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The rise of grasslands is linked to atmospheric CO2
decline in the late Palaeogene
Luis Palazzesi 1,2✉, Oriane Hidalgo2,3, Viviana D. Barreda1, Félix Forest2,6 & Sebastian Höhna4,5,6✉

Grasslands are predicted to experience a major biodiversity change by the year 2100. A

better understanding of how grasslands have responded to past environmental changes will

help predict the outcome of current and future environmental changes. Here, we explore the

relationship between past atmospheric CO2 and temperature fluctuations and the shifts in

diversification rate of Poaceae (grasses) and Asteraceae (daisies), two exceptionally species-

rich grassland families (~11,000 and ~23,000 species, respectively). To this end, we develop a

Bayesian approach that simultaneously estimates diversification rates through time from

time-calibrated phylogenies and correlations between environmental variables and diversi-

fication rates. Additionally, we present a statistical approach that incorporates the informa-

tion of the distribution of missing species in the phylogeny. We find strong evidence

supporting a simultaneous increase in diversification rates for grasses and daisies after the

most significant reduction of atmospheric CO2 in the Cenozoic (~34 Mya). The fluctuations

of paleo-temperatures, however, appear not to have had a significant relationship with the

diversification of these grassland families. Overall, our results shed new light on our

understanding of the origin of grasslands in the context of past environmental changes.
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The grassland biome (steppes, savannas, and prairies) covers
vast areas of the Earth’s surface and today accounts for as
much as one-third of the net primary production on

land1,2. Although grasses (Poaceae) comprise the bulk of the
biomass and plant population in grasslands, other plant families—
in particular the daisies (Asteraceae)—are usually as much as (or
even more) diverse than grasses (Supplementary Fig. 1). The
evolution of grasslands marked the emergence of a new landscape
and provided the substrate for the adaptive radiation of other life
forms that coevolved along with this biome, including grazing
mammals3 such as horses, wombats, and capybaras.

The age of a given biome is often estimated by detecting when
particular representative taxonomic groups first appear in the
fossil record. For example, the early evolution of the grassland
biome—and open-habitat biomes in general—has been estimated
from the fossil record of grass phytoliths (plant silica)4 or from
the record of fossil pollen of daisies, grasses, and amaranths5,6.
Phylogenetic trees based on DNA sequence data calibrated with
fossils provide a powerful new perspective on the history of
biomes7. This approach has been used to estimate the timing of
tropical-rainforest evolution based on phylogenetic trees of plant
groups that are characteristic of this biome (e.g., Malpighiales8,
Arecaceae9, and the legume genus Inga10). Nevertheless, phylo-
genetic approaches have barely been used to study the evolu-
tionary history of grassy biomes; most previous studies of
grassland evolution have focused on the origins of C4

grasslands11. Here we estimate when grasslands first expanded
using phylogenetic trees of its two primary plant families, Poaceae
and Asteraceae. We assembled a large calibrated phylogenetic tree
for daisies and used the largest tree yet inferred for grasses11 to
explore temporal shifts in rates of lineage diversification, and to
test correlations between diversification-rate shifts and past cli-
matic fluctuations.

A major limitation when analyzing hyper-diverse groups—in
our case Asteraceae with ~23,000 species and Poaceae with
~11,000 species—is the inevitable sparse species sampling (Figs. 1
and 2). Although existing approaches for inferring rates of lineage
diversification (speciation and extinction) can accommodate
incomplete species sampling12,13, the distribution of missing spe-
cies on the tree in these approaches is modeled in a simplistic and
somewhat unrealistic manner. Previous works have shown that
biased species sampling has a strong impact on diversification-rate
estimates14–16. Here, we develop a Bayesian approach for detecting
diversification-rate shifts that incorporates a more realistic (non-
uniform) model of species sampling and implemented it in the
open-source software RevBayes17. Our model builds on the
episodic birth–death process, where speciation and extinction rates
are constant within an interval but may shift instantly to new rates
at a rate-shift episode18–21. This model assumes that diversifica-
tion rates are homogeneous (equal for all lineages at the same
time) and does not allow for lineage-specific shifts in diversifica-
tion rates. Furthermore, we test for a correlation between diver-
sification rate and two environmental variables —atmospheric
CO2 concentration and average global paleo-temperature— using
one existing22–27 and three here developed environmentally-
dependent diversification models. We use an empirically informed
and biologically realistic model to accommodate missing species
that assigns unsampled species to their corresponding clades using
taxonomic information.

