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Abstract
We propose methods to estimate sufficient reductions in matrix-valued predictors for regression or classification. We assume
that the first moment of the predictor matrix given the response can be decomposed into a row and column component via a
Kronecker product structure. We obtain least squares and maximum likelihood estimates of the sufficient reductions in the
matrix predictors, derive statistical properties of the resulting estimates and present fast computational algorithmswith assured
convergence. The performance of the proposed approaches in regression and classification is compared in simulations.We
illustrate the methods on two examples, using longitudinally measured serum biomarker and neuroimaging data.
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1 Introduction

In many applications, predictors are matrix-valued. For
example, in cohort studies conducted to study diseases,
multiple correlated biomarkers are measured repeatedly dur-
ing follow-up. It is of interest to assess their associations
with disease outcomes to aid understanding of biological
underpinnings of disease and to use them individually or
in combinations in diagnostic or prognostic models. Neu-
roimaging studies use data from electroencephalography
(EEG) that records electrical activity of the brain over time,
to predict cognitive outcomes and to identify brain regions
associated with a clinical response. In these examples, the
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predictor vectors measured at different time points can be
represented as a matrix.

Multivariate statistical methods can be used to analyze
matrix-valued predictors by mapping them into vectors.
Frequently this is not feasible for data sets of realistic
size. For instance, treating EEG data measured at 60 chan-
nels each for 256 time points as a vector in a regression
model would require estimating 15360 regression param-
eters, necessitating practically impossibly large samples.
Moreover, vectorizing a matrix destroys the inherent struc-
ture of the predictors that may contain important modeling
information.

Only few statistical approaches accommodate a matrix
structure of the predictors. Dimension folding [29] extends
moment-based sufficient dimension reduction (SDR) meth-
ods for matrix-valued predictors by reducing the predictors’
row and column dimensions simultaneously without loss
of information on the response. [34] proposed and studied
first-moment-based SDRmethods for combining several lon-
gitudinally measured predictors into a composite score for
prediction or regression modeling. They assumed that the
means and the second moments of the predictors can be sep-
arated into apredictor-specific anda time-specific component
via a Kronecker product structure and proposed an estima-
tion approach, longitudinal sliced inverse regression (LSIR),
based on empirical moments of the predictors given the out-
come. TheKronecker product structure substantially reduces
the complexity of the first-moment-based dimension reduc-
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tion subspace. The resulting score yielded better predictive
accuracy than standard first-moment-based SDR methods,
such as sliced inverse regression (SIR) [31], applied to the
vectorized predictors.

[17] developed model-based methods, dimension folding
principal component analysis (PCA) and dimension folding
principal fitted components (PFC), that extend conventional
PCA and PFC [12] to matrix-valued data. They require the
predictors be normally distributed with Kronecker product
covariance structure. In the context of classification, [32] pro-
posed a discriminant analysis model to predict a categorical
response for mixed categorical and tensor-valued predictors.
The method reduces the dimension of the tensor predictor
within each group defined by the categorical covariates.

In the machine learning literature, methods proposed for
matrix-valued predictors that do not use information on
outcome; i.e., unsupervised dimension reduction methods
include 2DPCA [41], generalized 2D principal component
analysis (G2DPCA) [27], (2D)2PCA [45], GLRAM [42],
unified PCA [37] and probabilistic higher-order PCA [44].
Regression approaches include reduced-rank generalized lin-
earmodels using amixture of array-valued and vector-valued
predictors [47] and a tensor partial least squares algorithm
for the regression of a continuous response on tensor-valued
predictors [46]. Both focus on the forward regression which
they assume is linear in the vector-, matrix- or tensor-valued
predictors. Thesemethods frequently suffer from lack of con-
vergence and do not yield closed form solutions.

In this paper, we propose least squares and maximum
likelihood-based approaches to estimate the sufficient reduc-
tions in matrix-valued predictors under a Kronecker product
structure for the predictor means given the response without
requiring a specific structure for the covariance in contrast to
previousmethods [17,34]. By casting the estimation problem
in a linear model framework, we obtain least squares-based
estimates that are asymptotically optimal and competitive
with maximum likelihood estimates (MLEs) for practically
relevant sample sizes.

2 Background on sufficient dimension
reduction

Let X = (X1, . . . , X p)
T ∈ R

p be a vector of p predic-
tors and Y ∈ R denote the outcome variable. sufficient
dimension reduction, SDR [9], aims to find a function or
“reduction” of X, R : Rp → R

d with d ≤ p, which con-
tains the same information as X about the response Y . That
is, F(Y | X) = F(Y | R(X)), where F is the conditional
distribution function of Y givenX. This version of dimension
reduction is called sufficient because the lower-dimensional
R(X) (d < p) replaces the predictor vector X without any
loss of information on Y . The dimension d of the sufficient

reduction R(X) is the dimension of the regression of Y on
X.

With few exceptions [5,21,28], mostly linear sufficient
reductions, R(X) = ηTX, η ∈ R

p×d , have been studied in
the SDR literature [e.g., [3,8–10,14,31]]. Linear reductions
are not unique.1 Therefore, in linear SDR the target is the
subspace S(η) = span(η), where η is any basis of S(η)

satisfying F(Y | X) = F(Y | ηTX).
Early SDR methods estimated sufficient reductions using

kernel or core matrices � with span(�) ⊆ S(η). Because
� is computed from moments of the conditional distribution
of X | Y , this version of SDR is called moment-based SDR
(see, e.g., [3,7,14,30,31]).

Model-based SDR is based on the important result that
if R(X) is a sufficient reduction for the forward regression
Y | X, then it is also a sufficient statistic for the inverse
regression X | Y [11]. Exploiting this, both linear and non-
linear sufficient reductions for the regression of Y on X have
been derived by requiring the distribution of X | Y be in the
elliptically contoured or exponential family [4,5,11–13].

2.1 First-moment-based SDR subspace

In this paper, we focus on inference on the first-moment-
based SDR subspace (FMSDR), which is the span of the
centered mean of the inverse regression of X on Y , E(X |
Y ) −E(X), scaled by the inverse of the marginal covariance
of X, Σx. That is, we let

SFMSDR = Σ−1
x span (μY − μ) , (1)

where μY = E(X | Y ) and μ = E(X). If the predictors X
satisfy the linearity condition [9, p.188] that requires E(X |
ηTX) be linear in ηTX for η such that F(Y | X) = F(Y |
ηTX), then SFMSDR ⊆ S(η). The linearity condition refers
exclusively to themarginal distribution ofX. It holds whenX
has an elliptical distribution, such as multivariate normal or
multivariate t , and also holds approximately when p is very
large [24,38].

Under the linearity condition, any core matrix � whose
column space spans the same space asSFMSDR can be used to
either exhaustively or partially estimate S(η). SDR methods
based on the first conditional moment of the inverse predic-
tors X | Y , such as SIR [31], use � = Σ−1

x Var(E(X | Y )).
[3] proposedparametric inverse regression (PIR) to obtain

a least squares estimate of S(η) from fitting the multivariate
linear inverse regression model

X = μ + BfY + ε, (2)

1 ηTX = ηTOTOX, for any orthogonal matrix O.
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where fY is an r ×1 vector of functions of Y withE(fY ) = 0,
the p × r unknown parameter matrix B is unconstrained,
E(ε | Y ) = 0 and Var(ε | Y ) = Var(X | Y ) = ΔY .

Model (2) implies E(X | Y = y) = μy = μ + Bfy ,
and thus, SFMSDR = Σ−1

x span(B), which is estimated from
a random sample (Yi ,XT

i ), i = 1, . . . , n, as follows. Let X
denote the n × p matrix with rows (Xi − X)T , where X =∑n

i=1 Xi/n, and F is the n × r matrix with rows (fyi − f̄)T ,
with f̄ = ∑n

i=1 fyi /n. Regressing X on F yields the ordinary
least squares (OLS) estimate for B,

B̂ = (FT
F)−1

F
T
X (3)

in model (2). Letting PF = F(FT
F)−1

F
T denote the projec-

tion matrix onto the space spanned by the columns of F, an
estimate of the matrix ΔY is

V̂ar(X | Y ) = X
T (I − PF)X

n − rank(F)
= X

TQFX

n − rank(F)
, (4)

where QF = In − PF. Equations (1) and (2) imply that
dim(SFMSDR) = rank(B) ≤ p.

The first model-based SDR method for the estimation
of SFMSDR in (1), principal fitted components (PFC [12]),
requires X follow model (2) and also is conditionally nor-
mally distributed given Y , with

X = μ + Γ γ fY + ε, ε ∼ Np(0,Δ), (5)

where Γ ∈ R
p×d is an orthogonal basis of the linear space

SΓ = span {μY − μ,Y ∈ SY }, with SY the sample space of
Y , and γ ∈ R

d×r an unrestricted rank d parameter matrix,
with d ≤ r . Thus, PFC is a constrained version of PIR [3] in
that it also requires X | Y be normal with constant variance
Δ, and the rank d of B in (2) be known so that B = Γ γ .

