H-2-restricted Cytolytic T Lymphocytes Specific for HLA Display T Cell Receptors of Limited Diversity

By Jean-Laurent Casanova,^{*} Jean-Charles Cerottini,^{*} Michaela Matthes,[‡] Antje Necker,[‡] Hélène Gournier,[‡] Claude Barra,[‡] Christian Widmann,[§] H. Robson MacDonald,^{*} François Lemonnier,[‡] Bernard Malissen,[‡] and Janet L. Maryanski^{*}

From the *Ludwig Institute for Cancer Research, Lausanne Branch, 1066 Epalinges, Switzerland; the [‡]Centre d'Immunologie de Marseille-Luminy, 13288 Marseille Cedex 9, France; and the [§]Institut de Biochimie, Université de Lausanne, 1066 Epalinges, Switzerland

Summary

We previously showed that H-2K^d-restricted cytotoxic T lymphocyte (CTL) clones specific for a single nonapeptide derived from the *Plasmodium berghei* circumsporozoite (PbCS) protein displayed T cell receptors (TCRs) of highly diverse primary structure. We have now analyzed the TCR repertoire of CTLs that recognize a peptide derived from the human class I major histocompatibility complex (MHC) molecule HLA-Cw3 in association with the same murine class I MHC molecule H-2K^d. We first sequenced the TCR α and β genes of the CTL clone Cw3/1.1 and, based on this genomic analysis, the TCR α and β cDNA junctional regions of 23 independent H-2K^drestricted CTL clones specific for HLA-Cw3. The results show that the TCR chains display very limited heterogeneity, both in terms of V α , J α , V β , and J β segments, and in terms of length and sequence of the CDR3 α and β loops. The TCR repertoire used in vivo was then analyzed by harvesting CTL populations from the peritoneal cavity of immune mice. The peritoneal exudate lymphocytes (PELs) displayed HLA-Cw3-specific cytolytic activity in the absence of any stimulation in vitro. Remarkably, most of these freshly isolated PELs expressed TCRs that shared the same structural features as those from HLA-Cw3-reactive CTL clones. Thus, our results show that a peptide from HLA-Cw3 presented by H-2K^d selects CTLs that bear TCRs of very limited diversity in vivo. When taken together with the high diversity of the TCRs specific for the PbCS peptide, these findings suggest that natural tolerance to self peptides presented by class I MHC molecules may substantially reduce the size of the TCR repertoire of CTLs specific for antigenic peptides homologous to self.

Class I MHC molecules carry peptides derived from intracellular antigens to the cell surface (1), where the molecular complex is recognized by CTLs (2). The specificity of CTL recognition is assumed by the $\alpha\beta$ TCR (3). Both α and β chains contain a constant (C) and a variable (V) extracellular domain. The V domain diversity results from the somatic recombination of a number of V, (D), and J gene segments, imprecise joining, and addition of template-independent N nucleotides (4). This extensive receptor diversity allows peripheral T cells to respond to a wide variety of antigenic challenges.

We previously showed that the TCRs carried by a large series of H-2K^d-restricted CTL clones specific for a single *Plasmodium berghei* circumsporozoite (PbCS)¹ nonapeptide were highly diverse, both in terms of V α , J α , and J β segments, and in terms of amino acid composition of the junctional regions, despite a V β segment dominance (5).

We have now analyzed the TCR repertoire of H-2K^d-restricted CTLs specific for P815 (H-2^d) cells transfected with the HLA-Cw3 gene (6). The optimal synthetic peptide recognized by these CTLs corresponds to the 10-mer HLA-Cw3 170–179 (7, 8), and shows significant homology with self peptides derived from the same region of the class I H-2^d molecules.

We found that the TCRs carried by H-2K^d-restricted CTLs specific for HLA-Cw3 display very limited heterogeneity not only in vitro, but also in vivo. Taken together with the high diversity of the TCRs specific for the PbCS peptide, our findings suggest that tolerance to self peptides may reduce the available TCR repertoire of CTLs specific for antigenic peptides homologous to self.

¹ Abbreviations used in this paper: PbCS, Plasmodium berghei circumsporozoite; PEL, peritoneal exudate lymphocyte.

⁴³⁹ J. Exp. Med. © The Rockefeller University Press • 0022-1007/92/08/0439/09 \$2.00 Volume 176 August 1992 439-447

Materials and Methods

CTL Clones. The origin of the HLA-Cw3-reactive CTL clones used in this study is summarized in Table 1. The cells were maintained in culture as described in the references.

Peritoneal Exudate Lymphocytes (PELs). DBA/2 (H-2^d) mice were injected intraperitoneally with 2.5×10^7 unirradiated P815 cells transfected with the HLA-Cw3 gene (6). A second injection with 10⁷ cells was performed 5 wk later. Control C57BL/6 (H-2^b) mice were injected with the same number of untransfected P815 cells. 6 d after the second injection, cells were harvested from the peritoneal cavity and PELs were purified by passage over a column of nylon wool (9). Aliquots of the recovered PELs were directly tested for specific cytolytic activity (6) or were stained for analysis by flow cytometry.

Cell Surface Labeling with mAbs. Staining was performed with B21.5 mAb (anti-V β 10) supernatant (10) revealed by a goat anti-rat Ig FITC conjugate (Caltag Laboratories, San Francisco, CA), followed by biotinylated CD8 mAb 53-6.7 revealed by a tricolor avidin conjugate (Caltag Laboratories). The samples were passed on a FACScan[®] flow cytometer (Becton Dickinson & Co., Sunnyvale, CA). Dead cells and debris were excluded by live gating on forward scatter (FSC) and SSC. Gated CD8⁺ cells were then analyzed for expression of V β 10.

Genomic Clones and Southern Blot Analyses. The Cw3/1.1 T cell genomic library was constructed from Sau3A partially digested DNA using the λ -bacteriophage vector EMBL 3 (11). Screening and analysis of recombinant clones, as well as Southern blot analyses, were performed as previously described (12, 13).

cDNA-PCR and Direct Sequencing. RNA extraction, cDNA synthesis, and PCR with V α , V β , C α , and C β primers were carried out on CTL clones or freshly isolated PELs as previously described (5). Direct sequencing of the double-stranded linear DNA product with Sequenase (US Biochemical, Cleveland, OH) and α -³⁵S-dATP was carried out as originally described (14) with minor modifications (15).

Results

To analyze the TCR repertoire of H-2K^d-restricted CTLs specific for HLA-Cw3 within region 170–179, we first determined the sequence of the TCR α and β genes displayed by the CTL clone Cw3/1.1. Based on these results, we sequenced the TCR α and β cDNA junctional regions of 23 independent CTL clones of similar specificity. Finally, we analyzed the TCRs expressed by PELs freshly isolated from immunized mice.

TCR α and β Gene Rearrangements in CTL Clone Cw3/1.1. Genomic clones corresponding to the β gene rearrangements observed by Southern blot analyses were isolated from the Cw3/1.1 library, using probes J β 1 and J β 2 (13), and sequenced. One productive rearrangement involved the V β 10 (4, 16) and J β 1.2 gene segments (17) (Fig. 1) and resulted in 1.3-kb RNA transcripts (data not shown). The D β segment usage could not be unambiguously ascertained. The second VDJ rearrangement, out of the proper translational reading frame, involved the V β 3, D β 1, and J β 2.1 gene segments (data not shown).