Results and discussions
Our analyses demonstrate that the most dramatic increase in
diversification rates in both Asteraceae and Poaceae (calibration
scenario #1, see “Methods”) occurred from the late Oligocene
(~28 Mya) to the early Miocene (~20 Mya) (Fig. 3 and

Supplementary Fig. 6). This diversification rate shift is robust to
several model assumptions. We recovered the same diversifica-
tion rate shifts regardless of the assumed number of time intervals
(Supplementary Fig. 7). Both autocorrelated diversification rate
prior models qualitatively agree on the overall pattern of diver-
sification rates (Gaussian Markov random field (GMRF) or
Horseshoe Markov random field (HSRMF), Supplementary
Figs. 6 and 7). Only the uncorrelated diversification rate prior
model differed in the inferred pattern (UCLN, Supplementary
Figs. 6 and 7). However, the autocorrelated diversification rate
prior models were significantly favored according to our Bayes
factor analyses (GMRF for the daisy phylogenetic tree and
HSMRF for the grass phylogenetic tree, Supplementary Fig. 8).
Recently, Louca and Pennell28 showed that phylogenies of extant
taxa are consistent with infinitely many diversification rate
models and therefore diversification rates are not identifiable if
arbitrarily complex diversification rate functions are allowed. Our
diversification models, on the other hand, are identifiable because
of the piecewise-constant (episodic) diversification rates model29.
Furthermore, model comparison is robust when well-formulated
alternative hypotheses are used30, as is the case for the compar-
ison between different environmentally dependent diversification
models31.

The diversification rate patterns were strongly influenced by
the assumed incomplete taxon sampling (Supplementary Fig. 9).
In our simulation study we show that incorrectly assuming uni-
form taxon sampling and thus disregarding taxonomic informa-
tion about the distribution of missing species strongly biases
diversification rates (Supplementary Figs. 22 and 23). Conversely,
our empirical taxon sampling informed by a more accurate dis-
tribution of missing species has good power to detect the correct
time-varying diversification rates and low false-positive rate when
diversification rates are in reality constant (Supplementary
Fig. 23). Thus, we recommend to include as much information as
possible regarding the distribution of missing species.

The respective diversification rates of Asteraceae and Poaceae
(calibration scenario #1, see “Methods”) peak between 20 Mya and
15 Mya, and subsequently decreases for a brief period of time
before increasing again from the late Miocene (~10 Mya, Fig. 3
and Supplementary Figs. 4–6). Our second analysis using the
Poaceae phylogeny calibrated with a Cretaceous phytolith (cali-
bration scenario #2) detects an earlier peak for Poaceae at about
35–30 Mya (Supplementary Fig. 6). The phylogenetic placement of
this fossil phytolith has been debated32, however here we show the
results of the two alternative hypotheses (calibration #1 and cali-
bration #2) proposed by Christin et al.32 rather than selecting one
over the other; other works on Poaceae have also adopted a similar
approach (e.g. Hackel et al.33). Previous works on Asteraceae and
Poaceae identified clades with increased diversification rates using
calibrated molecular phylogenies; for example, Mandel et al.34

detected the highest acceleration rates in the Vernonioid clade
(Cichorioideae) and within the Heliantheae alliance of the
Asteraceae family, both at the early Miocene (~23 Mya) using
MEDUSA35. They also detected other lineages with relatively high
rates at the late Eocene (~40 Mya). Previously, Panero & Crozier36

also found the most important shifts in diversification along these
two lineages (i.e. Vernonioid clade and Heliantheae alliance) using
BAMM37. On the other hand, Spriggs et al11 found twelve shifts
using their calibrations scenarios #1 and #2 on Poaceae. They
detected clades with the highest diversification rates during the
Neogene (23–2.4 Mya) using turboMEDUSA38. Overall, the tim-
ing of the diversification-rate shifts identified by our model
broadly agrees with the shifts recognized for the clades with the
highest rates according to the previously published data. However,
our results clearly indicate that the diversification rate shift
occurred while all major subfamilies diversified simultaneously
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(Supplementary Fig. 4 and 5), thus indicate rather a global (i.e.,
tree-wide) pattern than a lineage-specific effect.

Interestingly, estimations of low diversification rates prior to
~35Mya are consistent with the scarcity of fossil forms assigned
to both daisies (Supplementary Table 1) and grasses4,39. Similarly,
high diversification rates during or after the Oligocene are in line
with the high diversity of fossil remains assigned to these
groups4,40. The Cenozoic ‘temporal hotspot’ of grassland diver-
sification (~30 Mya to ~15 Mya) based on daisies and grasses
(calibration #1 and #2) phylogenetic trees—coincides with one of
the most fundamental changes in global climate in the geologic
record; a marked decline of atmospheric CO2 occurred during the
Oligocene (~34 Mya), reaching modern levels by the latest
Oligocene41,42. This scenario marks the onset of a cooler and
more modern world (Coolhouse state), identified by the earliest
Cenozoic glaciations in Antarctica, and the consequent drop in
global paleo-temperatures43.

In line with the reconstructed climatic scenario, our analyses of
correlation between diversification rates and CO2 or paleo-
temperature show very interesting results (Fig. 3 and Supple-
mentary Fig. 10 and 11). Diversification rates inferred from both
the daisy and grasses phylogenies support correlation to CO2 over
paleo-temperature (Supplementary Fig. 11). Surprisingly, the best
fitting environmentally-dependent diversification model for the
daisy phylogeny was the uncorrelated lognormal (UCLN)