Under (5), [12] showed SFMSDR = span(Γ ) and derived
the maximum likelihood estimate (MLE) of SFMSDR to be

ŜFMSDR = Σ̂−1
x ŜΓ = Δ̂−1ŜΓ

= Δ̂
−1/2
MLE spand(Δ̂

−1/2
MLE Δ̂fitΔ̂

−1/2
MLE ), (6)

where

Δ̂MLE = Δ̂res + Δ̂1/2
res V̂K̂V̂T Δ̂1/2

res . (7)

In (7), Δ̂res is obtained bymultiplying (4) by (n−rank(F))/n,
and Δ̂fit = X

T
X/n − Δ̂res = X

T
X/n − X

TQFX/n =
X
TPFX/n. The eigenvectors of Δ̂

−1/2
res Δ̂fitΔ̂

−1/2
res are the

columns of V̂ = (̂v1, . . . , v̂p) that correspond to its ordered
eigenvalues, λ̂1 ≥ . . . ≥ λ̂d > λ̂d+1 ≥ . . . ≥ λ̂p, and

K̂ = diag(0, . . . , 0, λ̂d+1, . . . , λ̂p).

When d = r , (7) reduces to Δ̂MLE = Δ̂res. The MLE of the
sufficient reduction is

R̂MLE(X) =
(
v̂T1 Δ̂

−1/2
MLEX, . . . , v̂Td Δ̂

−1/2
MLEX

)
. (8)

3 Matrix-valued predictors

For ease of exposition, we present the model in the longitu-
dinal setting, where the p×1 predictor vectorX is measured
at T different time points. Specifically, for sample i with
response variable Yi ∈ R, i = 1, . . . , n, the predictors can
be represented as the p × T -matrix

Xi = (Xi1, . . . ,XiT ) =

⎡

⎢
⎢
⎢
⎣

Xi11 · · · Xi1T

Xi21 · · · Xi2T
...

. . .
...

Xip1 · · · XipT

⎤

⎥
⎥
⎥
⎦

, (9)

which corresponds to the pT×1vec(Xi ) = (XT
i1, . . . ,X

T
iT )T ,

comprised of the columns of Xi in (9) stacked one after
another. We assume that all samples have measurements for
all predictors at the same time points.

To accommodate the longitudinal structure of X | Y , we
assume that the centered first moment of X is decomposed
into a time and a predictor component as in [34], and write
the linear inverse regression model (2) as bilinear in the rows
and columns of X,

X = μ + βfYαT + ε, (10)

where fY is a k × r matrix of functions in Y with E(fY ) = 0,
α ∈ R

T×r , and β ∈ R
p×k . In vector form, model (10) is

written as

vec(X) = vec(μ) + (α ⊗ β)vec(fy) + vec(ε). (11)

The T × r parameter matrix α captures the mean structure
over time, and the p × k matrix β captures the mean struc-
ture of the predictors regardless of time. The error ε satisfies
E(ε) = 0 and Var(ε | Y ) = Var(X | Y ) = ΔY . Model (11)
is analogous to model (2) with the difference that vec(fy) in
(11) is a kr×1-vector and the parameter matrixB is replaced
by the Kronecker product of α and β, which induces spar-
sity in the sense of reducing the number of parameters to
estimate.2

[34] showed that, letting Σx denote the pT × pT covari-
ance matrix of vec(X), and Δ = E(ΔY ),

SFMSDR = Σ−1
x span (α ⊗ β) = Δ−1 span (α ⊗ β) , (12)

with dimension dim(SFMSDR) = rank(α) rank(β).

2 From pT kr to pk + Tr .

123



14 International Journal of Data Science and Analytics (2021) 11:11–26

For the PFC version of model (11), we use the corre-
sponding parameterization of the two parameter matrices
α ∈ R

T×r and β ∈ R
p×k , which are both unconstrained.

Assuming rank(α) = d1 and rank(β) = d2, we let α =
Γ1γ 1, where Γ1 is a T × d1 semi-orthogonal matrix whose
columns form a basis for the d1-dimensional span(α), and γ 1
is an unconstrained d1 × r matrix of rank d1. Similarly, there
exists a p × d2 semi-orthogonal matrix Γ2 whose columns
form a basis for the d2-dimensional subspace span(β), and a
d2 × k rank d2 unconstrained matrix γ 2, so that β = Γ2γ 2.
Using this parameterization, model (11) becomes

vec(X − μ) = (Γ1γ 1 ⊗ Γ2γ 2)vec(fY ) + vec(ε)

= (Γ1 ⊗ Γ2)(γ 1 ⊗ γ 2)vec(fy) + vec(ε). (13)

It readily follows that span (μY − μ) = span(Γ1 ⊗Γ2), with
dim (span (μY − μ)) = rank(Γ1 ⊗ Γ2) = d1d2. As a conse-
quence, (12) yields

SFMSDR = Σ−1
x SΓ 1⊗Γ 2 = Δ−1SΓ 1⊗Γ 2 (14)

with dim(SFMSDR) = d1d2. When Σx is separable; i.e.,
Σx = Σ1 ⊗ Σ2, or, slightly less restrictive, when Δy =
Var(vec(X) | Y = y) = Δ1y ⊗ Δ2y , then

SFMSDR = S
Σ−1

1 Γ 1⊗Σ−1
2 Γ 2

= S
Δ−1

1 Γ 1⊗Δ−1
2 Γ 2

since Δ = E (Var(X | Y )) = Δ1 ⊗ Δ2. In this case, the
number of parameters that are needed to estimate SFMSDR in
(14) is further reduced.

4 EstimatingSFMSDR usingmatrix-valued
predictors

We propose several approaches to estimate SFMSDR in (14)
by estimating the component matrices α and β and Γ1 and
Γ2 in models (11) and (13). We assume that the dimension d
is known and comment on inference on d for all approaches
in Sect. 8.

4.1 Least squares Kronecker parametric inverse
regression, (K-PIR (ls))

To obtain least squares (ls)-based estimates of SFMSDR under
model (11), we assume that the predictors are centered
around their overall meanμ. Using the sample level notation
defined in Sect. 2.1 and letting X̃i = Xi − X, i = 1, . . . , n,
the model becomes

X = Fy(α ⊗ β)T + ε, (15)

where Xy : n × pT with i th row vec(X̃i ), α ∈ R
T×r , β ∈

R
p×k , ε : n × pT with E(ε) = 0, Var (vec(ε)) = Δ ⊗ In ,

and Fy is an n × kr matrix with entries f̃yi , where f̃yi =
vec(fyi )− f̄y , and f̄y is the kr ×1 empirical mean of vec(fyi ),
i = 1, . . . , n.

The following theorem, proved in “Appendix,” summa-
rizes the approach and properties of the resulting estimates.

Theorem 1 Assume the data X follow model (15). Let B̂ =
(FT

y Fy)
−1

F
T
y X denote the ordinary least squares estimate in

the unconstrained model X = FyB+ ε. The matrices α̂ and
β̂ defined as

(̂α, β̂) = argminα,β ‖B̂T − α ⊗ β‖2 (16)

and estimated using algorithm 2 in [40], converge in prob-
ability to α and β in the constrained model (11).3 That is,

α̂ ⊗ β̂
p→ α ⊗ β. (17)

When the distribution of X | Y belongs to the exponential
family, then α̂ and β̂ are asymptotically normal.

We refer to any matrices that are obtained as solutions to
(16) as VLP (Van Loan and Pitsianis [40]) approximations.
The algorithm is described in “Appendix.”

Given α̂ and β̂, the least squares-based estimate of Δ =
Var(ε | Y ) is

Δ̂ls = 1

n − rank(Fy)

n∑

i

(
vec(X̃i ) − (̂α ⊗ β̂ )̃fyi

)

(
vec(X̃i ) − (̂α ⊗ β̂ )̃fyi

)T
. (18)

4.2 ML Kronecker parametric inverse regression
(K-PIR (mle))

We derive the MLEs for α and β in model (11) under the
additional assumption that Xi | (Y = yi ), i = 1, . . . , n, are
normally distributed,

vec(Xi ) ∼ NpT (vec(μ) + (α ⊗ β)vec(f̃yi ),Δ), (19)

where f̃yi is defined (Eq. (15)). The corresponding log-
likelihood is

l(μ,α,β,Δ) = −nT p

2
log(2π) − n

2
log |Δ|

−1

2

n∑

i=1

(
vec(Xi ) − vec(μ) − (α ⊗ β )̃fyi

)T

3 The norm ‖ . ‖ denotes the Frobenius norm, ‖A‖ =
(∑

i, j a
2
i j

)1/2
,

for a matrix A = (ai j ).
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Δ−1 (
vec(Xi ) − vec(μ) − (α ⊗ β )̃fyi

)
, (20)

The MLE of μ when the other parameters are fixed is the
sample mean X. We substitute X for μ and use the centered
observations X̃i = Xi − X in what follows. For fixed α and
β, solving the corresponding score equation for Δ yields

Δ̂ = 1

n

n∑

i

(
vec(X̃i ) − (α ⊗ β )̃fyi )

)

(
vec(X̃i ) − (α ⊗ β )̃fyi

)T
. (21)

The score equations forα andβ, however, do not yield closed
form solutions, and we employ the following iterative algo-
rithm for estimation.
K-PIR MLE Algorithm:

1. Initialize Δ̂ at the value Δ̂0 from least squares in (18).
2. Compute α̂1, β̂1 by optimizing the log-likelihood in (20)

numerically with starting values (̂α0, β̂
0
) = (̂αls, β̂ ls),

where (̂αls, β̂ ls) is the approximate ls solution computed
from (16).