The structure of the TCR α gene rearrangements was analyzed by Southern blots using a panel of 17 single-copy probes encompassing the totality of the J α gene segments and most

	r ə
	50
51 GCCTTCTGCCTCTTGGGCATAGGTGAGTAGTTGTGGTCCTAGGCCAGGAG	100
101 ATATGATTTTGTTTGAGTCCTTTGAGAATGACTACTTCTGAAATGTTTCC	150
G P L E T A V F Q T 151 GAATTATGATTATCTTTCACAGGCCCTTTGGAGACGGCTGTTTTCCAGAC	200
PNYHVTQVGNEVSFNC 201 tccaaactatcatgtcacaagtggggaaatgaagtgtctttcaattgta	250
K Q T L G H D T M Y W Y K Q D S K 251 AGCAAACTCTGGGCCACGATACTATGTATTGGTACAAGCAAG	300
K L L K I M F S Y N N K Q L I V N 301 AAATTGCTGAAGATTATGTTTAGCTACAATAATAAGCAACTCATTGTAAA	350
E T V P R R F S P Q S S D K A H 351 CGAAACAGTTCCAAGGCGCTTCTCACCTCAGTTAAAGCTCATT	400
L N L R I K S V E P E D S A V Y L 401 TGAATCTTCGAATCAAGTCTGTAGAGCCGGAGGACTCTGCTGTGTATCTC	450
<u>N</u> Jβ 1.2	
C A S S L G S D Y T F G S G T R L 451 TGTGCCAGCAGCCTCGGCTCCGACTACACCTTCGGCTCAGGGACCAGGCT	500
L V I 501 TTTGGTAATAGGTAAGGCCTGAGGGTCTTTGGGTGTGGGATGGAAAGTGT	550
551 AATACTGTTCTGGTAATCAGAGGAAGGATGCTGCTCATGGTTCCTCCTTG	600
601 AGGAAGAGGCTCTCTCATGTCTGGGACTACATTCTAATGAGGCTGGATCC	650
Figure 1 Sequence of the productive TCR & gene rearrangement f	bund

Figure 1. Sequence of the productive ICR β gene rearrangement found in CTL clone Cw3/1.1. The predicted amino acid sequence is shown above the nucleotide sequence. (*Horizontal arrows*) Boundaries between regions. (N) Probable N-region sequences. RNA splicing sites are underlined. This sequence is available from EMBL/GenBank/DDBJ under accession number X66896.

of the D δ -J δ -C δ cluster (12). Genomic clones, hybridizing to probes 10 and 11, were isolated, characterized by restriction map analysis (Fig. 2), and sequenced (Fig. 3). The productive rearrangement, Cw3/1.1A, involved a member of the

Figure 2. Structure of the two TCR α gene rearrangements in CTL clone Cw3/1.1. Partial restriction maps of the two alleles (Cw3/1.1A and Cw3/1.1 B) are compared with the corresponding region of the unrearranged TCR α gene locus. (Open boxes) Exons encoding J α gene segments and V α and C α genes. The positions of previously identified J α gene segments are indicated according to references 12, 30, and 31. (Vertical arrow) Location of the J α K1 gene segment (see text). (1) Horizontal Solid arrows) 5' to 3' orientation. (Vertical lines) Positions of the relevant BamHI (B) restriction sites. (Solid boxes) Position of the J α single copy probes Pr 10 and Pr 11 (12).

В

1 ACAGCTGTGGTGCAGGTTGAAGGGAAACCAGCAGAGGGGCGCTGTCCCTTC	50
51 AGGTGTGGTTAACATCTCATTCGGGTGGTGACTTAATGTGACAGACTCAC	100
101 TGTGCAGACAGAGGTCCTTGTCTGTGAGGAGGAGTTTGAGGAGATCCTG	150
151 CAGGAGGATTGCCTGTGAGATTGGTGCACTCAAGGACCAAGTGTCATTTC	200
> L	
M R P G T C S V L V L L L 201 TTCTATGAACATGCGTCCTGGCACCTGCTCAGTTCTTGTGCTCCTCCTAA	250
	300
301 CAATTCTGGTAGTCTTTAGTGTTCCTCCTTGCATAAAAAATTAATT	350
351 CATGTTTACATGTTTATTTAGTTACTCATTCTTTTTATTATTTAT	400
να8.P71	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	450
V T L T E G L P V M L N C T Y Q T 451 GTCACTCTCACCGAGGGGTTGCCTGTGATGCTGAACTGCACCCTATCAGAC	500
I Y S N P F L F W Y V H Y L N E 501 TATTTACTCAAATCCTTTCCCTTTTCTGGTATGTGCACTATCTCAATGAAT	550
S P R L L L K S S T D N K R T E H 551 CCCCTCGGCTACTCCTGAAGAGCTCCACAGACAACAAGAGGACCGAGCAC	600
Q G F H A T L H K S S S F H L Q 601 CAAGGGTTCCACGCCACTCTCCATAAGAGCAGCAGCTCCTTCCATCTGCA	650
K S S A Q L S D S A L Y Y C A L 651 GAAGTCCTCAGCGCAGCTGTCAGACTCTGCCCTGTACTACTGTGCTTTGA	700
S E G G F A S A L T F G S G T K V 701 GTGAGGGGGGCTTTGCAAGTGCGCTGACATTTGGATCTGGCACAAAAGTC	750
I V L P 751 ATTGTTCTACCATGTAAGTGTGTGTCTTCTCCTGTTCCCTGGGTTTAGAGCA	800
801 ATACTGTTCTTTGCATCTCCAGATATTTTCTCTAGGAGGATACAATGTCC	850
851 GGCTCTGCAGACACTGCCAGTTTAACCATTAAAAAGGTCATATTCATTTT	900
901 TTTTAAAAATAACTTAGACTGATTCCTTTTAATGTTGCCAACTGTGGAGG	950
951 GGACTAGACTGCCCAGGGAC	1000
να 5.3	
H P G D S A A Y F C A V K I L E E A CATCCTGGGGGACTCAGCCGCGTACTTCTGCGCAGTCAAAATTCTGGAGGAAGG N S G G S	CA N

M Q S * ATGCAAAGCTAACCTTCGGGAAAGGCACTAAACTCTCTGTTAAATCAAGT A K L T F G K G T K L S V K S

Figure 3. Sequence of the TCR α gene rearrangements in CTL clone Cw3/1.1. (A) Sequence of the productive rearrangement Cw3/1.1 A. The predicted amino acid sequence encoded by the exons is shown above the nucleotide sequence. (Horizontal arrows) Boundaries between regions. (L) Leader. The 5' boundary of the J α pHDS58 segment was determined by the analysis of the corresponding germline sequence (20). The putative 3' boundary of V α 8.p71 is deduced from the analysis of TCR α cDNAs involving V α segments related to the V α 8.P71 sequences (18, 32). (N) Probable N-region nucleotides. RNA splicing donor and acceptor sites are underlined. (B) Partial nucleotide sequence of the nonproductive rearrangement Cw3/1.1 B. Two amino acid sequences are indicated for the JaK1 nucleotide sequence. (Top) Amino acid sequence corresponds to that resulting from the nonproductive V-J joining observed in Cw3/1.1 cells. (Bottom) Amino acid sequence corresponds to that expected from a productive rearrangement. (*) Premature termination codon observed in the Cw3/1.1 B rearrangement. These sequences are available from EMBL/Gen-Bank/DDBJ under accession number X66896.

441 Casanova et al.

V α 8 subfamily, whose coding region was 100% identical at the nucleotide level to the BALB/c V α p71 gene segment (18), and the J α pHDS58 gene segment (19, 20). It resulted in 1.5-kb RNA transcripts (data not shown). Rearrangement Cw3/1.1 B, out of proper translational frame, involved a member of the V α 5 subfamily with a coding region 100% identical at the nucleotide level to the V α MDA gene segment (18), referred to as V α 5.3 gene segment (4, 18, 21), and the J α K1 segment (5), which we have positioned within the J α cluster (Fig. 2).

TCR- β cDNA Junctional Regions of HLA-Cw3-specific CTL Clones. A series of 45 H-2K^d-restricted CTL clones specific for HLA-Cw3 was submitted to cDNA-PCR with a sense V β 10 primer in conjunction with an antisense C β primer. All clones were found to be positive, and the sequencing of the PCR products allowed the unambiguous identification of at least 23 independent CTL clones, based on differences either of TCR β gene sequence or of animal of origin (Fig. 4 and Table 1).

The 23 TCR β chains displayed remarkably conserved features (Fig. 5). All chains expressed the V β 10 segment. Out of 12 possible J β segments, only 5 J β segments were found. The J β 1.2 segment was expressed by a majority of the clones (12/23) and three segments, namely J β 1.2, J β 2.3, and J β 1.4, constituted nearly all chains (20/23). All 23 TCR β chain junctional regions displayed the same CDR3 length, as defined by Chothia et al., (22), of six amino acids. A glycine residue, non V, non J-encoded, was strictly conserved in all chains at position 97. Subgroups of CTL clones bearing identical TCR β chain amino acid sequences were found. In addition, many β chains differed from others at only a single position in the CDR3 loop, often by a conservative substitution.

TCR α cDNA Junctional Regions of HLA-Cw3-specific CTL Clones. The 23 independent CTL clones were first submitted to cDNA-PCR with a sense V α 8 primer in conjunction with an antisense C α primer. Eight clones expressed a V α 8 transcript and the remaining 15 clones were tested sequentially with primers corresponding to most V α subfamilies.