variation model and for the grasses phylogeny the fixed rate
model without additional variation. The support of the uncor-
related model over the two autocorrelated models (GMRF and
HSRMF), although the autocorrelated models were favored when
using time-varying diversification rates without environmental
variables (Supplementary Fig. 8), could stem from the use of
vague prior distribution which allows for more rate variation in
autocorrelated models21. However, regardless of the specific
environmentally dependent diversification model, we inferred a
negative correlation between diversification rates and environ-
mental CO2 (Supplementary Fig. 10). The resulting Bayes factors
for a negative correlation were decisive with values of 37,501 for
the fixed, UC and GMRF models and 49 for the HSMRF model
(Fig. 3). We also see the same agreement between the four
environmentally-dependent diversification models in our simu-
lation study (Supplementary Fig. 20 and 21). Thus, if there is a
clear signal of correlation between the environmental variable and
diversification rates, then our analyses appear robust to modeling
of the additional component of time-varying diversification rates.
This agreement can also be seen when all four environmentally-
dependent diversification models show the same estimated
diversification rates (Supplementary Figs. 14 and 15). When the
signal is less clear, as for the paleo-temperature analyses, the four
models disagree and range from significant positive to significant
negative correlation (Supplementary Fig. 10) and the estimated
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Fig. 1 Phylogenetic tree scaled to geological time of Asteraceae with 2723 sampled tips. Asteraceae is one of the most species-rich families of flowering
plants with more than 23,000 species. The number of non-sampled (missing) species increases enormously towards the more derived and species-rich
lineages. For this reason, the sampling among clades is severely biased. Note that these rich and derived lineages evolved during the late Paleogene or early
Neogene. K Cretaceous, Pg Paleogene, Ng Neogene.
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diversification rates of the environmentally-dependent diversifi-
cation models also differ (Supplementary Figs. 14 and 15).
Finally, our results of correlation between environmental CO2

and diversification rates are also robust to the chosen epoch size
(Supplementary Fig. 12).

The negative correlation between diversification rates of these
selected grassland families and atmospheric CO2 might not be
surprising; atmospheric CO2—the main source of carbon for
photosynthesis—serves as a fundamental substrate for plant
growth. The available experimental evidence shows that low
atmospheric CO2 limits plant performance44, although responses
vary significantly between species. At a landscape scale, carbon
limitation and water stress due to lower atmospheric CO2 con-
centrations (‘ecophysiological drought’), rather than water stress
due to lower precipitation (‘climatic drought’), cause changes in
vegetation structure45. During the Last Glacial Maximum (LGM;
~21,000 years ago), for example, atmospheric CO2 was at its lowest
concentration in the history of land plants (~180–200 ppm)46.
Models have predicted that the direct physiological impact of the of
low CO2 concentrations during the LGM drove the expansion of
grasslands and dry shrublands at the expense of forest47 (Supple-
mentary Fig. 2). Other modeling experiments indicate that low
atmospheric CO2, in combination with increased aridity and
decreased temperatures, causes new xeric biomes to develop46.

Although our primary hypothesis is that a CO2-depleted atmo-
sphere played a role in the geographic expansion and diversification
of grassland families from Oligocene times (~34 Mya), other
environmental and biological variables could have also been
involved. In particular, the decreasing temperatures, increasing
aridity, and increasing seasonality of temperature and/or pre-
cipitation of the late Cenozoic have been traditionally linked to the

early radiation of grasslands48,49. The role of cooling in the emer-
gence of open-habitat grasses has been debated as the adaptation to
low temperatures became prominent in the more derived groups of
grasses4,50. Grazing mammals also have been important compo-
nents in the evolution of grasslands; grazers and grassland ecosys-
tems probably coevolved over millions of years51. Grazing increased
species diversity according to experimental studies, as grazers pre-
vent dominant plant species from monopolizing resources. Without
grazing, tall, vegetatively reproducing plant species increase in cover
and shade out short and sexually reproducing species52. Grazing
also affects the flux of nutrients by accelerating the conversion of
plant nutrients from forms that are unavailable for plant uptake to
forms that can be readily used. Overall, grazing mammals have an
important role in the diversity of present-day natural grasslands
and we assume they might have done so during their early radia-
tion. However, the explosive radiation of true hypsodonts may have
negatively impacted grasslands’ distribution and diversity (see
below). Sorting out the relative importance of all these environ-
mental and biological competing forces from the hypothesized
CO2-induced shift remains challenging.

We detected a short decrease in diversification rates for daisy and
grass plant groups during the mid-Miocene, about 13–10 Mya
(Figure 3a). The causal mechanism underlying remains to be eluci-
dated. However, we suspect that the dramatic radiation of hypsodont
grazers—such as horses—and other mixed feeder grazers may have
had an impact on grasslands3,53. Since the late Miocene (~10 Mya),
however, the more recent expansion of C4 grass lineages11 may have
contributed to the increased diversification rates in these groups.
Plants using the C4 photosynthetic pathway have anatomical and
biochemical adaptations for concentrating CO2 within leaf cells prior
to photosynthesis, which may lead to a selective advantage over C3
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Fig. 2 Lineage-Through Time (LTT) plots of daisies and grasses. Solid gray lines represent LTT curves derived from time-calibrated phylogenetic trees of
a Asteraceae and b Poaceae (calibration scenario #1). Colored boxes depict the name and number of non-sampled (missing) species per clade that we
integrated in our empirical taxon sampling. The shape of LTT curves have demonstrated to be a convenient summary metric for diversification diagnostics,
particularly when diversification deviates from the expectation of constant rates81,82. However, the distribution of missing species might not be uniform—