3. Compute Δ̂1 from (21) with α = α̂1 and β = β̂1.
4. Repeat steps 2 and 3 until ‖Δ̂i − Δ̂i+1‖/‖Δ̂i‖ < ε1 and

‖(̂αi ⊗ β̂ i ) − (̂αi+1 ⊗ β̂ i+1)‖/‖α̂i ⊗ β̂ i‖ < ε2, for some
small ε1 > 0 and ε2 > 0.

We estimate SFMSDR in (12), assuming that d1 and d2 are
known, with

ŜFMSDR = Δ̂−1 (
Γ̂1 ⊗ Γ̂2

)
, (22)

where Γ̂1 and Γ̂2 are the first d1 and d2 singular vectors of α̂

and β̂, respectively.

4.3 Kronecker principal fitted components (K-PFC)

The log-likelihood under model (13) with ε ∼ NpT (0,Δ)

has a different mean structure from (20), which is

l(μ,SΓ 1⊗Γ 2 , γ 1 ⊗ γ 2,Δ)

= −npT

2
log(2π) − n

2
log |Δ|

−1

2

∑

i

(
vec(Xi ) − vec(μ) − (Γ1 ⊗ Γ2)(γ 1 ⊗ γ 2 )̃fyi

)T

Δ−1 (
vec(Xi ) − vec(μ) − (Γ1 ⊗ Γ2)(γ 1 ⊗ γ 2 )̃fyi

)
. (23)

Let Γ = Γ1 ⊗Γ2 and γ = γ 1 ⊗ γ 2. Then, Γ is a pT × d1d2
semi-orthogonal matrix of rank d = d1d2, and γ is a d × kr
matrix of rank d, but otherwise unconstrained. [12] computed
the MLEs of μ, Γ , and γ in model (5) with BT = Γ γ to be

vec(μ̂) = X (24)

ŜΓ = Δ̂
1/2
MLE spand(Δ̂

−1/2
MLE Δ̂fitΔ̂

−1/2
MLE ) (25)

γ̂ =
(
Γ̂ T Δ̂−1

MLEΓ̂
)−1

Γ̂ T Δ̂−1
MLEB̂

T , (26)

where B̂T = X
T
Fy(F

T
y Fy)

−1 is the OLS for the uncon-
strained modelX = FyB+ε, Γ̂ is any orthonormal basis for

ŜΓ and spand(Δ̂
−1/2
MLE Δ̂fitΔ̂

−1/2
MLE ) denotes the span of the first

d eigenvectors of Δ̂
−1/2
MLE Δ̂fitΔ̂

−1/2
MLE , with

Δ̂fit = XPFyX/n, (27)

and PF = F
T
y (FT

y Fy)
1
Fy . We show in “Appendix” that

the Kronecker product structure constraint on the parame-
ter matrix B = αT ⊗ βT does not alter the formulae for the
MLEs until the last step. That is,

ŜΓ = ŜΓ 1⊗Γ 2 (28)

γ̂ = γ̂ 1 ⊗ γ̂ 2 =
(
(Γ̂1 ⊗ Γ̂2)

T Δ̂−1
MLE(Γ̂1 ⊗ Γ̂2)

)−1

(Γ̂1 ⊗ Γ̂2)
T Δ̂−1

MLEB̂
T . (29)

The expression for Δ̂MLE is given in equation (7). In the full-
rank setting, i.e., when d1 = r and d2 = k, (7) simplifies to
Δ̂MLE = Δ̂res, since K̂ is then a matrix of zeros.

Remark 1 In the standard MLE approach of Sect. 4.2, the
number of unknown parameters in α and β is Tr + pk,
whereas in the PFC parameterization is Td1 + pd2, which
can be significantly smaller in the non-full-rank settingwhere
d1 < r and d2 < k.

K-PFC Least Squares Estimation Algorithms:
We propose several algorithms utilizing the VLP approx-

imation for estimating SFMSDR under model (15) and the
additional assumption that ε ∼ NpT (0,Δ).

1. Compute B̂T = X
T
Fy(F

T
y Fy)

−1, Δ̂fit = X
TPFyX/n,

and Δ̂res = Δ̂ − Δ̂fit, where Δ̂ = X
T
X/n.

2. Compute Δ̂MLE from (7).
3. Set Γ̂ to be the first d eigenvectors of (25).
4. Estimate γ̂

4a. using expression (26) and B̂T = Γ̂ γ̂ . Compute α̂ and
β̂ by applying the VLP approximation (K-PFC1).

4b. applying VLP to Γ̂ to obtain Γ̂1 and Γ̂2, and then
compute γ̂ from (29).
4bi. Compute α̂ ⊗ β̂ = (Γ̂1 ⊗ Γ̂2)γ̂ (K-PFC2).
4bii. Apply VLP to γ̂ to obtain γ̂ 1 and γ̂ 2 and then

calculate α̂ = Γ̂1γ̂ 1 and β̂ = Γ̂2γ̂ 2 (K-PFC3).

Remark 2 K-PIR (ls) in Sect. 4.1 is based on model (11)
without assuming a specific distribution for the inverse pre-
dictors,X | Y . K-PIR (mle) in Sect. 4.2 also uses model (11),
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K-PIR (mle): Compute
α̂, ̂β maximizing

(20), and ̂Δ in (21)

Compute ̂B =
X

T
Fy(FT

y Fy)−1

from (15)

K-PIR (ls):
Compute ̂Δls in
(18), α̂, ̂β with
VLP from ̂B

K-PFC: Compute
̂ΔMLE in (7),

̂Δfit in (27), and
set ̂Γ as the first
d eigenvectors
of ̂S(Γ ) in (25)
and γ̂ in (26)

K-PFC1: Compute
α̂ and ̂β from
̂Γ γ̂ using VLP.

Compute ̂Γ1

and ̂Γ2 from
̂Γ using VLP

K-PFC2: Set
α̂ ⊗ ̂β =
( ̂Γ1 ⊗ ̂Γ2)γ̂

K-PFC3: Compute
γ̂1 and γ̂2 using
VLP. Set α̂ ⊗ ̂β =
( ̂Γ1γ̂1) ⊗ ( ̂Γ2γ̂2)

Fig. 1 Flowchart of K-PIR and K-PFC Algorithms

but requires X | Y be normal as in (19). The three K-PFC
methods use model (13) under the assumption of normality
of X | Y . K-PIR (ls) and K-PFC1, K-PFC2, K-PFC3 esti-
mate (14) using the Van Loan and Pitsianis (VLP) [40] least
squares approximation algorithm applied to different param-
eter matrices.

4.4 Variable selection: sparse K-PIR and K-PFC

In addition to reducing the dimension of the predictors, it
is desirable to identify those associated with the outcome
and remove irrelevant and redundant ones when computing
sufficient reductions. We adapt results of [7], a version of
group lasso [6], to the Kronecker product setting.

One can easily show that the coordinate-independent
sparse sufficient dimension reduction estimator (CISE) of
SFMSDR in (14) is ŜFMSDR(CISE) = span(Σ̂−1/2

x Γ̃ ) with

Γ̃ = argminΓ Jd(Γ ) subject to Γ TΓ = Id , (30)

where

Jd(Γ ) = −tr(Γ T Σ̂
−1/2
x Δ̂fitΣ̂

−1/2
x Γ )

+ λ

p∑

i=1

‖Σ̂−1/2
x Γ T

i ‖2, (31)

Γ T
i is the i th row of Γ = Γ1 ⊗ Γ2, λ ≥ 0 is a regularization

parameter, Δ̂fit is given in (27), and ‖ . ‖2 denotes the L2

norm.
The minimization of (30) is a Grassmann manifold opti-

mization problem. Since ‖ · ‖2 is non-differentiable at zero,
traditionalGrassmannmanifold optimization techniques [see
[19]] cannot be applied directly. [7] proposed a computa-
tional algorithmbased on local quadratic approximation [20],
and [48] proved that CISEwith the BIC-based tuning param-
eter selection identified the true model consistently, i.e., has
the oracle property.