The sequences of the PCR products (Fig. 4) revealed closely conserved features among the TCR α chains (Fig. 6). Out of at least 22 possible V α subfamilies, only five were found and three of these, namely V α 3, V α 4, and V α 8, constituted the vast majority of the repertoire (20/23). All chains bore the J α pHDS58 segment, out of around 50 possible J α segments. Furthermore, a single length of nine amino acids was found for the CDR3 loop. A high proportion of aspartic or glutamic acid at position 94 (17/23) and of glycine or arginine residues at position 95 (16/23), non J-encoded, were found. Several pairs of CTL clones apparently bearing identical TCR α chain amino acid sequences were found, although additional diversity in the nonsequenced part of the V α segment could not be rigorously excluded. Many other clones differed in the CDR3 junctional region only, at a single or a few positions, often by conservative substitutions. Some clones shared identical CDR3 sequences, but differed in V α segment usage.

λ TCR α cDNAs

CTL clone	Vα													Jα
Cw3/1.1	8.p71	TGT	GCT	TTG	AGT	GAG	GGG	GGC	ŤTT	GCA	AGT	GCG	CTG	pHDS58
Cw3/HLA2A3	8.p71	<i>.</i> TGT	GCT	TTG	AGT	GAA	GGA	GGC	ŤTT	GCA	AGT	GCG	CTG	pHDS58
Cw3/Cas20	8.p71	TGT	GCT	TTG	AGT	GAT	CAG	GGC	TTT	GCA	AGT	GCG	CTG	pHDS58
Cw3/Cas15	8.p71	TGT	GCT	$\mathbf{T}\mathbf{T}\mathbf{G}$	AGT	GAT	GGG	GGC	TTT	GCA	AGT	GCG	CTG	pHDS58
Cw3/Cas2	8.F3.2	ŤGT	GCT	TTG	AGT	GAT	CGA	GGC	TTT	GCA	AGT	GCG	CTG	pHDS58
Cw3/Cas7	8.F3.2	TGT	GCT	TTG	AGT	GAA	CGG	GGC	TTT	GCA	AGT	GCG	CTG	pHDS58
Cw3/Cas3	8.F3.4	TGT	GCT	TTG	AGT	GAA	GGG	GGC	TTT	GCA	AGT	GCG	C T G	pHDS58
Cw3/C37	8.F3.6	TGT	GCT	CTG	AGT	GAT	CGA	GGC	TTT	GCA	AGT	GCG	CTG	pHDS58
Cw3/2C1	4.1465	IGT	GCT	CTG	AGT	GAT	CGG	GGC	TTT	GCA	AGT	GCG	CTG	pHDS58
CW3/C44	4.1405	IGT	GCT	CTG	AGT	GAT	CGG	GGC	TTT	GCA	AGT	GCG	CTG	pHDS58
CW3/MLAICO	4.5	TGT	GCT	omo	GGT	GAC	CCA	GGC	TTT	GCA	AGT	GCG	CTG	pHDS58
CW3/356	4.5	TGT	COT	CTG	COT	CAA	CCC	GGC	TTT	GCA	AGT	GCG	CTG	PHDS58
CW3/HLAIGO	ילפדם א	IGT	COT	CTG	ACT	CAT	CGG	CCC	TTT	GCA	AGT	GLG	CTG	phDS58
Cw3/485	3 30	J100	COT	CIG	*CC	ATC:	COG	CCC	111	CCA	AGI	ccc	CTG	phDS38
Cw3/#122n3	3.40	TGT	CCT	CTG	AGC	CCC	CCN	CCC	111 TTT	CCA	AGI	ccc	CTC	phD350
Cw3/56 1	3 AR-5	TGT	CCT	CTTG	AGC	600	ACA	CCC	111	GCA	AGT	aca	CTG	pHDS50
Cw3/184	3 AR-5	TOT	CCT	CTG	AGC	aca	ACA	000	T T T	CCL	AGT	ccc.	CTC.	pHDS50
Cw3/701.1	3 AR-5	TGT	CCT	CTG	ACC	CAG	ACA	CCC	ጥጥጥ	aca	ACT	aca	CTG.	pHDS50
Cw3/1F11	3 (19	TGT	GCT	GTG	ACC	GAG	ACA	cac	ተተተ	CCA	ACT	ccc	CTC	54DS50
Cw3/Cas1	5. MDA	TGC	GCA	GTC	AGT	GCG	GGG	aac	ተጥጥ	GCA	AGT	000	CTG.	5HD350
Cw3/2C3	5.MDA	TGC	GCA	GTC	AGT	GAG	GGG	222	TTT	GCA	AGT	ang	CTG	pHD558
Cw3/10.1	1.TA84	TGT	GCA	GTT	AGT	GAG	CAC	GGC	TTT	GCA	AGT	GCG	CTG	pHDS58
CTL clone	Vβ													Jβ
CTL clone	ν β 10	TGT	GCC	AGC	AGC	CTC	GGC	TCC	GAC	TAC	ACC	TTC	GGC	Jβ 1.2
CTL clone Cw3/1.1 Cw3/2C1	Vβ 10 10	TGT TGT	GCC GCC	AGC AGC	AGC AGC	CTC TTG	GGC GGC	TCC TCC	GAC GAC	TAC TAC	ACC ACC	TTC TTC	GGC GGC	J β 1.2 1.2
CTL clone Cw3/1.1 Cw3/2C1 Cw3/Cas20	νβ 10 10 10	TGT TGT TGT	GCC GCC GCC	AGC AGC AGC	AGC AGC AGC	CTC TTG CTA	GGC GGC GGA	TCC TCC TCC	GAC GAC GAC	TAC TAC TAC	ACC ACC ACC	TTC TTC TTC	GGC GGC GGC.,.	Jβ 1.2 1.2 1.2
CTL clone Cw3/1.1 Cw3/2C1 Cw3/Cas20 Cw3/4A3	ν β 10 10 10 10 10	TGT TGT TGT TGT	GCC GCC GCC GCC	AGC AGC AGC AGC	AGC AGC AGC AGC	CTC TTG CTA AGA	GGC GGC GGA GGC	TCC TCC TCC TCC	GAC GAC GAC GAC	TAC TAC TAC TAC	ACC ACC ACC ACC	TTC TTC TTC TTC TTC	GGC GGC GGC GGC	Jβ 1.2 1.2 1.2 1.2
CTL clone Cw3/1.1 Cw3/2C1 Cw3/Cas20 Cw3/4A3 Cw3/HLA1G6	Vβ 10 10 10 10 10 10 10 10	TGT TGT TGT TGT TGT	600 600 600 600 600	AGC AGC AGC AGC AGC	AGC AGC AGC AGC AGC	CTC TTG CTA AGA C <u>GG</u>	GGC GGC GGA GGC <u>GG</u> C	TCC TCC TCC TCC TCC TCC	GAC GAC GAC GAC GAC	TAC TAC TAC TAC TAC	ACC ACC ACC ACC ACC ACC	TTC TTC TTC TTC TTC	GGC GGC GGC GGC	Jβ 1.2 1.2 1.2 1.2 1.2
CTL clone Cw3/1.1 Cw3/2C1 Cw3/Cas20 Cw3/4A3 Cw3/HLA1G6 Cw3/Cas2	Vβ 10 10 10 10 10 10	TGT TGT TGT TGT TGT TGT	600 600 600 600 600 600	AGC AGC AGC AGC AGC AGC	AGC AGC AGC AGC AGC AGC	CTC TTG CTA AGA C <u>GG</u> TTT	GGC GGC GGA GGC GGC GGC	TCC TCC TCC TCC TCC TCC TCC	GAC GAC GAC GAC GAC GAC	TAC TAC TAC TAC TAC TAC	ACC ACC ACC ACC ACC ACC	TTC TTC TTC TTC TTC TTC TTC	GGC GGC GGC GGC GGC	Jβ 1.2 1.2 1.2 1.2 1.2 1.2
CTL clone cw3/1.1 cw3/2C1 Cw3/Cas20 cw3/4A3 cw3/4LA1G6 cw3/Cas2 cw3/C44	Vβ 10 10 10 10 10 10 10	TGT TGT TGT TGT TGT TGT TGT	600 600 600 600 600 600 600	AGC AGC AGC AGC AGC AGC AGC	AGC AGC AGC AGC AGC AGC AGC	CTC TTG CTA AGA C <u>GG</u> TTT <u>CAG</u>	GGC GGC GGA GGC <u>GG</u> C GGC <u>GG</u> C	TCC TCC TCC TCC TCC TCC TCC	GAC GAC GAC GAC GAC GAC GAC	TAC TAC TAC TAC TAC TAC TAC TAC	ACC ACC ACC ACC ACC ACC ACC	TTC TTC TTC TTC TTC TTC TTC	GGC GGC GGC GGC GGC GGC	Jβ 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
CTL, clone cw3/1.1 cw3/2c1 cw3/2c3 cw3/4A3 cw3/HLA1G6 cw3/Cas2 cw3/44 cw3/HLA1C8	Vβ 10 10 10 10 10 10 10 10	TGT TGT TGT TGT TGT TGT TGT TGT	GCC GCC GCC GCC GCC GCC GCC GCC	AGC AGC AGC AGC AGC AGC AGC AGC	AGC AGC AGC AGC AGC AGC AGC AGC	CTC TTG CTA AGA C <u>GG</u> TTT <u>CAG</u>	GGC GGA GGC GGC GGC GGC GGC	TCC TCC TCC TCC TCC TCC TCC TCC ACC	GAC GAC GAC GAC GAC GAC GAC GAC	TAC TAC TAC TAC TAC TAC TAC TAC	ACC ACC ACC ACC ACC ACC ACC ACC	TTC TTC TTC TTC TTC TTC TTC TTC	GGC GGC GGC GGC GGC GGC GGC	Jβ 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
CTL, clone Cw3/1.1 Cw3/2C1 Cw3/2a20 Cw3/4A3 Cw3/HLA1G6 Cw3/Cas2 cw3/C44 cw3/C44 cw3/C458 cw3/C437	Vβ 10 10 10 10 10 10 10 10 10 10	TGT TGT TGT TGT TGT TGT TGT TGT	600 600 600 600 600 600 600 600	AGC AGC AGC AGC AGC AGC AGC AGC AGC	AGC AGC AGC AGC AGC AGC AGC AGC AGC	CTC TTG CTA AGA C <u>GG</u> TTT <u>CAG</u> TAC	GGC GGA GGC GGC GGC GGC GGA GGG	TCC TCC TCC TCC TCC TCC TCC ACC ACC	GAC GAC GAC GAC GAC GAC GAC GAC	TAC TAC TAC TAC TAC TAC TAC TAC TAC	ACC ACC ACC ACC ACC ACC ACC ACC ACC	TTC TTC TTC TTC TTC TTC TTC TTC TTC	GGC GGC GGC GGC GGC GGC GGC GGC	Jβ 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
CTI, clone Cw3/1.1 Cw3/2C1 Cw3/Cas20 Cw3/4A3 Cw3/HLA1G6 Cw3/Cas2 Cw3/C44 cw3/HLA1C8 cw3/C37 Cw3/HLA2D3	Vβ 10 10 10 10 10 10 10 10 10 10	TGT TGT TGT TGT TGT TGT TGT TGT TGT	600 600 600 600 600 600 600 600 600 600	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	AGC AGC AGC AGC AGC AGC AGC AGC AGC	CTC TTG CTA AGA C <u>GG</u> TTT <u>CAG</u> CAG TAC TAC	660 660 660 660 660 660 660 660 660	TCC TCC TCC TCC TCC TCC TCC ACC ACC ACC	GAC GAC GAC GAC GAC GAC GAC GAC GAC	TAC TAC TAC TAC TAC TAC TAC TAC TAC TAC	ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC	TTC TTC TTC TTC TTC TTC TTC TTC TTC TTC	GGC GGC GGC GGC GGC GGC GGC GGC	Jβ 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