as it is the case of these angiosperm families—and can severely impact on diversification-rate estimates. Our work shows that the most important increase
in diversification rate for both Asteraceae and Poaceae is completely unnoticeable using the LTT analysis, even when calibrated phylogenetic trees include
a large number of species.
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plants under conditions of low atmospheric CO2. Although the
evolutionary origin of C4 photosynthesis in grasses most likely
occurred early in the Cenozoic32, their expansion and ecological
dominance may have taken place during the last 10 Mya, by the late
Miocene in warmer and fire-prone landscapes of the world54. Like-
wise, the evolution of hyper-diverse Asteraceae lineages (e.g.,
Senecio)55 have also contributed to the increasing rates of diversifi-
cation since the last 10 Mya. Our evidence also supports the notion
that the ongoing rise of atmospheric CO2 will likely alter vegetation
distributions through differential effects on C3 and C4 plant types. In
fact, modeling future distributions predicts the near-complete eradi-
cation of C4 species across the globe for the next 50 years56; this
implies that about half of the species in the grass family will be
extinct. In summary, our study reveals episodic shifts in diversifica-
tion rates of grasses and daises which are correlated with changes in
atmospheric CO2 (Fig. 3a); these insights are made possible by the
development of our Bayesian phylogenetic approach which combines
the episodic birth–death process18–21 with environmentally-
dependent diversification rates22–24,26 and empirical taxon
sampling15,16,57. Our environmentally dependent and episodic
birth–death diversification model provides an approach for exploring
the evolution of hyper-diverse groups of plants and animals in the
context of historical environmental changes.

Methods
Taxonomic representativeness in grasslands. To quantify the taxonomic repre-
sentativeness of vascular-plant families found in open-habitat landscapes (Supple-
mentary Fig. 1), we selected seven distantly distributed eco-regions dominated by
grasslands from the World Wide Fund for Nature58. Using the coordinate boundaries
of each of the selected eco-regions, we extracted the vascular plant taxa (=Tracheo-
phyta) using the R ‘rgbif:Interface to the Global ‘Biodiversity’ Information Facility API’
package59 with the option ‘hasGeospatialIssue=FALSE’, that includes only records
without spatial issues (e.g., invalid coordinates, country coordinate mismatch). Plant
families were sorted according to the number of species, removing duplicated species.

Palaeobotanical analysis. Asteraceae and Poaceae have a fairly similar fossil record;
their oldest findings are known from the Late Cretaceous—which mainly comprise
microscopic remains (that is, phytoliths60 or pollen grains61)—whereas the first indis-
putable macroscopic Asteraceae and Poaceae fossils are first known from the
Eocene62,63, with a substantial increase of diversity since the Oligocene/Miocene. While
the fossil record of Poaceae has been fully revised4,64,65, the fossil record of Asteraceae
has not been as carefully reviewed. We compiled published pollen and macroscopic
fossil data for Asteraceae including all fossil species assigned to Asteraceae (Supple-
mentary Table 1). The earliest record of the Asteroideae (the clade that includes the
most common open-habitat daisy tribes) occurs since the Late Oligocene of New
Zealand but in very low frequencies. Fossils refer to this subfamily increased in
abundance and diversity during the Miocene and Pliocene. Pollen referred to Artemisia,
in particular, did not become abundant until the Middle-Late Miocene with several
reports from central Europe, Asia and North America. Pre-Miocene findings need
further verification. Overall, the Late Oligocene and in particular the Miocene witnessed
the major step in the diversification of Asteraceae; ca. 80% of the fossil species recorded
have been assigned to this time interval.
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1.0 for all models except the HSRMF, which has a posterior probability of 0.98; Bayes factors of 37,501 and 49 respectively). The support for a negative
correlation between paleo-temperature and diversification rates is ambiguous; the UC and fixed models show significant support (posterior probability of
1.0, Bayes factor of 37,501) while the autocorrelated models show no support (posterior probability between 0.05 and 0.095, Bayes factors supporting a
positive correlation of 1.04 and 17.86 for the daisy dataset and 2.85 and 9.75 for the grasses dataset for the GMRF and HSMRF models respectively). Note
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factor by which to transform the environmental variable into diversification rates (see “Methods”).
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Divergence-time estimation. To construct the Asteraceae supertree (2723 tips), we
first inferred a backbone chronogram using 14 plastid DNA regions from 54 species,
including representatives of all 13 subfamilies, with an additional four species of
Calyceraceae used as outgroup taxa (Supplementary Table 2). Sequences were compiled
from GenBank and each region was aligned separately using MAFFT66 with the options
maxiterate 1000 and localpair. Two fossil constraints were applied: (i) a macrofossil
(capitulum) and associated pollen (Raiguenrayun cura + Mutisiapollis telleriae) from
the Eocene (45.6 Mya) to calibrate the non-Barnadesioideae Asteraceae clade63 and; (ii)
the fossil-pollen species Tubulifloridites lilliei type A from the late Cretaceous (72.1
Mya)61 to calibrate the crown Asteraceae (considering T. lilliei as a stem group, see
Huang et al.67 for further discussion). Divergence-time estimates and phylogenetic
relationships were inferred using RevBayes17. For the aligned molecular sequences we
assume a general-time reversible substitution model with gamma-distributed rate var-
iation among sites (GTR+Γ), an UCLN prior on substitution-rate variation across
branches (UCLN relaxed clock), and a birth–death prior model on the distribution on
node ages/tree topologies. A densely sampled phylogeny is crucial to identify shifts in
diversification rates. Therefore, we constructed a supertree by inserting eleven individual
sub-trees —representing all subfamilies of the Asteraceae except those less diverse or
monotypic clades (that is, Gymnarrhenoideae, Corymbioideae, Hecastocleidoideae,
Pertyoideae)—into the calibrated backbone chronogram. This method follows a pre-
vious study that constructed a supertree of grasses using the same approach11. Each of
the eleven clades of Asteraceae was built using their own set of markers and the same
phylogenetic approach as the one used to infer the backbone tree (Supplementary
Table 2). Sequence data for each of the eleven trees and their respective outgroup taxa
were collected from Genbank using the NCBIminer tool68. The estimated ages of the
nodes given by the backbone analysis were used to constrain the age of each of the
eleven sub-trees (Supplementary Table 2). Divergence-time estimates and phylogenetic
relationships for each of the eleven sub-clades were estimated using RevBayes as
described above. The eleven trees were grafted onto the backbone tree using the
function ‘paste.tree’ from the phytools R package69. We used ggtree R package70 to plot
the circle phylogenetic tree of Figure 1 and phytools69 to include the concentric geo-
logical scale. The supertree of the grass family (3,595 taxa) was obtained from Spriggs
et al.11 (Supplementary Table 3). They inferred two chronograms using two different
calibration scenarios, that is, a younger scenario (#1) calibrated using an Eocene
megafossil62 and an older scenario (#2) calibrated using Cretaceous phytoliths60. We
ran our diversification analyses using these two chronograms.