We use the fast penalized orthogonal iteration (fast POI)
optimization algorithm in [26] to implement CISE. Fast POI
is a new algorithm for sparse estimation of eigenvectors in
generalized eigenvalue problems, which is much faster and
easier to implement than the algorithm in [7]. Fast POI-C,
the coordinate-wise version of the algorithm, is guaranteed
to converge to the optimal solution [26,39].

To simultaneously carry out variable selection and dimen-
sion reduction in the least squares-based approaches, we first
solve (30) to obtain Γ̃ and then minimize

‖Γ̃ − Γ̃1 ⊗ Γ̃2‖2 (32)

via the VLP approximation to find Γ̃1 and Γ̃2. The sparse
estimate of the sufficient reduction is

SKCISE = span
(
Σ̂−1

x (Γ̃1 ⊗ Γ̃2)
)

.

Coordinate-wise SDR selects whole rows (corresponding to
particular markers) and whole columns (corresponding to
particular time points) separately which are then removed
from the model. It does not remove a particular marker only
for select time points.

5 Simulations

We assessed the performance of K-PIR (ls) in Sect. 4.1,
K-PIR (mle) in Sect. 4.2, and the K-PFC least squares algo-
rithms in Sect. 4.3, for estimating the sufficient reduction
subspaceSFMSDR using simulations, for both continuous and
binary outcomes Y .

As mentioned in Introduction, there are very few regres-
sion or classification approaches that apply to matrix-valued
predictors. The only directly comparable published methods
are folded SIR [29] and longitudinal sliced inverse regression
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(LSIR) [34]. We excluded folded SIR from the simulations
due to the instability of its estimation algorithm [see the anal-
ysis of the EEG data in Sect. 7]. LSIR [34] assumes both the
first and second conditional moments of X | Y have Kro-
necker product structure; i.e., E(X | Y ) − E(X) = α ⊗ β,
and Var(X) = Σα ⊗ Σβ , where α captures the time and β

the biomarker structure of the predictors. The estimation of
the sufficient reduction is based on discretizing the response
variable Y , if it is not categorical, and using the group sam-
ple means to estimate SFMSDR in (1). LSIR is the Kronecker
product version of linear discriminant analysis for matrix-
valued data.

For continuous outcomes Y , we additionally compared
ourmethods to (2D)2 principal component regression thatwe
denote as (2D)2PCR, our adaptation of (2D)2PCA [45] and
GLRAM [42] to regression with matrix-valued predictors in
analogy to principal regression analysis (PCR) [25]. PCR
computes linear combinations, principal components (PCs),
of vector-valuedpredictors, using as coefficients the elements
of the eigenvectors of the predictor sample covariance matrix
arranged with respect to its eigenvalues in decreasing order.
We let Uα = (U1,α, . . . ,UT ,α) and Uβ = (U1,β , . . . ,Up,β)

denote the column and row eigenvectors of the p×T predictor
X, respectively. The columnsofUα are the eigenvectors of the
T × T sample column covariance matrix Σ̂α = ∑n

j=1(X j −
X̄)T (X j − X̄)/n :, and those of Uβ are the eigenvectors of
the p× p sample row covariance matrix Σ̂β = ∑n

j=1(X j −
X̄)(X j − X̄)T /n. We define the (2D)2 PCs of X to be X�

i =
UT

βXiUα , for i = 1, . . . , n, and call the regression of the

response Y on X�
i “(2D)

2PCR.”
The (2D)2PCA estimate of α ⊗ β in (11) is Uα,d1 ⊗

Uβ,d2 , where Uα,d1 = (U1,α, . . . ,Ud1,α), and Uβ,d2 =
(U1,β , . . . ,Ud2,β).

5.1 Estimation of the subspace

5.1.1 Data generation for continuous outcome Y

To generate data from the model in equation (10), we first
generated yi ∼ N (0, 1) for i = 1, . . . , n, and then com-
puted the i th row fyi = gyi − ḡ of the n × rk matrix Fy ,
where gyi is a vector of Fourier basis functions, vec(gyi ) =
(cos(2π yi ), sin(2π yi ), . . . , cos(2πsyi ), sin(2πsyi ))T ,with
2s = rk. The n × pT matrix of error terms was generated
from the multivariate normal NnpT (0,Δ⊗ In), whereΔwas
a positive definite matrix with ones on the diagonal to ensure
that all variables have the same scale. We then let α = Γ1γ 1
and β = Γ2γ 2, where Γ1 ∈ R

T×d1 and Γ2 ∈ R
p×d2 , and

computed X = Fy(α ⊗ β)T + ε, using the parameterization
in (15).

We present results for Γ1 with entries [Γ1]11 = [Γ1]22 =
. . . = [Γ1]d1d1 = 1 and zeros elsewhere, and Γ2 with entries

[Γ2]11 = [Γ2]22 = . . . = [Γ2]d2d2 = 1 and zeros elsewhere.
The matrices γ 1 and γ 2 are d1 × r and d2 × k matrices of
zeros and ones of rank d1 and d2, respectively. The resulting
matrices α and β also have zeros and ones as entries and are
of rank d1 and d2, respectively.

Prior to fitting, we centered the predictors by subtracting
their empirical means; i.e., the i th row of X was Xi − X.
Therefore, the simulation data follow the model vec(X −
μ) = (Γ1γ 1 ⊗ Γ2γ 2)vec(fy) + vec(ε) in (13).

We let p = 10, T = 8 with r = k = 6 for d1 = d2 = 2,
d1 = d2 = 4, and d1 = d2 = 6, to assess the impact of the
dimension on the estimation procedures. For each setting, we
generated 500 data sets of sample sizes n = 500 and n =
5000 and report means over the 500 repetitions in Tables 1
and 2 .

5.1.2 Data generation for binary outcome Y

We generated X from two multivariate normal distributions
with equal covariance matrices, (Xk | Y = i) ∼ N (αi ⊗
β,Δ), k = 1, . . . , ni , i = 0, 1, for n0 = n1 = n/2, for
n = 500, 1000 and n = 2000 with p = 10 and T = 5. Each
αi , i = 0, 1, was a vector of length T and β was a vector
of length p; that is, the dimension is d = d1d2 = 1. We let
β = p−1/2(1, . . . , 1) and the entries of α0 be equal to 0, and
the entries ofα1 wereα1[k] = (T−k+1)−1.WhenT denotes
time from study baseline, this choice of the α1 coefficients
leads to later time points; i.e., measurements more proximal
in time to Y , contributing more to discrimination of the two
groups. The variance matrix of the predictors was separable,
Σx = Var(X) = Σ1 ⊗ Σ2. We imposed an AR(1) structure
onboth components ofΣx; that is, cor(Xi j , Xik) = ρ

|k− j |
T for

Σ1, and cor(Xi j , Xkj ) = ρ
|k− j |
p for Σ2, for various choices

of ρT and ρp. The covariance matrix Δ was computed using

Σx = E(Cov(vec(X) | Y )) + Cov(E(vec(X) | Y ))

= Δ + E{E(vec(X) | Y )E(vec(X)T | Y )}
−E(vec(X))E(vec(X)T ).

5.1.3 Performance evaluation for estimation of the
subspace

To evaluate bias, we computed the differences between the
estimated and the true matrix values as E1 = ‖α̂ ⊗ β̂ − α ⊗
β‖/‖α ⊗ β‖ and E2 = ‖Δ̂ − Δ‖/‖Δ‖, along with their
standard deviations.