CTL clone Cw3/1.1 cw3/2c1 Cw3/Cas20 cw3/4A3 cw3/HLA1G6 cw3/Cas2 cw3/c44 cw3/C44 cw3/C44 cw3/C37 cw3/LA2D3 cw3/10.1	 Vβ 10 	TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT	600 600 600 600 600 600 600 600 600 600	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	CTC TTG CTA AGA C <u>GG</u> TTT CAG CAG TAC TAC ACA	660 660 660 660 660 660 660 660 660 660	TCC TCC TCC TCC TCC TCC ACC ACC ACC TTC	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	TAC TAC TAC TAC TAC TAC TAC TAC TAC TAC	ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC	TTC TTC TTC TTC TTC TTC TTC TTC TTC TTC	GGC GGC GGC GGC GGC GGC GGC GGC GGC	Jβ 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
CTL, clone Cw3/1.1 Cw3/2C1 Cw3/2G20 Cw3/4A3 Cw3/HLA1G6 Cw3/Cd4 Cw3/HLA1C8 Cw3/C37 Cw3/HLA2D3 Cw3/10.1 Cw3/10.1	 Vβ 10 	TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT	600 600 600 600 600 600 600 600 600 600	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	CTC TTG CTA AGA C <u>GG</u> TTT <u>CAG</u> TAC TAC ACA T <u>GG</u>	GGC GGA GGC GGC GGC GGC GGG GGG GGG GGG	TCC TCC TCC TCC TCC TCC TCC ACC ACC ACC	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	TAC TAC TAC TAC TAC TAC TAC TAC TAC TAC	ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC	TTC TTC TTC TTC TTC TTC TTC TTC TTC TTC	GGC GGC GGC GGC GGC GGC GGC GGC GGC	<pre>Jβ 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2</pre>
CTL, clone cw3/1.1 cw3/2c1 cw3/cas20 cw3/4A3 cw3/HLA1G6 cw3/cCas2 cw3/c44 cw3/HLA1C8 cw3/c237 cw3/HLA2D3 cw3/HLA2D3 cw3/HCA2D3 cw3/Cas3 cw3/A8	 Vβ 10 10	TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT	600 600 600 600 600 600 600 600 600 600	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	CTC TTG CTA AGA C <u>GG</u> TTT CAG TAC TAC ACA T <u>GG</u> TTG	GGC GGA GGC GGC GGC GGC GGG GGG GGG GGA GGA	TCC TCC TCC TCC TCC TCC ACC ACC ACC TTC CAG GAA	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	TAC TAC TAC TAC TAC TAC TAC TAC TAC TAC	ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC	TTC TTC TTC TTC TTC TTC TTC TTC TTC TTC	GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC	Jβ 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
CTL, clone Cw3/1.1 Cw3/Cas20 Cw3/Cas20 Cw3/A3 Cw3/HLA1G6 Cw3/Cas2 Cw3/Cas2 Cw3/HLA1C8 Cw3/HLA1C8 Cw3/HLA2D3 Cw3/10.1 Cw3/Cas3 Cw3/A8 Cw3/Cas1	 Vβ 10 10	TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT	600 600 600 600 600 600 600 600 600 600	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	CTC TTG CTA AGA C <u>GG</u> TTT <u>CAG</u> TAC TAC ACA T <u>GG</u> TTG	GGC GGC GGC GGC GGC GGC GGC GGG GGG GGA GGA	TCC TCC TCC TCC TCC TCC ACC ACC ACC TTC CAG GAA GAA	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	TAC TAC TAC TAC TAC TAC TAC TAC TAC TAC	ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC	TTC TTC TTC TTC TTC TTC TTC TTC TTC TTC	GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC	$J\beta$ 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
CTI, clone Cw3/1.1 Cw3/2C1 Cw3/Cas20 Cw3/4A3 Cw3/HLA1G6 Cw3/Cas2 Cw3/C44 cw3/HLA1C8 Cw3/C44 Cw3/C44 Cw3/C44 Cw3/10.1 Cw3/Cas3 Cw3/A8 Cw3/A8 Cw3/A8 Cw3/Cas1 Cw3/Cas1 Cw3/Cas1	 Vβ 10 10	TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT	600 600 600 600 600 600 600 600 600 600	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	CTC TTG CTA AGA C <u>GG</u> TTT T <u>CAG</u> TAC TAC TAC TAC TGG TTG TTG	6600 6600 6600 6600 6600 6600 6600 660	Tec Tec Tec Tec Tec Acc Acc Acc Tec Acc CAC GAA GAA GAA	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	TAC TAC TAC TAC TAC TAC TAC TAC TAC CAC C	ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC	TTC TTC TTC TTC TTC TTC TTC TTC TTC TTC	GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC	$J\beta$ 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
CTL, clone Cw3/1.1 cw3/2C1 cw3/2a20 cw3/4A3 cw3/4A3 cw3/4LA1G6 cw3/cas2 cw3/c44 cw3/HLA1C8 cw3/c37 cw3/HLA2D3 cw3/10.1 cw3/Cas1 cw3/A8 cw3/2as1 cw3/F11 cw3/71.1	 Vβ 10 10	TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT	600 600 600 600 600 600 600 600 600 600	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	CTC TTG CTA AGA C <u>GG</u> TTT T <u>CAG</u> TTG TTG TTG TTG TTT TAC	660 660 660 660 660 660 660 660 660 660	TCC TCC TCC TCC TCC TCC ACC ACC ACC TTC CAG GAA GAA GAA	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	TAC TAC TAC TAC TAC TAC TAC TAC TAC CTAC CTG CTG CTG	ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC	TTC TTC TTC TTC TTC TTC TTC TTC TTC TTC	GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC	Jβ 1.2 2.3 2.3
CTL, clone cw3/1.1 cw3/2c1 cw3/2c20 cw3/4A3 cw3/HLA1G6 cw3/Cda2 cw3/C44 cw3/HLA1C8 cw3/C44 cw3/HLA2D3 cw3/HLA2D3 cw3/HLA2D3 cw3/Cas1 cw3/Cas1 cw3/F11 cw3/F11 cw3/F01.1 cw3/56.1	 Vβ 10 10	TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT	600 600 600 600 600 600 600 600 600 600	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	CTC TTG CTA AGA CGG TTT CAG TAC TAC TAC TTG TTG TTT TAC TGG	660 660 660 660 660 660 660 660 660 660	TCC TCC TCC TCC TCC TCC ACC ACC ACC CAG GAA GAA GAA GAA	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	TAC TAC TAC TAC TAC TAC TAC TAC TAC CAC C	ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC	TTC TTC TTC TTC TTC TTC TTC TTC TTC TTC	GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC	Jβ 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 2.3 2.3 2.3 2.3
CTL, clone Cw3/1.1 Cw3/2C1 Cw3/Cas20 Cw3/4A3 Cw3/HLA1G6 Cw3/Cas2 cw3/C44 cw3/Cas2 Cw3/HLA2D3 Cw3/HLA2D3 Cw3/10.1 Cw3/Cas3 Cw3/A8 Cw3/Cas1 Cw3/1F11 Cw3/701.1 Cw3/56.1 Cw3/56.1 Cw3/56.1	 Vβ 10 	TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT	GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	CTC TTG CTA AGA CGG TTT CAG TAC TAC TAC TTG TTG TTG TTT TAC TCG	6600 6600 6600 6600 6600 6600 6600 660	TCC TCC TCC TCC TCC TCC ACC ACC ACC CAG GAA GAA GAA GAA	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	TAC TAC TAC TAC TAC TAC TAC TAC TAC CTG CTG CTG CTG CTG	ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC	TTC TTC TTC TTC TTC TTC TTC TTC TTC TTC	GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC	Jβ 1.2 2.3 2.3 1.4