Inferring changes in diversification rate through time. Our species-
diversification model is based on the reconstructed evolutionary process described
by Nee et al.12 and more specifically on the episodic birth–death process18–21. We
assume that each lineage gives birth to another species with rate λ (cladogenetic
speciation events) and dies with rate μ (extinction event; see Fig. 4). We model
diversification rates (i.e., speciation and extinction rates) as constant within an
interval but independent between intervals, where intervals are demarcated by
instantaneous rate-shift events, and equal among contemporaneous lineages. We
denote the vector of speciation rates Λ= {λ1,…, λk} and extinction rates
M= {μ1,…, μk} where λi and μi are the (constant) speciation and extinction rates in
interval i. Additionally, we use the taxon-sampling fraction at the present denoted
by ρ15,16. Following the notation of May et al.20, we construct a unique vector, X,
that contains all divergence times and rate-shift event times sorted in increasing
order. It is convenient for notation to expand the vectors for all the other para-
meters so that they have the same number of elements k ¼ jXj. Let Ψ denote an
inferred tree relating n species, comprising a tree topology, τ, and the set of
branching times, T. We use the notation S(2, t1= 0, T) to represent the survival of
two lineages in the interval [t1, T], which is the condition we enforce on the
reconstructed evolutionary process. Transforming Equation (A4) in May et al.20 to
our model yields the probability density of a reconstructed tree as:

f ðΨjNðt1 ¼ 0Þ ¼ 2; Sð2; t1 ¼ 0;TÞÞ
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The first term, 2
n�1

n! corresponds to the combinatorial constant for the number of
labeled histories18, the second term corresponds to the condition of two initial
lineage at the root of the phylogeny surviving until the present, and the third term
corresponds to the product of all speciation events and the new lineages surviving
until the present.

Empirical taxon-sampling model. Here we develop an empirical taxon-sampling
model that uses taxonomic information on the membership of unsampled species
to clades and speciation times of unsampled species, which is an extension to the
work by Höhna et al15,16 and similar to the approach used by Stadler and Bokma57.
The main difference of our approach and the approach by Stadler and Bokma57 is
that their model uses a constant-rate birth–death process (compared to our epi-
sodic birth–death process). Additionally, Stadler and Bokma57 derive the density of
the missing species using a random probability s of an edge being sampled, which
differs from our approach where we integrate over the time of the missing spe-
ciation event. Nevertheless, at least for the constant-rate birth–death process, both
approaches arrive at the same final likelihood function.

We include information on the missing speciation events by integrating over
the known interval when these speciation events must have occurred (that is,
between the stem age tc of the MRCA of the clade and the present, Figure 4). This
integral of the probability density of a speciation event is exactly the same as one
minus the cumulative distribution function of a speciation event16,

FðtcjNðt1Þ ¼ 1; t1 ≤ t ≤TÞ ¼ 1� 1� PðNðTÞ>0jNðtcÞ ¼ 1Þ expðrðtc;TÞÞ
1� PðNðTÞ>0jNðt1Þ ¼ 1Þ expðrðt1;TÞÞ

; ð2Þ

where t1 is the age of the root. The probability of survival is given by:
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where k ¼ jXj. Let us define n as the number of sampled species, m as the total
number of species in the study group, K as the set of missing species per clade and
jKj the number of clades with missing species. Additionally, we define ci as the
time of most recent common ancestor of the ith clade. Then, the joint probability
density of the sampled reconstructed tree and the empirically informed missing
speciation times is

f ðΨ;KjNðt1 ¼ 0Þ ¼ 2; Sð2; t1 ¼ 0;TÞÞ ¼ f ðΨjNðt1 ¼ 0Þ ¼ 2; Sð2; t1 ¼ 0;TÞÞ

´
ðm� 1Þ!
ðn� 1Þ!