As a measure of variability, we calculated V1, the trace of
the empirical covariance matrix of vec(̂αi ⊗ β̂ i ), a pTrk×1
vector, for i = 1, . . . , N = 500 repetitions for each simula-
tion setting. Similarly,we computed the trace of the empirical
covariance matrix of vec(Δ̂), V2, as a measure of variability
of the estimates of the covariance matrix Δ.
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Table 1 Continuous outcomes
Y with
p = 10, T = 8, r = k = 6 and
rank(α) = rank(β) = 6

Method Mean E1 SD E1 Mean E2 SD E2 V1 V2 	 φ1 φ2

n = 500

K-PIR (ls) 0.11 0.01 0.32 0.01 0.47 105.40 0.56 0.13 0.19

K-PIR (mle) 0.09 0.01 0.29 0.01 0.17 91.32 0.44 0.10 0.15

K-PFC1 0.11 0.01 0.29 0.01 0.47 79.75 0.56 0.13 0.19

K-PFC2 0.48 0.08 0.29 0.01 6.82 79.75 5.55 1.85 1.86

K-PFC3 0.64 0.18 0.29 0.01 9.50 79.75 5.55 1.85 1.86

(2D)2PCA 1.41 0.02 86.37 1.72 35.99 24035.84 2.38 0.60 0.77

n = 5000

K-PIR (ls) 0.03 0.00 0.09 0 0.04 81.46 0.17 0.04 0.06

K-PIR (mle) 0.03 0.00 0.09 0 0.03 80.33 0.15 0.04 0.05

K-PFC1 0.03 0.00 0.09 0 0.04 79.23 0.17 0.04 0.06

K-PFC2 0.28 0.11 0.09 0 2.95 79.23 5.49 1.82 1.82

K-PFC3 0.42 0.25 0.09 0 7.16 79.23 5.49 1.82 1.82

(2D)2PCA 1.41 0.02 86.52 0.74 36.00 18615.04 2.16 0.53 0.70

E1 = ‖α̂ ⊗ β̂ − α ⊗ β‖/‖α ⊗ β‖, E2 = ‖Δ̂ − Δ‖/‖Δ‖,
	 = ‖Γ̂ Γ̂ T − Γ Γ T ‖, φi = ‖Γ̂i Γ̂

T
i − ΓiΓ

T
i ‖, i = 1, 2

Table 2 Continuous outcomes
Y with
p = 10, T = 8, r = k = 6 and
rank(α) = rank(β) < 6

Method Mean E1 SD E1 Mean E2 SD E2 V1 V2 	 φ1 φ2

n = 500, rank(α) = rank(β) = 4

K-PIR (ls) 0.17 0.01 0.32 0.01 0.48 105.40 0.59 0.18 0.23

K-PIR (mle) 0.13 0.02 0.29 0.01 0.28 91.32 0.48 0.15 0.18

K-PFC1 0.14 0.01 0.28 0.01 0.33 86.14 0.58 0.18 0.23

K-PFC2 0.50 0.11 0.28 0.01 3.42 86.14 3.47 1.36 1.37

K-PFC3 0.68 0.22 0.28 0.01 5.22 86.14 3.47 1.36 1.37

(2D)2PCA NA NA 69.17 1.51 NA 18182.77 2.91 1.00 1.12

n = 5000, rank(α) = rank(β) = 4

K-PIR (ls) 0.05 0.00 0.09 0 0.04 81.46 0.18 0.06 0.07

K-PIR (mle) 0.05 0.01 0.09 0 0.03 80.33 0.18 0.06 0.07

K-PFC1 0.04 0.00 0.09 0 0.03 79.86 0.18 0.06 0.07

K-PFC2 0.25 0.14 0.09 0 1.27 79.86 3.36 1.31 1.30

K-PFC3 0.37 0.28 0.09 0 3.04 79.86 3.36 1.31 1.30

(2D)2PCA NA NA 69.30 0.61 NA 14829.42 2.66 0.90 1.02

n = 500, rank(α) = rank(β) = 2

K-PIR (ls) 0.36 0.03 0.32 0.01 0.51 105.38 0.50 0.23 0.27

K-PIR (mle) 0.28 0.03 0.29 0.01 0.31 91.22 0.44 0.20 0.24

K-PFC1 0.19 0.02 0.29 0.01 0.15 90.31 0.47 0.22 0.25

K-PFC2 0.45 0.26 0.29 0.01 1.00 90.31 1.37 0.69 0.71

K-PFC3 0.50 0.30 0.29 0.01 1.19 90.31 1.37 0.69 0.71

(2D)2PCA NA NA 59.55 1.33 NA 15246.36 2.42 1.34 1.43

n = 5000, rank(α) = rank(β) = 2

K-PIR (ls) 0.10 0.01 0.09 0 0.04 81.46 0.15 0.07 0.08

K-PIR (mle) 0.10 0.01 0.09 0 0.03 80.33 0.16 0.07 0.08

K-PFC1 0.06 0.01 0.09 0 0.01 80.25 0.15 0.07 0.08

K-PFC2 0.20 0.21 0.09 0 0.33 80.25 1.22 0.61 0.61

K-PFC3 0.22 0.22 0.09 0 0.37 80.25 1.22 0.61 0.61

(2D)2PCA NA NA 59.67 0.54 NA 12740.16 2.36 1.29 1.37

E1 = ‖α̂⊗β̂−α⊗β‖/‖α⊗β‖, E2 = ‖Δ̂−Δ‖/‖Δ‖,	 = ‖Γ̂ Γ̂ T −Γ Γ T ‖, φi = ‖Γ̂i Γ̂
T
i −ΓiΓ

T
i ‖, i = 1, 2
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Table 3 Binary outcome Y with
p = 10, T = 5, r = k = 1,
rank(α) = rank(β) = 1

Method Mean E1 SD E1 Mean E2 SD E2 V1 V2 	 φ1 φ2

n = 500, ρT = ρp = 0.3

K-PIR (ls) 2.02 0.11 0.28 0.01 0.16 5.06 0.42 0.24 0.34

K-PIR (mle) 2.01 0.11 0.28 0.01 0.17 5.05 0.44 0.26 0.35

K-PFC1 2.02 0.11 0.28 0.01 0.16 5.04 0.42 0.24 0.34

K-PFC2 0.84 0.78 0.28 0.01 1.38 5.04 0.41 0.24 0.33

K-PFC3 0.84 0.78 0.28 0.01 1.38 5.04 0.41 0.24 0.33

LSIR 1.48 0.26 1.00 0.00 0.27 0.00 0.81 0.55 0.63

n = 1000, ρT = ρp = 0.3

K-PIR (ls) 2.02 0.08 0.2 0.01 0.08 2.54 0.30 0.17 0.24

K-PIR (mle) 2.01 0.08 0.2 0.01 0.08 2.53 0.30 0.17 0.24

K-PFC1 2.02 0.08 0.2 0.01 0.08 2.53 0.30 0.17 0.24

K-PFC2 0.64 0.75 0.2 0.01 1.12 2.53 0.29 0.17 0.24

K-PFC3 0.64 0.75 0.2 0.01 1.12 2.53 0.29 0.17 0.24

LSIR 1.53 0.17 1.0 0.00 0.13 0.00 0.67 0.49 0.48

n = 2000, ρT = ρp = 0.3

K-PIR (ls) 2.00 0.05 0.14 0 0.04 1.27 0.22 0.12 0.18

K-PIR (mle) 2.00 0.06 0.14 0 0.04 1.27 0.22 0.12 0.17

K-PFC1 2.00 0.05 0.14 0 0.04 1.27 0.22 0.12 0.18

K-PFC2 0.40 0.62 0.14 0 0.70 1.27 0.22 0.12 0.17

K-PFC3 0.40 0.62 0.14 0 0.70 1.27 0.22 0.12 0.17

LSIR 1.56 0.01 1.00 0 0.04 0.00 0.59 0.47 0.38

E1 = ‖α̂ ⊗ β̂ − α ⊗ β‖/‖α ⊗ β‖, E2 = ‖Δ̂ − Δ‖/‖Δ‖,
	 = ‖Γ̂ Γ̂ T − Γ Γ T ‖, φi = ‖Γ̂i Γ̂

T
i − ΓiΓ

T
i ‖, i = 1, 2

The accuracy of the estimation is assessed by the Frobe-
nius norm of the difference of the projections to the relative
spans of the true and the estimated dimension reduction
matrices.4 We report averages over 500 replicates of the fol-
lowing: 	 = ‖PΓ̂ − PΓ ‖, and φi = ‖PΓ̂ i

− PΓ i ‖, i = 1, 2,
wherePA = A(ATA)−1AT is the orthogonal projection onto
the span of a full-rank matrix A.

5.2 Variable selection

5.2.1 Data generation

To assess the performance of the variable selection method
in Sect. 4.4, we generated continuous outcome data by first
generating yi ∼ N (0, 1) for i = 1, . . . , n, and then com-
puted the i th row fyi = gyi − ḡ of the n × rk matrix Fy ,
where gy = (1, y, y2). The n× pT matrix of error terms, E,
was generated from themultivariate normal NnpT (0,Δ⊗In),
whereΔwas a positive definite matrix with ones on the diag-
onal. We then computed X = Fy(α ⊗ β)T + ε, where the
2 × T matrix α had entries α11 = α22 = 1 and all other
entries αi j , i = 1, 2, j = 1, . . . , T were zero, and β was a

4 This is the optimal measure of distance between subspaces [43].

vector of length p with β1 = 1 and βi = 0, i = 2, . . . , p for
p = 10 and T = 5.

We evaluated the influence of the sample size, n, andmag-
nitude of noise, by multiplying the error term ε in the linear
model by a constant factor, called “Scale” in Table 4.

5.2.2 Performance criteria for variable selection

We computed how often markers (rows) and time points
(columns) of X were correctly selected on average.