CTL, clone Cw3/1.1 Cw3/Cas20 Cw3/Cas20 Cw3/A3 Cw3/HLA1G6 Cw3/Cas2 Cw3/CA4 Cw3/LLA1C8 Cw3/LLA1C8 Cw3/10.1 Cw3/Cas3 Cw3/A8 Cw3/Cas1 Cw3/F11 Cw3/701.1 Cw3/701.1 Cw3/701.1 Cw3/701.1 Cw3/701.1 Cw3/701.1	 Vβ 10 	TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT	GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	CTC TTG CTA AGA C <u>GG</u> TTT TCA CAG TTG TTG TTG TTG TTG TTC CAG	660 660 660 660 660 660 660 660 660 660	TCC TCC TCC TCC TCC TCC ACC ACC GAA GAA GAA GAA GAA GAA GAA	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	TAC TAC TAC TAC TAC TAC TAC TAC CTG CTG CTG CTG CTG CTG	ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC	TTC TTC TTC TTC TTC TTC TTC TTC TTC TTC	GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGT	$J\beta$ 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
CTL, clone Cw3/1.1 cw3/2C1 cw3/2a20 cw3/4A3 cw3/4HA1G6 cw3/cds2 cw3/c44 cw3/HLA1C8 cw3/c37 cw3/HLA2D3 cw3/10.1 Cw3/Cas1 cw3/P11 cw3/P11 cw3/P11 cw3/F11 cw3/F11 cw3/F12 cw3/B4 cw3/B4 cw3/2C3	 Vβ 10 	TGT TGT	600 600 600 600 600 600 600 600 600 600	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	CTC TTG CTA AGA CGG TTT TTT TGA CAG TAC TTG TTG TTG TTG TTC CAG TTC CAG	6600 6600 6600 6600 6600 6600 6600 660	TCC TCC TCC TCC TCC TCC TCC ACC ACC ACC	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	TAC TAC TAC TAC TAC TAC TAC TAC CTG CTG CTG CTG CTG CTG TTA TTA	ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC	TTC TTC TTC TTC TTC TTC TTC TTC TTC TTC	GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGT GGT	$J\beta$ 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
CTL, clone CW3/1.1 CW3/2C1 CW3/Cas20 CW3/4A3 CW3/HLA1G6 CW3/Cas2 CW3/C44 CW3/HLA2D3 CW3/HLA2D3 CW3/10.1 CW3/Cas3 CW3/A8 CW3/Cas1 CW3/Cas1 CW3/Cas1 CW3/Cas7 CW3/1B4 CW3/Cas3 CW3/1B4 CW3/Cas3 CW3/H4A2A3	 Vβ 10 	TGT TGT	600 600 600 600 600 600 600 600 600 600	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	CTC TTG CTA AGA C <u>GG</u> TTT CAG TAC TAC TTG TTG TTG TTG TTC CAG TAT TCC	6600 6600 6600 6600 6600 6600 6600 660	Tec Tec Tec Tec Tec Tec Tec Acc Acc Acc CAG GAA GAA GAA GAA GAA GAA GAA ACC	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	TAC TAC TAC TAC TAC TAC TAC TAC TAC CTG CTG CTG CTG CTG CTG CTG CTG CTG CT	ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC	TTC TTC TTC TTC TTC TTC TTC TTC TTC TTC	GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGT GGT	$J\beta$ 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
CTL, clone Cw3/1.1 Cw3/2C1 Cw3/2C2 Cw3/4A3 Cw3/HLA1G6 Cw3/Cas2 Cw3/C44 Cw3/HLA1C8 Cw3/C44 Cw3/HLA2D3 Cw3/HLA2D3 Cw3/HLA2D3 Cw3/Cas3 Cw3/A8 Cw3/Cas1 Cw3/F11 Cw3/F11 Cw3/F11 Cw3/F11 Cw3/F11 Cw3/Cas7 Cw3/LA2A3 Cw3/LA2A3 Cw3/LA2A3 Cw3/LA2A3	 Vβ 10 	TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT TGT	600 600 600 600 600 600 600 600 600 600	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	CTC TTG CTA AGA C <u>GG</u> TTT CAG TAC TAC TTG TTG TTG TTG TTC CAG CAG TAT TCC CAG	6600 6600 6600 6600 6600 6600 6600 660	TCC TCC TCC TCC TCC TCC TCC CAC CAC CAC	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	TAC TAC TAC TAC TAC TAC TAC TAC TAC TAC	ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC	TTC TTC TTC TTC TTC TTC TTC TTC TTC TTC	GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGT GGT GGT	$J\beta$ 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
CTL, clone Cw3/1.1 Cw3/Cas20 Cw3/Cas20 Cw3/A3 Cw3/HLA1G6 Cw3/Cas2 cw3/Cas2 Cw3/HLA1C8 Cw3/Cas3 Cw3/HLA2D3 Cw3/10.1 Cw3/Cas3 Cw3/A8 Cw3/Cas1 Cw3/1F11 Cw3/701.1 Cw3/56.1 Cw3/1B4 Cw3/2C3 Cw3/2C3 Cw3/2C	 Vβ 10 	TGT TGT	GCC GCC GCC GCC	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	AGC AGC AGC AGC AGC AGC AGC AGC AGC AGC	CTC TTG CTA AGA C <u>GG</u> TTT TAC TTC TTC CAG TTG TTG TTG TTG TTC CAG TTC CAG TTC CAG TTC CAG TTC TTC CAG TTC TTC TTC CAG TTC	6600 6600 6600 6600 6600 6600 6600 660	TCC TCC TCC TCC TCC TCC TCC CAC CAC CAA GAA GAA GAA GAA GAA GAA G	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	TAC TAC TAC TAC TAC TAC TAC TAC CTG CTG CTG CTG CTG CTG CTG CTG CTG CT	ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC	TTC TTC TTC TTC TTC TTC TTC TTC TTC TTC	GGC GGT GGT GGT GGT GGT GGT	$J\beta$ 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Figure 4. TCR α and β cDNA junctional nucleotides sequences. (A) TCR α junctional sequences. The nomenclature for the V α gene subfamilies follows that of references 4, 5, and 33. In the figure, the V α subfamily is separated from the V α gene segment by a period. The V α gene segments are named according to their original description from references: 18 (Va8.p71 and Va5.MDA); 32 (Va8.F3.2, Va8.F3.4, and Va8.F3.6); 21 (Va4.TA65 and Va1.TA84); 34 $(V\alpha 4.3);$ 35 $(V\alpha 4.P[R-25);$ 36 $(V\alpha 3.AR-5);$ 37 $(V\alpha 3.C9)$, and this report $(V\alpha 4.1G6 \text{ and } V\alpha 3.A8)$. Because of partial sequencing, except for the CTL clone Cw3/1.1, the V α segment identification is only putative. The partial sequences of the V α 4.1G6 and $V\alpha 3.A8$ gene segments are available upon request. All other segments but three are 100% identical at the nucleotide level to the published ones in the region sequenced, namely downstream of the V α primer used for PCR. The V α 8.F3.2 gene segment partial sequence in these DBA/2 clones differs from the original B6 sequence by a single base substitution; the V α 3.A8 gene segment partial sequence in BALB/c CTL clone Cw3/HLA2D3 differs from the Va3.A8 gene segment in CTL clone Cw3/A8 by a single base substitution; and the V α 3.C9 gene segment partial sequence in clone Cw3/1F11 differs by a single base substitution from the original sequence. They are available upon request. The JapHDS58 gene segment is from references 19, 20. (B) TCR β cDNA junctional sequences. The nomenclature for the functional $V\beta$ gene segments of the V β^{b} haplotype follows that of references 4 and 5. The V β 10 sequence was originally described in reference 16. The J β gene segments sequences are from references 17, 38, except J β 1.4, which is from reference 5. Unambiguously assigned $D\beta$ gene segments (39, 40) are underlined. These sequences are available from EMBL/GenBank DDBJ under accession number X66896.