YjKj

i¼1

1
ki!

1� FðtjNðciÞ ¼ 1; ci ≤ t ≤TÞ
� �ki :

ð4Þ

Prior models on diversification rates. Our model assumes that speciation and
extinction rates are piecewise constant but can be different for different time
intervals (Fig. 4). Thus, we divide time into equal-length intervals (e.g., Δt= 1).
Following Magee et al.21, we specify prior distributions on the log-transformed
speciation rates (ln ðλiÞ) and extinction rates (ln ðμiÞ) because the rates are only
defined for positive numbers and our prior distributions are defined for all real
numbers. We apply and compare three different prior models: (i) an UCLN prior
distribution, (ii) a GMRF prior21, and (iii) a HMRF prior21. The first prior dis-
tribution specifies temporally uncorrelated speciation and extinction rates, whereas
the second and third prior distributions are autocorrelated prior models. The
assumption of autocorrelated rates might make more sense biologically (an interval
of high speciation rates is likely to be followed by another interval with high
speciation) but also improves our ability to estimate parameters21. Nevertheless,
our inclusion of both uncorrelated and autocorrelated prior distributions allows for
testing whether an uncorrelated or autocorrelated model is preferred.

The prior distribution on the speciation rates λi and extinction rates μi are set in
exactly the same form in our models with their respective hyperprior parameters.
Thus, for the sake of simplicity, we omit the prior distribution on the extinction
rates here in the text. Our first prior distribution, the UCLN distributed prior,
specifies the same prior probability for each speciation rate λi,

ln ðλiÞ � Normal ðm; σÞ: ð5Þ
Thus, each speciation rate is independent and identically distributed.

Our second prior distribution, the GMRF prior, models rates in an
autocorrelated form analogous to a discretized Brownian motion. That is, we
assume that diversification rates λ(t) and μ(t) are autocorrelated and the rates in the
next time interval will be centered at the rates in the current time interval,

ln ðλiÞ � Normal ðln ðλi�1Þ; σλÞ: ð6Þ
The standard deviation σ regulates the amount of change between each time
interval.

Our third prior distribution, the HSMRF prior, is very similar to the GMRF but
additionally allows for the variance to change between time intervals,

γi � halfCauchy ð0; 1Þ ð7Þ

ln ðλiÞ � Normal ðln ðλi�1Þ; σγiÞ: ð8Þ
The HSMRF prior model is more adaptive than the GMRF; it allows for more
extreme jumps between intervals while favoring/smoothing more constant-rate
trajectories if there is no evidence for rate changes21.
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These three prior models of diversification rates provide the null models of our
analyses as they do not assume any dependence to an environmental variable. We
use these models first to estimate diversification rates through time before testing for
a correlation of the speciation or extinction rate to an environmental variable (e.g.,
atmospheric CO2 or paleo-temperature). Magee et al.21 found that 100 epochs
perform well for autocorrelated models. Since we do not know how many bins (i.e.,
epochs) should be used for the episodic birth–death process, we test various numbers
of equal-sized epochs (4, 10, 20, 50, 100, and 200, Supplementary Figure 7). We show
both the median posterior diversification rates (Supplementary Fig. 6) as well as
select the best fitting model based on the number of epochs (Supplementary Fig. 8).

Correlation between speciation and extinction rate to CO2. Previously, Con-
damine et al.22 introduced an environmentally-dependent diversification model. In
their model, diversification rates are correlated with an environmental

variable22–27. For example, the speciation rate can be modeled as λðtÞ ¼
λ0e

β ´CO2ðtÞ (see Box 1 in Condamine et al.22), which is equivalent to
ln ðλðtÞÞ ¼ ln ðλ0Þ þ β ´CO2ðtÞ. Since we are using the episodic birth–death process
which has piecewise-constant diversification rates, we modify the original
continuous-time environmentally-dependent diversification model to
ln ðλiÞ ¼ ln ðλ0Þ þ β ´CO2;i , which is equivalent to and more conveniently written
as ln ðλiÞ ¼ ln ðλi�1Þ þ β ´ΔCO2;i where ΔCO2,i= CO2,i−CO2,i−1. Note that we
only use the so-called exponential dependency and not the linear dependency24

because the linear dependency can result in negative rates which are mathemati-
cally and biologically impossible71.