The following quantities are reported. False positives
(FPs):An FP occurs when αi j = 0, but its estimate α̂i j 
= 0.
The FP rate for α is the percentage of times an FP occurs for
αi j , and the overall FP rate (FPR) is the average of the FPRs
across all zero coefficients of α. False negatives (FNs): An
FN occurs when αi j 
= 0, but its estimate α̂i j = 0. The FN
rate for α is the percentage of times an FN occurs for αi j ,
and the overall FN rate (FNR) is the average of the FN rates
across all nonzero coefficients of α. The total error rate is
computed as the sum of the times a nonzero coefficient of
α was estimated to be zero and the times a zero coefficient
was estimated to be nonzero, divided by the total number of
elements in α.

The corresponding FPR, FNR and total error rate for β

are reported separately.
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5.3 Results for continuous outcome Y

We present results for p = 10 and T = 8 in Tables 1 and 2.
Results for other values of p and T were qualitatively similar.

Table 1 shows summary performance statistics when r =
k = 6 and both α and β are of full rank 6 for n = 500, 5000.
In this setting, the K-PIR (mle) estimates of α ⊗β had lower
bias (E1) and distance between subspaces (	,φ1 and φ2)

than those for all other algorithms for n = 500. K-PFC1 and
K-PIR (ls) estimates of α⊗β were similar with respect to all
measures, but K-PIR (ls) estimates ofΔ had a larger bias and
more variability than those of K-PFC1. K-PFC2 andK-PFC3
resulted in significantly larger bias and lower estimation
accuracy measures for both sample sizes. (2D)2PCA-based
estimates of α ⊗ β had much larger bias and variability than
all other methods, but had the resulting estimates had smaller
distance to the true subspace than K-PFC2, K-PFC3.

Table 2 shows results for r = k = 6 for the non-full-
rank case. While the general patterns were similar to the
full-rank setting, all methods had poorer performance. For
rank(α) = rank(β) = 4 and n = 500 K-PIR (mle) yielded
the least biased estimates of α⊗β and the smallest distances
	,φ1 and φ2. K-PFC1 was slightly better than K-PIR (ls) in
terms of bias of α ⊗ β. For n = 5000, K-PIR (ls), K-PIR
(mle) and K-PFC1 estimates all had the same performance.

When rank(α) = rank(β) = 2, however, K-PFC1-based
estimates of α ⊗ β had much lower bias, variability and dis-
tance to the true subspace and also better estimated Δ than
all other methods.

For all parameter settings and sample sizes, K-PFC2- and
K-PFC3-based estimates were very similar and resulted in
poorer estimation than the other three methods. (2D)2PCA
does not yield estimates forα andβ in the non-full-rank case.
With respect to other measures, it behaved similarly to the
full-rank case.

5.4 Results for binary outcome Y

We present results for p = 10 and T = 5 in Table 3. Find-
ings were qualitatively similar for other choices of p and T .
The sample size n refers to the number of samples in each of
the Y = 0 and the Y = 1 groups. Interestingly, in contrast
to the results for continuous outcome, for all sample sizes
estimates of α ⊗β andΔ from K-PFC2 and K-PFC3 had the
lowest bias and the smallest variance of all methods. The K-
PFC2- and K-PFC3-based estimates also had slightly better
performance in estimating the subspaces for smaller sample
sizes, but for larger n all methods resulted in similar perfor-
mance of the estimates. LSIR-based estimates [34] had larger
bias and variance estimates compared to those from K-PFC2
and K-PFC3, but smaller compared to estimates from K-PIR
(ls), K-PIR (mle) and K-PFC1 for all sample sizes. How-

ever, LSIR had worse performance than all other methods in
estimating subspaces for all sample sizes.

5.5 Results for variable selection

In Table 4, we present results on the accuracy of our variable
selection approach. For both n = 100, 500 with p = 10 and
T = 5, the false negative rate (FNR)was 0 forα andβ for low
noise-to-signal ratio. For n = 100 and at the highest signal-
to-noise ratio we report, the FNR jumped to 29.5% for α and
18.8% for β, with lower false positive rates (FPR=14.1% for
α and FPR=13.4% forβ). The total error rateswas 20.2%and
13.4% forα andβ, respectively. For themore realistic setting
of noise with 3 times the magnitude of the mean parameters,
all error rates were less than 7% for both matrices.

When the sample size was increased to n = 500, even
when the noise standard deviation was 5 times larger than
themagnitude of the mean parameters, all error rates for both
matrices were below 5%, indicating excellent performance
in variable selection.

6 Serially measured pre-diagnostic levels of
serum biomarkers and risk of brain cancer

To illustrate our methods, we used data from 128 individ-
uals diagnosed with glioma, a type of brain cancer (cases,
Y = 1) and 111 healthy individuals (controls, Y = 0) from a
study that assessed the associations of fourteen serially mea-
sured biomarkers with glioma risk in individuals sampled
from active component military personnel [2]. The markers

Table 4 Sparse case: FNR = false negative rate, FPR = false positive
rate. The nonzero entries of α and β had values equal to one. “Scale”
corresponds to a term that multiplied the standard deviation of the noise
term in the data and reflects the noise-to-signal ratio

α β

Scale Mean Mean Total Mean Mean Total
FNR FPR Error rate FNR FPR Error rate

n = 100, (p, t, k, r) = (10, 5, 1, 2)

1 0.000 0.000 0.000 0.000 0.002 0.002

2 0.008 0.000 0.003 0.000 0.036 0.033

3 0.063 0.030 0.043 0.014 0.069 0.064

4 0.204 0.105 0.145 0.116 0.104 0.105

5 0.295 0.141 0.202 0.188 0.134 0.139

n = 500, (p, t, k, r) = (10, 5, 1, 2)

1 0.000 0.000 0.000 0 0.000 0.000

2 0.000 0.000 0.000 0 0.000 0.000

3 0.000 0.000 0.000 0 0.008 0.007

4 0.004 0.000 0.002 0 0.028 0.026

5 0.007 0.001 0.004 0 0.040 0.036
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weremeasured in serum obtained at three time points prior to
diagnosis for cases, or selection for controls. The serum was
typically what remains after routine, periodic HIV testing
or required pre- and post-deployment samples. On average,
samples were available every two years for a given person.

We analyzed the log-transformed values of 13 markers,
including several interleukins (ILs), IL-12p40, IL-15, IL-16,
IL-7, IL-10, monocyte chemoattractant protein (MCP1), thy-
mus and activation regulated chemokine (TARC), placental
growth factor (PLGF), vascular endothelial growth factor
(VEGF), tumor necrosis factor alpha (TNFa), hepatocyte
growth factor (HGF), interferon gamma (IFNγ ) and trans-
forming growth factor beta (TGFb1). One marker (IL8) that
a had highly non-normal distribution, even after log transfor-
mation,was excluded from theoriginal panel in order to allow
comparison with K-MLE, resulting in (p, T ) = (13, 3). We
also compared all proposed methods with LSIR [34].

The discriminatory ability of the linear combinations from
the various approaches to distinguish the two groups Y = 0
and Y = 1 was assessed by the area under the receiver
operator characteristics curve, AUC [33, p. 67]. We used
leave-one-out cross-validation to obtain an unbiased AUC
estimate. That is, we removed person i from the data set,
estimated the parameters of the respective model from the
remaining samples and computed the projections of Xi onto
the respective SDR subspace for person i . We repeated these
steps by letting i range from 1 to the total sample size, to
obtain unbiased predictions. For binary Y , all methods esti-
mate at most a single direction in the central subspace; i.e.,
SFMSDR is a vector. We thus used the projections onto the
space spanned by the core matrices of the methods directly
as a scalar diagnostic score in computing the AUC and its
variance with the R package pROC [36].

Table 5 reports AUC values and their standard deviations.
All of our proposed methods had the same discriminatory
ability, with an AUC values of 0.66 for K-PIR, K-PFC1,
K-PFC2 and K-PFC3 and for K-PIR (mle). LSIR, which
assumes the Kronecker product structure for the first and
the second moments of X, had the highest AUC, AUC=0.69
highlighting the impact of further reducing complexity of
estimating the central subspace, especially in settings of lim-
ited sample size.

7 EEG Data

For the second example, we analyzed EEG data from a small
study of 77 alcoholic and 45 control subjects (http://kdd.ics.uci.
edu/databases/eeg/eeg.data.html). The data for each study subject
consisted of a 64×256matrix,with each column representing
a time point and each row a channel. Themeasurements were
obtained by exposing each individual to visual stimuli and
measuring voltage values from 64 electrodes placed on the

Table 5 Mean AUC values and their standard deviations (St. Dev.)
based on leave-one-out cross-validation for cytokine data (p = 13,
T = 3) for 128 glioma cases and 111 control subjects

AUC St. Dev.

K-PIR (ls) 0.66 0.04

K-PIR (mle) 0.66 0.04

K-PFC1 0.66 0.04

K-PFC2 0.66 0.04

K-PFC3 0.66 0.04

LSIR 0.69 0.03

Table 6 Mean AUC values and their standard deviation based on ten-
fold cross-validation for the EEG imaging data (77 alcoholic and 45
control subjects)

Method AUC St. Dev.