TCR Analysis of Freshly Isolated PELs Specific for HLA-Cw3. It has been shown previously that mice injected intraperitoneally with allogeneic irradiated tumor cells (23) or with living antigenic variants of syngeneic tumor cells (24) may develop a potent specific CTL response that can be measured directly without in vitro stimulation. We have now adapted this approach and immunized DBA/2 mice intraperitoneally with syngeneic P815 cells transfected with the HLA-Cw3 gene.

The PELs exhibited a significant antigen-specific cytolytic activity against P815-Cw3 transfectant cells (Fig. 7 A). Flow cytometric analysis showed that as many as 90% of the CD8⁺ PELs expressed V β 10-bearing TCRs (Fig. 7 B). A second experiment confirmed these results and also showed that as few as 8% of the CD4⁺ PELs expressed V β 10bearing TCRs (data not shown). Moreover, <8% of CD8+ PELs from nonimmunized DBA/2 mice or from C57BL/6

mice immunized with P815, expressed V β 10-bearing TCRs (data not shown).

The V β 10 junctional regions of freshly isolated PEL populations were amplified by cDNA-PCR using a V β 10-C β pair of primers. The PCR products were directly sequenced with a second antisense C β primer closer to the VDJC junction. The sequencing reaction was mostly unreadable in the junctional region, but became clearly readable in the V β 10 region, indicating that the vast majority of the V β 10-bearing cDNAs differed in their junctional sequence but displayed the same junctional length (Fig. 8). Remarkably, these junctional regions were found to have precisely the same length in nucleotides as those from the HLA-Cw3-reactive CTL clones. Thus, they must also encode six amino acid-long CDR3 loops. In addition, of the nucleotides in the junctional region, two successive guanine nucleotides (G) in the first two positions of the triplet encoding the amino acid residue

Table 1. Origin of H-2K^d-restricted HLA-Cw3-reactive CTL Clones Used in this Study*

Mouse	Strain	Immunogen [‡]	In vitro stimulation	CTL clones	Reference
1	DBA/2	P815-Cw3	P815-Cw3	Cw3/10.1	6
2	DBA/2	P815-Cw3	P815-Cw3	Cw3/701.1	7
3	DBA/2	P815-Cw3	P815-Cw3	Cw3/1.1, Cw3/56.1	7
4	DBA/2	P815-Cw3	P815-Cw3	Cw3/2C1, Cw3/1F11	This report [§]
				Cw3/2C3	-
5	DBA/2	P815-Cw3	P815 + peptide	Cw3/A8	This report [¶]
6	DBA/2	P815-Cw3sec	P815-Cw3sec	Cw3/Cas1, Cw3/Cas2	28
				Cw3/Cas3, Cw3/Cas7	
				Cw3/Cas15, Cw3/Cas20	
7	DBA/2TgB7	P815-Cw3	P815-Cw3	Cw3/4A3, Cw3/5B8	29¶
8	DBA/2TgB7	P815-Cw3/hβ₂m	P815-Cw3/hβ₂m	Cw3/1B4	29¶
9	DBA/2TgB7/hβ₂m	P815-Cw3/hβ₂m	P815-Cw3/hβ₂m	Cw3/C37, Cw3/C44	29¶
10	BALB/c	peptide Cw3 ₁₇₀₋₁₈₂	P815 + peptide	Cw3/HLA1C8, Cw3/HLA1G6	This report**
11	BALB/c	peptide Cw3170-182	P815 + peptide	Cw3/HLA2A3, Cw3/HLA2D3	This report**

* The specificity of the CTL clones from mice 1 to 9 was established by recognition of the transfectant cell line P815-Cw3 (6) and was further documented (except Cw3/56.1, 1F11, Cas3, and C44) with P815 cells pulsed with synthetic peptides corresponding to the region 170–179 or 170–182 of the HLA-Cw3 molecule. The specificity of CTL clones from mice 10 and 11 was shown by recognition of the HLA-Cw3 170–179 peptide. In addition, a presumed sister clone of CTL clone Cw3/HLA1C8 was shown to kill P815-Cw3 cells as efficiently as the CTL clones isolated after immunization by the transfectant cell P185-Cw3. Clone HLA2D3 recognized P815-Cw3 less efficiently. Clones HLA1G6 and 2A3 were not tested against P815-Cw3. An additional CTL clone from mouse 11 recognized the Cw3 170–179 peptide, but was found not to express V β 10 and is not included in this study. The H-2K^d restriction of the CTL clones from mice 1, 2, 3, and 5 is based on recognition of L cells transfected with H-2K^d, that of clones from mice 7 to 9 is based on antibody blocking experiments, and that of clones from mice 4, 6, 10, and 11 is presumed from recognition of Cw3 peptides which are known to bind to H-2K^d.

* P815-Cw3 indicates a P815 mastocytoma cell line transfected with the HLA-Cw3 gene (6), and P815-Cw3sec and P815-Cw3/ $h\beta_2m$ indicate P815 cell lines transfected with a gene encoding a secreted form of HLA-Cw3 (28) and a gene encoding human β_2 microglobulin in addition to the HLA-Cw3 gene (29), respectively.

5 These clones were isolated as described in references 6 and 7.

CTL clone Cw3/A8 was derived as described (6, 7) except that P815 cells prepulsed with peptide Cw3 170-182 were used for *in vitro* stimulation. These CTL clones were not described in reference 29, but were derived in the reported experiments and found to be H-2Kd-restricted by antibody blocking experiments.

** BALB/c mice were immunized with peptide Cw3 170-182 in Freund's adjuvant as described in reference 27, and P815 cells pulsed with peptide Cw3 170-182 were used for in vitro stimulation.

97 were clearly readable, indicating that a Gly residue was also conserved among PELs specific for HLA-Cw3, as in all CTL clones. In contrast, direct sequencing with the same primer of V β 10 PCR products of PELs from C57BL/6 mice immunized with P815 cells (Fig. 8) or from nonimmunized DBA/2 mice (data not shown) was not readable in any region. Altogether, the results indicated that CTLs in vivo were very similar in terms of TCR β chain structure to the CTL clones isolated and grown in vitro.

Discussion

We found that H-2K^d-restricted CTL clones specific for HLA-Cw3 within region 170–179 expressed TCRs of very limited diversity. All used the V β 10 and J α pHDS58 segments, and all CDR3 α and β loops were found to display remarkably conserved features. This limited set of TCRs was selected

443 Casanova et al.

despite differences among the mouse strains and immunization procedures used to derive these clones (Table 1). Moreover, the limited diversity of the TCRs of HLA-Cw3-reactive CTL clones established by in vitro culture is clearly representative of the TCR repertoire used in vivo, since PELs freshly isolated from mice immunized with HLA-Cw3 transfectant cells show the same TCR structures, not only in terms of V β 10 segment usage, but also in terms of V β 10-associated junctional region composition.