We applied this original environmentally-dependent diversification model and
three environmentally-dependent diversification models described in this work.
The original environmentally-dependent diversification model of Condamine
et al.22 does not accommodate diversification-rate variation that is independent of
the environmental variable. Instead, our three environmentally-dependent
diversification models build on our diversification-rate prior models which allow
for rate variation through time (see above). Thus, our environmentally-dependent
diversification models will collapse to the episodic birth–death model if rates of
diversification and atmospheric CO2 are uncorrelated and hence inherently allows
for diversification rate variation. The linkage of environmental variable and
diversification rates without allowing for independent diversification rate variation
might provide spurious results, as has been noticed for trait evolution72 and state-
dependent diversification rates73. We explore this potential of misattribution of
diversification rate variation to the environmental variable in our model selection
procedure and simulation study (see below).

As before, we omit the description of the extinction rates in the text for the sake
of notational simplicity. Both speciation and extinction rates are model exactly in
the same way with their corresponding set of hyperparameters (e.g., see the
Supplementary Tables 4–7). Our first environmentally-dependent diversification
model has a fixed linkage between the diversification rate variation and variation in
the environmental variable;

λ0 � Uniform ð0; 100Þ ð9Þ

ln ðλiÞ ¼ ln ðλi�1Þ þ βλ ´ΔCO2: ð10Þ

b)

c)

a)
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1.0
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0

Fig. 4 Cartoon of the birth–death process with rate-shift events and empirical taxon sampling. a Depiction of the speciation (purple lines) and extinction
(red lines) rates through time. Here we assume that speciation and extinction rates are episodically constant, that is, diversification rates shift instantly and
only at the beginning of an episode. Each episode lasts five time units in this example. b A realization (complete phylogeny) of the birth–death process.
Lineages that have no extant or sampled descendant are shown as dashed lines and surviving lineages are shown as solid lines. c Reconstructed phylogeny
corresponding exactly to the one shown in B with the extinct lineages pruned away. Thus, plot c depicts the “observed” phylogeny from which the
speciation times are retrieved. d Sampled phylogeny with gray boxes depicting named clades with known number of missing species. The phylogeny is the
same as in c with fewer taxa. e Distribution function of the time of the missing speciation event. The missing speciation event could have occurred any time
between the crown age of the named clade and the present time (gray box). The distribution function is integrated over and hence the uncertainty of the
missing speciation event accounted for.
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This model does not have a counterpart in the above diversification rate priors, but
is included as a comparison to the work Condamine et al.22.

Our second environmentally-dependent diversification model adds UCLN
variation on top of the variation in the environmental variable;

λ0 � Uniform ð0; 100Þ ð11Þ

ln ðλ̂iÞ ¼ ln ðλ̂i�1Þ þ βλ ´ΔCO2 ð12Þ

ϵi � Normal ð0; σÞ ð13Þ

ln ðλiÞ ¼ ln ðλ̂iÞ þ ϵi: ð14Þ
Thus, this model collapses to the above UCLN model if there is no correlation
between the environmental variable and diversification rates (β= 0). Importantly,
the difference in the variation of the diversification rates and environmental
variable is independent in each epoch, contributed by the variable ϵi. The
environmental-dependent part of the diversification rates λ̂i is equivalent to the
fixed environmentally-dependent diversification model.

Our third environmentally dependent diversification model adds correlated
lognormal variation on top of the fixed environmentally-dependent diversification
mode;

λ0 � Uniform ð0; 100Þ ð15Þ

ln ðλiÞ � Normal ðln ðλi�1Þ þ βλ ´ΔCO2Þ; σÞ: ð16Þ
This model an extension of the above GMRF model and collapses to it if there is no
correlation between the environmental variable and diversification rates (β= 0). As
the GMRF model is a discretized Brownian motion model, this environmentally-
dependent extension can be considered as a Brownian motion with trend model,
where the trend is predicted by the environmental variable. Instead of writing this
model with a separate environmentally-dependent part λ̂i and autocorrelated part
ϵi, we directly use the combined environmentally-dependent and independent rate
variation as the mean for the next time interval. Nevertheless, we want to
emphasize this equivalence to bridge the connection to the UCLN model above.

Finally, our fourth environmentally-dependent diversification model extends the
above HSRMF to allow for diversification rates predicted by the environmental variable;

λ0 � Uniform ð0; 100Þ ð17Þ

γi � halfCauchy ð0; 1Þ ð18Þ

ln ðλiÞ � Normal ðln ðλi�1Þ þ βλ ´ΔCO2Þ; σγiÞ: ð19Þ
This model follows the same extension as the environmentally-dependent GMRF
model with local adaptability of the rate variation through the parameter γi, as before
for the HSMRF.

In all our four models, we denote the correlation factor by β. If β > 0 then there
is a positive correlation between the speciation rate and CO2, that is, if the CO2

increases then the speciation rate will also increases. By contrast, if β < 0 then there
is a negative correlation between the speciation rate and CO2, that is, if the CO2

concentration increases then the speciation rate will decrease. Finally, if β= 0 then
there is no correlation and our environmentally-dependent diversification model
collapses to corresponding episodic birth–death model.

All four models have the same parameter for the initial speciation rate λ0 with a
uniform prior distribution between 0 and 100. The models are constructed in
increasing complexity and all three models can collapse either to the fixed
environmentally-dependent diversification model or to their environmentally
independent episodic birth–death process.

