeting invasiveness through vMSLC could 
definitize the margin between the tumor and normal regions, it 
can be utilized as a neoadjuvant therapy to maximize EOR and 
reduce the probability of recurrence. In addition, vMSLCs could 
act as boosters of GBM progression at the region where GBM 
genesis originates. Given this originating region, vMSLC-tar-
geted therapeutics could suppress re-invasion of GBM cells-
of-origin into cortex regions and prevent subsequent relapse. 
Importantly, this therapy could be combined with other thera-
peutic modalities, including TMZ and radiotherapy, avoiding 
overlapping of action mechanisms. Future works with larger 
number of ventricle-associated samples are required to devel-
op precise therapeutic strategies and evaluate the relationship 
with pharmacogenomic markers, such as methylation patterns 
of MGMT promoter regions.37
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