The HLA-Cw3-specific TCR repertoire clearly reflects an enrichment, since among unselected peripheral lymphocytes, <8% of CD8⁺ cells in DBA/2 mice are V β 10 (10, and data not shown). Of the V β 10-bearing TCRs (25, 26) and J α pHDS58-bearing TCRs (5, 19) reported in the literature, none resembles those specific for HLA-Cw3. Moreover, out of 54 additional independent H-2K^d-restricted CTL clones specific for antigens unrelated to HLA-Cw3, only two were

CTL clone	vβ	FW	CDR3	FW	Jβ
Cw3/1.1	10	CAS	SLGSDY	TFG	1.2
Cw3/2C1	10	CAS	SLGSDY	TFG	1.2
Cw3/Cas20	10	CAS	SLGSDY	TFG	1.2
Cw3/4A3	10	CAS	SRGSDY	TFG	1.2
Cw3/HLA1G6	10	CAS	SRGSDY	TFG	1.2
Cw3/Cas2	10	CAS	SFGSDY	TFG	1.2
Cw3/C44	10	CAS	SQGSDY	TFG	1.2
Cw3/HLA1C8	10	CAS	SQGTDY	TFG	1.2
Cw3/C37	10	CAS	S Y G T D Y	TFG	1.2
Cw3/HLA2D3	10	CAS	S Y G T D Y	TFG	1,2
Cw3/10.1	10	CAS	STGFDY	TFG	1.2
Cw3/Cas3	10	CAS	SWGQGY	TFG	1.2
Cw3/A8	10	CAS	SLGETL	YFG	2.3
Cw3/Cas1	10	CAS	SLGETL	YFG	2.3
Cw3/1F11	10	CAS	SFGETL	YFG	2.3
Cw3/701.1	10	CAS	SYGETL	YFG	2.3
Cw3/56.1	10	CAS	SWGETL	YFG	2.3
Cw3/Cas7	10	CAS	SFGERL	FFG	1.4
Cw3/1B4	10	CAS	SQGERL	FFG	1.4
Cw3/2C3	10	CAS	SYGERL	FFG	1.4
Cw3/HLA2A3	10	CAS	SSGRVE	YFG	2.7
Cw3/5B8	10	CAS	S K G V M G	YFG	2.7
Cw3/Cas15	10	CAS	SFGQEV	FFG	1.1

Figure 5. TCR β chain junctional region amino acid sequences. (Vertical axis) The 23 CTL clones. For each clone, the in-frame TCR β transcript encoding the key residues at the VDJ junction (22) was considered to encode the functional TCR β chain. For CTL clones Cw3/1.1, 10.1, 701.1, A8, Cas1, and Cas20, a FACS[®] staining with the antiV β 10 mAb B21.5 (10) was performed to confirm the β transcript assignment. The deduced amino acid sequences of the junctional and hypervariable region, putatively CDR3-like, are reported in single-letter amino acid coe(22). The presumed Ig-like loop, designated CDR3 for convenience, is putatively supported by two framework branches (FW). The key cysteine residue is at position 92 in the β chain. The V β and J β segments are also reported (see legend to Fig. 4 for references).

found to be V β 10, and their junctional regions differ considerably from the HLA-Cw3-reactive V β 10 chains (Casanova et al., manuscript in preparation).

The very limited heterogeneity of the TCRs specific for the HLA-Cw3 peptide stands in marked contrast to our previous report that the TCRs of CTLs specific for a PbCS peptide showed highly diverse primary structures (5). It is notable that both studies are comparable with respect to immunization procedures, mouse strains, and restriction element. In addition, both peptides bind to H-2K^d with a similar affinity (8, and data not shown). As a possible explanation for the difference in the TCR repertoire size, the HLA-Cw3 peptide is one amino acid longer than the PbCS peptide. However, this increased number of solvent-accessible side chains between the two residues "anchoring" the peptides to H-2K^d (8) should rather expose on the surface of the complex more epitopes available for TCR contact. More likely, a feature that may account for the TCR repertoire size differences between the two systems seems to be that, unlike the PbCS peptide, the HLA-Cw3 peptide is homologous to self peptides derived from the same region of the H-2 molecules. It is

CTL clone	Vα	FW	(D	R.	3							FW	Jα
Ctv2 (1 1	0 77 1	~ • •			_	~	~	_	_	_		_		
Cw3/1.1	8.p/1	CAL		5	E	G	G	F	A	S	А	L	TFG	pHDS58
CW37HLA2A3	8.p71	CAL	5	5	Е	G	G	F	A	S	A	L	TFG	pHDS58
Cw3/Cas20	8.p71	CAL	5	3	D	Q	G	F	A	S	A	L	TFG	pHDS58
Cw3/Cas15	8.p71	CAL	5	3	D	G	G	F	A	s	A	L	TFG	pHDS58
Cw3/Cas2	8.F3.2	CAL	5	3	D	R	G	F	A	s	A	L	TFG	pHDS58
Cw3/Cas7	8.F3.2	CAL	5	5	Е	R	G	F	A	s	A	L	TFG	pHDS58
Cw3/Cas3	8.F3.4	CAL	S	5	Ε	G	G	F	A	s	A	L	TFG	pHDS58
Cw3/C37	8.F3.6	CAL	S	;	D	R	G	F	A	s	A	L	TFG	pHDS58
Cw3/2C1	4.TA65	CAL	Ş	5	D	R	G	F	A	s	A	L	TFG	pHDS58
Cw3/C44	4. TA65	CAL	Ş		D	R	G	F	A	s	A	L	TFG	pHDS58
Cw3/HLA1C8	4.3	CAL	¢	;	D	Ρ	G	F	A	s	A	L	TFG	pHDS58
Cw3/5B8	4.3	CAL	G		E	G	G	F	A	s	А	L	TFG	pHDS58
Cw3/HLA1G6	4.1G6	CAL	Ģ		D	R	G	F	A	s	A	L	TFG	pHDS58
Cw3/4A3	4.PJR~25	CAL	S	1	D	R	G	F	A	s	A	L	TFG	pHDS58
Cw3/A8	3.A8	CAL	S	1	М	G	G	F	A	s	А	L	TFG	pHDS58
Cw3/HLA2D3	3.A8	CAV	S		A	G	G	F	A	s	A	L	TFG	pHDS58
Cw3/56.1	3.AR-5	CAL	S		A	т	G	F	A	s	A	L	TFG	pHDS58
Cw3/1B4	3.AR-5	CAL	S		Á	т	G	F	A	s	A	L	TFG	pHDS58
Cw3/701.1	3.AR-5	CAL	т	(Q	т	G	F	A	s	A	L	TFG	pHDS58
Cw3/1F11	3.C9	CAV	S	1	E	т	G	F	A	s	А	L	TFG	pHDS58
Cw3/Cas1	5.MDA	CAV	S	į	A	G	G	F	A	s	А	L	TFG	pHDS58
Cw3/2C3	5.MDA	CAV	S	1	Е	G	G	F	A	s	А	L	TFG	pHDS58
Cw3/10.1	1.TA84	CAV	s	I	Ε	н	G	F	A	s	А	L	TFG	DHDS58

Figure 6. TCR α chain junctional region amino acid sequences. (Vertical axis) The 23 CTL clones. Because T cells may display two productive α rearrangements (5, 41), the functional α chains, engaged in heterodimeric formation with the β chains and specific for the HLA-Cw3 peptide/H-2Kd molecule complex, can be rigorously determined only for CTL clones in which a second, out-of-frame, α gene or transcript is identified. In CTL clone Cw3/1.1, both α rearrangements were sequenced, and only one was found to be productive (Figs. 2 and 3). In CTL clones Cw3/701.1, Cas1, 4A3, C44, 2C1, and HLA1C8, a second, out-of-frame, α transcript was detected by cDNA-PCR (data not shown). A second transcript, in-frame at the V-J junction, was detected in CTL clone Cw3/HLA2D3 (data not shown). Nevertheless, for the latter and the remaining CTL clones, the JapHDS58-bearng rearrangements are likely to encode the functional α chains, considering that their structures are very similar to the unambiguously assigned ones. The deduced amino acid sequences of the junctional and hypervariable region, putatively CDR3-like, are reported in single-letter amino acid code (22). The presumed Ig-like loop, designated CDR3 for convenience, is putatively supported by two framework branches (FW). The key cysteine is at position 90 in the α chain. The V α and J α segments are also reported (see Fig. 4 for references).

significant that a survey of the previously reported class II MHC-restricted TCR repertoires supports this hypothesis (5).