Environmental data. In our analyses we tested for correlation between two
environmental factors: CO2 and temperature. The concentration of atmospheric
CO2 throughout the Cenozoic were compiled by Beerling & Royer41 using ter-
restrial and marine proxies. An updated dataset was provided by Dr. Dana Royer.
Paleo-temperature fluctuations come from Zachos et al.74. Raw data were extracted
from ftp://ftp.ncdc.noaa.gov/pub/data/paleo/.

Analogous to our tests about the number of epochs for the diversification rate
analyses, we computed the arithmetic mean for the environmental variable for 1-,
2- and 5-million year intervals. We both estimated the correlation between the
environmental variable and diversification rates for each interval size and
performed model selection using Bayes factors.

Model selection. We performed three sets of empirical diversification rate analyses
for each dataset. We estimated the diversification rates over time using three dif-
ferent models, we estimated the environmentally-dependent diversification rates
using four different models, and we applied two different taxon-sampling schemes.
For the first two sets of analyses we performed standard model selection in a
Bayesian framework using Bayes factors75. Thus, we computed the marginal
likelihood for each model using stepping-stone sampling76 as implemented in
RevBayes77. We run 128 stepping stones with each stone comprising of its own

MCMC run with 2000 iteration and on average 1374 moves per iteration (i.e., the
runs being equivalent to standard single-move-per-iteration software with
2,748,000 iterations).

We tested the support for the environmental correlation using Bayes factors
computed from the posterior odds. Our prior probability for the correlation factor β
was symmetric and centered at zero, that is, we specified exactly a probability of 0.5
that β < 0 and β > 0. Thus, the prior probability ratio of Pðβ<0ÞPðβ>0Þ ¼ 1:0 Then, to compute

the Bayes factor for in support of a negative correlation is simply the number of
MCMC samples with β < 0 divided over the total number of MCMC samples.

We did not compute marginal likelihoods for the two different sampling
schemes; the uniform taxon sampling and the empirical taxon sampling. Empirical
taxon sampling uses additional data, the age ranges of the missing speciation
events, and two analyses with different data cannot be compared using traditional
model selection. Instead, we performed a simulation study to show the robustness
of our parameter estimates under empirical taxon sampling and the resulting bias if
wrongly uniform taxon sampling was assumed.

Simulation study. We performed two sets of simulations; focusing (a) on the
environmentally-correlated diversification model, and (b) the incomplete taxon
same scheme. First, we simulated phylogenies under the UCLN and GMRF
environmentally-correlated diversification model using the R package TESS78,79.
We set the diversification rate variation to σ= {0, 0.02, 0.04} and correlation factor
to β= {0, −0.005, −0.01}. Thus, our simulations included the constant-rate
birth–death process (when σ= 0 and β= 0), time-varying but environmentally
independent diversification rates (when σ > 0 and β= 0), the fixed
environmentally-dependent diversification model (when σ= 0 and β ≠ 0), and the
time-varying and environmentally-dependent diversification model (when σ > 0
and β ≠ 0). For each setting, we simulated ten diversification rate trajectories
(Fig. S16 and S17) and trees (Fig. S18 and S19). We analyzed each simulated tree
under the same four environmentally dependent diversification model as in our
empirical analysis (see above).

Second, we simulated phylogenetic trees under empirical taxon sampling to
validate the correctness of our model derivation. Unfortunately, simulation of
empirical taxon sampling is not straight forward. We circumvented the problem by
randomly adding the missing species to the daisy phylogenetic tree, then drawing
new divergence times under (a) a constant-rate birth–death process, and (b) a
time-varying episodic birth–death process with rates taken from the empirical
estimates. Then, we pruned the additional species to mimic empirical taxon
sampling. The simulations under the constant-rate birth–death process provide
information about falsely inferring diversification rate variation (false positives)
and the simulations under the time-varying episodic birth–death process provide
information about the power to correctly inferring diversification rate variation
(power analysis). We simulated 100 trees under each setting and analyzed each tree
using the GMRF prior model with both empirical and uniform taxon sampling.
The MCMC inference settings were identical to the empirical analyses.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of our study are available within
the article and its supplementary information files or upon request to the authors. Time-
calibrated phylogenies from grasses and daisies used in the present study are deposited at
https://doi.org/10.5061/dryad.74b5d and Supplementary Data 1, respectively.

Code availability
Both models, the episodic birth–death process and the environmentally-dependent
diversification model, are implemented in the Bayesian phylogenetics software
RevBayes version 1.1.117. Moreover, the implementation is not restricted to the models
we introduce here because RevBayes is built on the principle of probabilistic graphical
models80. The graphical model approach provides full flexibility to extend or modify the
current analyses to other models and assumption, for example, testing for correlation to
multiple environmental variables. RevBayes is open-source and freely available from
https://revbayes.github.io/. The analysis from this paper are described in detail in several
tutorials available at https://revbayes.github.io/tutorials/, specifically the tutorials https://
revbayes.github.io/tutorials/divrate/ebd.html, https://revbayes.github.io/tutorials/divrate/
env.html and https://revbayes.github.io/tutorials/divrate/sampling.html.
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