T � = 3, p� = 4 K-PIR (ls) 0.78 0.04

K-PIR (mle) 0.75 0.05

K-PFC1 0.78 0.04

K-PFC2 0.78 0.04

LSIR 0.85 0.04

(2D)2PCR 0.83 0.04

T � = 15, p� = 15 K-PIR (ls) 0.78 0.04

K-PIR (mle) 0.78 0.04

K-PFC1 0.78 0.04

K-PFC2 0.78 0.04

LSIR 0.81 0.04

(2D)2PCR 0.50 0.05

T � = 20, p� = 30 K-PIR (ls) 0.78 0.04

K-PIR (mle) 0.77 0.04

K-PFC1 0.78 0.04

K-PFC2 0.78 0.04

LSIR 0.83 0.04

(2D)2PCR 0.53 0.05

T = 256, p = 64 FastPOI-C 0.63∗ 0.22

∗Mean AUC over the tenfold

subjects’ scalps sampled at 256 time points (at 256 Hz for
1 second). Different stimulus conditions were used, and for
each condition, 120 trials were measured.

To facilitate comparison of our results with other pub-
lished analyses, we used only a single stimulus condition
(S1), and for each subject, we took the average of all the
trials under that condition. That is, we used (Xi , Yi ), i =
1, . . . , 122, whereXi is a 64×256 matrix, i.e., p = 64, T =
256, with each entry representing the mean voltage value of
subject i at a combination of a time point and a channel, aver-
agedover all trials under theS1 stimulus condition, andY was
a binary outcome variable with Y = 1 for an alcoholic and
Y = 0 for a control subject. The pT × pT = 16384×16384
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sample variance–covariance matrix of the predictors (Σ̂x) is
singular, since the sample size is 122.

We carried out two separate analyses. First, to bypass the
issue of large p small n, we applied the same pre-screening
procedure as in [29], which is a version of (2D)2PCA [45], to
reduce the order to (p�, T �) = (30, 20), (15, 15) and (4, 3).
Thepre-screeneddatawere computedby replacing thematrix
predictors with their (2D)2PCs, setting X�

i = UT
βXiUα :

p� × T �, i = 1, . . . , n, as described in Sect. 5.
We used leave-one-out cross-validation to obtain unbi-

ased estimates of the AUC. Results for (p�, T �) = (4, 3),
(15,15), (30,20) are given inTable 6 forK-PFC1,K-PFC2,K-
PIR (ls) and K-PIR (mle). K-PFC3 is identical to K-PFC2 in
this example and thus not shown. These methods resulted in
highly discriminating linear combinations, with AUC values
of 0.78 for all choices of p� and T �, except for K-PIR (mle)
with AUC values of 0.75 and 0.77 for (p�, T �) = (4, 3), and
(30,20), respectively.

(2D)2PCR linear combinations had a highly variable per-
formance, ranging from AUC of 0.83 for (p�, T �) = (4, 3)
to 0.50 for (p�, T �) = (30, 20). AUCvalues did not decrease
monotonically (unreported results), indicating lack of stabil-

ity of the method. LSIR [34] linear combinations resulted in
the best discriminatory performance and higher AUC values
than all other methods for our choices of (p�, T �).

[29] analyzed these data with their method, folded SIR,
also using (p�, T �) = (15, 15). In contrast to our algo-
rithms, folded SIR uses starting values for α and β that are
random draws from two multivariate normal distributions,
which results in different estimates every time the method is
applied. We repeated the analysis using folded SIR several
times and obtained consistently lower AUC values than with
our methods, ranging from 0.61 to 0.70, which also reflects
the numerical instability of the folded SIR estimation algo-
rithm.

We also applied coordinate-wise sparse SDR without
preprocessing the data, as described inSect. 4.4, to simultane-
ously identify important variables and sufficient reductions.
We report the average AUC values and corresponding stan-
dard deviations from tenfold cross-validation (due to the
computational burden) fast POI-C [26] in the last row of
Table 6. The average AUC value was 0.63, much lower than
the AUCs from all other estimation methods.

Fig. 2 α,β components from
tenfold EEG analysis
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Figure 2 plots the mean values of the estimated sparse
α (top panel) and β (bottom panel) components over the
tenfold. The right y-axis shows the percent times the com-
ponent was dropped. No components of β were consistently
dropped indicating that no specific sensor was found to be
insignificant. In contrast, approximately 40%of the later time
points were consistently dropped. That is, sparse SDR iden-
tifies the earlier time measurements to be more predictive of
alcoholism status.

8 Discussion

In this paper, we propose methods for regression and clas-
sification with matrix-valued predictors that yield consistent
estimators, which are also asymptotically optimal when the
predictors given the outcome have exponential family dis-
tributions. The least squares estimation algorithms are fast
with guaranteed convergence. Our methods can incorporate
simultaneous variable selection in estimating the sufficient
dimension reduction, which further reduces complexity.

The dimensions d1 and d2 of span(α) and span(β), respec-
tively, are assumed to be known in our computations. Their
estimation can be carried out, for example, via AIC and BIC
[17]. Our methodology can be extended to regressions with
multidimensional array-valued predictors.

The R code that implements the methods in this paper
can be downloaded from https://git.art-ist.cc/daniel/tensor_
predictors/releases.
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Appendix

Van Loan and Pitsianis Matrix Approximation: Van Loan
and Pitsianis [40] proposed a singular value decomposition-
based algorithm to efficiently find the optimal factor matrices
B and C that minimize the Frobenius norm ‖A − B ⊗ C‖,
where A : p × q, B : p1 × q1, C : p2 × q2 with p = p1 p2
and q = q1q2. They write A as a p1 p2 × q1q2 block matrix,

A =

⎛

⎜
⎜
⎜
⎝

A11 A12 · · · A1,q1
A21 A22 · · · A2,q1
...

...
. . .

...

Ap1,1 Ap1,2 · · · Ap1,q1

⎞

⎟
⎟
⎟
⎠

where Ai j : p2 × q2, and show that the Kronecker product
approximation for two factormatrices is equivalent to finding
a nearest rank 1 matrix toR(A),

‖A − B ⊗ C‖ = ‖R(A) − vec(B)vec(C)T ‖

with

R(A) =

⎛

⎜
⎜
⎜
⎝

A1

A2
...

Aq1

⎞

⎟
⎟
⎟
⎠

, A j =

⎛

⎜
⎜
⎜
⎝

vec(A1, j )
T

vec(A2, j )
T

...

vec(Ap1, j )
T

⎞

⎟
⎟
⎟
⎠

for j = 1, . . . , q1. This problem can be solved by singu-
lar value decomposition [22], as follows. If the SVD of R
is UTRV = Λ = diag(λ1, . . . , λmin(p,q)), the optimal B
equals

√
λ1U1 and the optimal C,

√
λ1V1, where U1,V1 are

the first columns of U and V, respectively.

Proof of Theorem 1 Suppose the true parameter matrix has
the form BT = α ⊗ β, where α ∈ R

T×r , and β ∈ R
p×k .

Thus,

BT =
⎛

⎜
⎝

α11β . . . α1rβ
...

. . .
...

αp1β . . . αprβ

⎞

⎟
⎠ =

⎛

⎜
⎝

B11 . . . B1r
...

. . .
...

Bp1 . . . Bpr

⎞

⎟
⎠ (33)

where Bi j = αi jβ : T × k. In this proof, we assume the
estimates α̂ and β̂ are computed using the algorithm in Sec-
tion 4 of [40], which is an alternating least squares algorithm
for the calculation of the largest singular value of R(BT ),
as required in the Van Loan and Pitsianis Kronecker product
matrix approximation [40]. That is, for fixed β,

α̂i j = tr(B̂T
i jβ)

tr(βTβ)

where B̂i j is the lse of the corresponding trueBi j in (33). The
approximation algorithm for α̂ and β̂ is an alternating least
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squares algorithm and enjoys both global and local conver-
gence [15]. Since the unconstrained least squares estimate B̂
is consistent for B, we obtain that B̂i j is consistent for Bi j ,
for all i, j , and

α̂i j → tr(BT
i jβ)

tr(βTβ)
= tr(αi jβ

Tβ)

tr(βTβ)
= αi j

tr(βTβ)

tr(βTβ)
= αi j ,

and similarly β̂i j
p→ βi j . Therefore, α̂ ⊗ β̂

p→ α ⊗ β.
The unconstrained least squares estimate B̂ is also asymp-

totically normal [3]. Therefore, each of its elements and any
of its block matrices are asymptotically normal. Alternat-
ing least squares is a special case of Iteratively Reweighted
Least Squares (IRLS), which yields MLEs for the normal
distribution, as well as for all members of the exponential
family because they are equivalent to Fisher’s scoringmethod
[16,23]. Thus, α̂ and β̂ are also asymptotically normal. �
MLE Derivation: We derive formulas (28), (29) and (7) for
the MLEs of SΓ 1⊗Γ 2 , γ 1 ⊗ γ 2 and Δ, respectively.

Write (Γ1 ⊗ Γ2)(γ 1 ⊗ γ 2) = Γ γ = BT . Then, the full
log-likelihood in (23) is

�d(μ, SΓ , γ ,Δ) = −npT

2
log(2π) − (n/2) log |Δ|

− 1

2

∑

y

(
vec(Xy) − vec(μ) − Γ γ f̃y

)T

Δ−1 (
vec(Xy) − vec(μ) − Γ γ f̃y

)
(34)

Fixing Δ and setting B̂ = (FT
F)−1

F
T
X, [12] showed that

the estimators μ̂ = X̄, ŜΓ = ΔSd(Δ, Δ̂fit), and γ̂ =
(Γ̂ TΔ−1Γ̂ )−1Γ̂ −TΔ−1B̂T are the MLEs of the correspond-
ing parameters, where Γ̂ is any orthonormal basis for ŜΓ .
Here, Sd(A,B) denotes the span of A−1/2 times the first d
eigenvectors of A−1/2BA−1/2 for symmetric matrices A and
B.

Once Γ̂ is obtained, we can apply VLP to obtain Γ̂ =
Γ̂1 ⊗ Γ̂2, so that Γ̂1 and Γ̂2 are also orthogonal. Similarly for
γ̂ . We show next that the Kronecker product form of Γ and
γ does not affect the MLE of Δ in our setting.

Let S+
q denote the set of q × q positive definite matrices.

Substituting μ̂, γ̂ and Γ̂ in (34), the next step is to maximize

�d(Δ) = −np

2
log(2π) − n

2
log |Δ| − n

2
tr(Δ−1Δ̂res)

− n

2

p∑

i=d+1

λi (Δ
−1Δ̂fit) (35)

Following the derivation of the MLE of Δ in [12], let U =
Δ̂

1/2
res Δ−1Δ̂

1/2
res . Then tr(Δ−1Δ̂res) = tr(U), and

λi (Δ
−1Δ̂fit) = λi (UΔ̂−1/2

res Δ̂fitΔ̂
−1/2
res ),

where λi (·) denotes the i th-order eigenvalue of the argument
matrix, since tr(AB) = tr(BA). Since these two matrices are
similar and

|Δ̂1/2
res ||Δ−1||Δ̂1/2

res | = |U| = |Δ̂res||Δ−1| = |Δ̂res| 1

|Δ| ,

maximizing (35) is equivalent to maximizing

f (U) = log |U| − tr(U) −
p∑

i=d+1

λi (UΔ̂−1/2
res Δ̂fitΔ̂

−1/2
res )

(36)

Let τ = min(rk, pT ), where pT is the order of vec(X)

and rk is that of f̃y , and consider the spectral value decom-

position of Δ̂
−1/2
res Δ̂fitΔ̂

−1/2
res = V̂Λ̂τ V̂T , where V̂ ∈

R
pT×pT is an orthogonal matrix and the diagonal Λ̂τ =

diag(λ̂1, . . . , λ̂τ , 0, . . . , 0) with λ1 ≥ λ2 ≥ . . . ≥ λτ > 0.
LetH = V̂TUV̂. Then,H ∈ S

+
pT and is similar to U, so (36)

yields

f (H) = log |H| − tr|H| −
τ∑

i=d+1

λi (HΛ̂τ ) (37)

pT∑

i=d+1

λi (UΔ̂−1/2
res Δ̂fitΔ̂

−1/2
res ) =

τ∑

i=d+1

λi (HΛ̂τ )

because

τ∑

i=d+1

λi (HΛ̂τ ) =
pT∑

i=d+1

λi (HΛ̂τ ) =
pT∑

i=d+1

λi (V̂TUV̂Λ̂τ )

=
pT∑

i=d+1

λi ((Λ̂τ V̂T )(UV̂))

=
pT∑

i=d+1

λi ((UV̂)(Λ̂τ V̂T ))

=
pT∑

i=d+1

λi (UΔ̂−1/2
res Δ̂fitΔ̂

−1/2
res )

We partition the positive definite matrix H as

H =
(
H11 H12

HT
12 H22

)

(38)

with H11 ∈ S
+
τ ,H22 ∈ S

+
pT−τ and consider the one to one

and onto transformation [18, Prop. 5.8],

H −→
(
H11 HT

12
0 H22 − HT

12H
−1
11 H12

)

. (39)
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Let V11 = H11, V22 = H22 − HT
12H

−1
11 H12 and V12 =

H−11
11 H12. By (39), |H| = |V11||V22| and

tr(H) = tr(H11) + tr(H22)

= tr(H11) + tr(H22 − HT
12H

−1
11 H12)

+ tr(HT
12H

−1
11 H12)

= tr(V11) + tr(V22) + tr(VT
12V11V12)

Since the nonzero eigenvalues ofHΛ̂τ are the same as those
ofH11Λ̃τ , where Λ̃τ = diag(̂λ1, . . . , λ̂τ ), (37) can bewritten
as

log |V11||V22| − tr(V11) − tr(V22)

−tr(VT
12V11V12) −

τ∑

i=d+1

λi (V11Λ̃τ ) (40)

Only the term tr(VT
12V11V12) in (40) depends on V12. Since

V11 = H11 is positive definite, VT
12V11V12 is positive semi-

definite. Thus, the maximum occurs when V12 = 0. This
implies that H12 = 0, H11 = V11 and H22 = V22. so (40),
which is a function of V11,V12 and V22, can be written as

f (H11,H22) = log |H11| + log |H22| − tr(H11)

− tr(H22) −
τ∑

i=d+1

λi (H11Λ̃τ ) (41)

H22 ∈ S
+
pT−τ ,H22 is similar to diag(h1, h2, . . . , h pT−τ ) and

log |H22| − tr(H22)

= log(h1h2...h pT−τ ) − (h1 + h2 + h pT−τ )

= log(h1) − h1 + . . . + log(h pT−τ ) − h pT−τ (42)

The maximum of g(x) = log x − x occurs at x = 1. Thus,
(42) reaches its minimum for hi = 1, i = 1, 2, ..., pT − τ ,
andH22 is an identity matrix when (42) is maximized. Next,
for (41), we need to maximize

f (H11) = log |H11| − tr(H11) −
τ∑

i=d+1

λi (H11Λ̃τ ) (43)

Let Z = Λ̃
1/2
τ H11Λ̃

1/2
τ . Following similar reasoning as from

(35) to (36), maximizing (43) is equivalent to maximizing

f (Z) = log |Z| − tr(ZΛ̃−1
τ ) −

τ∑

i=d+1

λi (Z) (44)

Since Z ∈ S
+
τ , there exists � = diag(ψ1, . . . , ψτ ) with

ψi > 0 and ψ1 ≥ ψ2 ≥ . . . ≥ ψτ , and an orthogonal matrix

W such that Z = WT�W. We can rewrite (44) as a function
of W and �,

f (�,W) = log |�| − tr(WT�WΛ̃−1
τ ) −

τ∑

i=d+1

ψi

= log |�| − tr(�WΛ̃−1
τ WT ) −

τ∑

i=d+1

ψi (45)

By [1, Thm. A.4.7] , minW tr(�WΛ̃−1
τ WT ) =

τ∑

i=1
ψi λ̂

−1
i . If

the diagonal elements of� and Λ̃τ are distinct, the minimum
occur when W = Iτ . We can then rewrite (45) as a function
of ψi , i = 1, 2, . . . , τ , all greater than zero,

f (ψ1, . . . , ψτ ) =
τ∑

i=1

logψi −
τ∑

i=1

ψi λ̂i
−1 −

τ∑

i=d+1

ψi (46)

The function log x−ax reaches its maximumwhen x = 1/a,
for a > 0. Therefore, (46) reaches its maximum when
ψi = λ̂i for i = 1, 2, . . . , d and ψi = λ̂i/(1 + λ̂i ) for
i = d + 1, . . . , τ . Since λ̂i are positive and in descending
order, ψi are positive, in descending order and distinct. Col-
lecting all previous results, we obtain that the value ofΔ that
maximizes (35) is

Δ̂MLE = Δ̂1/2
res Û

−1Δ̂1/2
res = Δ̂1/2

res V̂Ĥ
−1V̂T Δ̂1/2

res ,

where

H =
(
H11 H12

HT
12 H22

)

=
(

Λ̃
1/2
τ Ẑ−1Λ̃

1/2
τ 0τ×(p−τ)

0τ×(pT−τ) I(pT−τ)×(pT−τ)

)

, (47)

and Λ̃
1/2
τ Ẑ−1Λ̃

1/2
τ = diag(Id , λ̂d+1 + 1, . . . , λ̂τ + 1). �
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