In this model, among the T cell epitopes potentially displayed by the HLA-Cw3 peptide/H-2K^d molecule complex, a significant degree of overlap would be expected to occur with those displayed by self H-2 peptide/H-2K^d molecule complexes. As a consequence of natural tolerance to self epitopes, a significant fraction of CTLs potentially HLA-Cw3 reactive may not be recruited during the immune response. In support of this view, when tested for recognition of the HLA-Cw3 peptide in the context of a series of genetically engineered mutants of the H-2K^d molecule, all CTL clones tested so far displayed the same recognition pattern (Maryanski et al., manuscript in preparation). This stands in contrast to the highly diverse recognition patterns we have previously

Figure 7. Specific cytolytic activity and $V\beta$ FACS[®] analysis of freshly isolated PELs from DBA/2 mice immunized with P815-Cw3 transfectant cells. (A) Nylon wool purified PELs were tested for recognition of ⁵¹Crlabeled P815-Cw3 (open circles) and untransfected P815 (closed circles) cells, at various E/T ratios. (B) the PELs were double-stained with mAbs against CD8 and V β 10. (Shaded histogram) V β 10 staining of cells that have been gated as CD8⁺. (Solid line) Control staining of CD8⁺ cells with the FITC conjugate alone.

observed with PbCS-specific CTL clones tested for recognition either of the PbCS peptide in the context of mutant H-2K^d molecules (Jaulin, C., J.-L. Casanova, P. Romero, I. Gueschen, A.-S. Cordey, J. L. Maryanski and P. Kourilsky, manuscript submitted for publication) or of variant PbCS peptides in the context of H-2K^d (27). It suggests that the former CTL clones interact with fewer distinct epitopes on the surface of the MHC-peptide complex than the latter.

Altogether, our study establishes that the presentation by $H-2K^d$ of a peptide from HLA-Cw3 results in the selection of CTLs that express TCRs of very limited diversity, not only in vitro, but also in vivo. This supports the possibility that antigenic peptides homologous to host-derived peptides trigger T cells of limited TCR diversity. Conversely, T cell responses against peptides heterologous to the host, such as those derived from *P. berghei* or from other infectious agents, would be highly diverse. Such a diversity may favor the host, not only by increasing the potency of the response, but also by reducing the likelihood of the survival and escape of antigenic variants of the pathogen.

Figure 8. Limited sequence heterogeneity of V β 10-bearing TCR β cDNA junctional regions of freshly isolated PELs. PELs originating from DBA/2 mice immunized with P815-Cw3 transfectant cells and from C57BL/6 mice immunized with untransfected P815 cells were purified by passage over nylon wool. RNA was extracted from the PEL samples and from the CTL clone Cw3/HLA2D3, as a control. After cDNA synthesis the V β 10 junctional regions were amplified by PCR using a combination of V β 10 and C β primers. The noncoding strand of each doublestranded PCR product was directly sequenced using a second antisense C β primer closer to the VDJ junction. The three samples (A, C57BL/6 PEL-s; B, DBA/2 PELs; and C, clone Cw3/HLA2D3) were loaded on the same sequencing gel. For convenience, the autoradiogram is shown backwards and the complementary nucleotides are indicated, in the GATC order, to allow reading of the coding strand (from top to bottom). The sequence for the control CTL clone is written at the side. The nucleotides corresponding to the V β 10 and J β 1.2 segments, and those encoding the conserved Gly at position 97, are indicated.

Jean-Laurent Casanova was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM), and by the European Organization for the Research on the Treatment of Cancer; Michaela Matthes by the Fondation pour la Recherche Médicale; and Antje Necker by the Deutsche Forchungsgemeinschaft. This work was supported in part by institutional grants from the Centre National de la Recherche Scientifique and INSERM.

Address correspondence to Jean-Laurent Casanova, Ludwig Institute for Cancer Research, Lausanne Branch, 1066 Epalinges, Switzerland.

Received for publication 4 February 1992.

445 Casanova et al.

We thank G. Corradin, P. Kourilsky, and M. Malissen for advice and discussion; J. A. Lòpez, P. Romero, and A. Wilson for critical reading of the manuscript; C. Gregoire for Southern blot analysis; A. Millward for constructing the Cw3/1.1 genomic library; G. Miescher for purification of Cw3/1.1 DNA; C. Horvath, A.-L. Peitrequin, and G. Bieler for excellent technical assistance; and C. Knabenhans and P. Zaech for FACS[®] analysis. Jean-Laurent Casanova wishes to express his gratitude to Bruno Varet for his continuing help, advice, and encouragement.

References

- 1. Rötzschke, O., and K. Falk. 1991. Naturally-occurring peptide antigens derived from the MHC class I-restricted processing pathway. *Immunol. Today.* 12:447.
- Townsend, A., and H. Bodmer. 1989. Antigen recognition by class I restricted T lymphocytes. Annu. Rev. Immunol. 7:601.
- 3. Matis, L. 1990. The molecular basis of T cell specificity. Annu. Rev. Immunol. 8:65.
- 4. Wilson, R.K., E. Lai, P. Concannon, R.K. Barth, and L.E. Hood. 1988. Structural organization and polymorphism of murine and human T cell receptor α and β gene families. *Immunol. Rev.* 101:149
- Casanova, J.-L., P. Romero, C. Widmann, P. Kourilsky, and J.L. Maryanski. 1991. T cell receptor genes in a series of class I major histocompatibility complex-restricted cytotoxic T lymphocyte clones specific for a single *Plasmodium berghei* nonapeptide. Implications for T cell allelic exclusion and antigen-specific repertoire. J. Exp. Med. 174:1371.
- 6. Maryanski, J.L., R.S. Accolla, and B.R. Jordan. 1986. H-2 restricted recognition of cloned HLA class I gene products expressed in mouse cells. J. Immunol. 136:4340.
- Pala, P., G. Corradin, T. Strachan, R. Sodoyer, B. Jordan, J.-C. Cerottini, and J.L. Maryanski. 1988. Mapping of HLA epitopes recognized by H-2 restricted cytotoxic T lymphocytes specific for HLA using recombinant genes and synthetic peptides. J. Immunol. 140:871.
- Romero, P., G. Corradin, I.F. Leuscher, and J.L. Maryanski. 1991. H-2K^d-restricted antigenic peptides share a simple binding motif. J. Exp. Med. 174:603.
- MacDonald, H.R., N. Thiernesse, and J.-C. Cerottini. 1981. Inhibition of T cell-mediated cytolysis by monoclonal antibodies directed against Lyt2: heterogeneity of inhibition at the clonal level. J. Immunol. 126:1671.
- Necker, A., N. Rebaï, M. Matthes, E. Jouvin-Marche, P.-A. Cazenave, P. Swarnworawong, E. Palmer, H.R. MacDonald, and B. Malissen. 1991. Monoclonal antibodies raised against engineered soluble mouse T cell receptors and specific for Vα8-, Vβ2- or Vβ10-bearing T cells. Eur. J. Immunol. 21:3035.
- Frischauf, A.M., H. Lehrach, A. Ponstkas, and N. Murray. 1983. Lambda replacement vectors carrying polylinker sequences. J. Mol. Biol. 170:827.
- Malissen, M., J. Trucy, F. Letourneur, N. Rebaï, D.E. Dunn, F.W. Fitch, L.E. Hood, and B. Malissen. 1988. A T cell clone expresses two T cell receptor α genes but uses one αβ heterodimer for allorecognition and self MHC-restricted antigen recognition. *Cell*. 55:49.
- Malissen, M., C. McCoy, D. Blanc, J. Trucy, C. Devaux, A.-M. Schmitt-Verhulst, F. Fitch, L.E. Hood, and B. Malissen. 1986. Direct evidence for chromosomal inversion during T cell receptor β gene rearrangements. *Nature (Lond.).* 319:28.
- Casanova, J.-L., C. Pannetier, C. Jaulin, and P. Kourilsky. 1990. Optimal conditions for directly sequencing double-stranded PCR products with Sequenase. *Nucleic. Acids Res.* 18:4028.
- Casanova, J.-L. 1992. Sequencing double-stranded linear DNA with Sequenase and ³⁵SαdATP. *In* Methods in Molecular Biology: DNA Sequencing. H. Griffin, editor. Humana Press, Inc., Clifton, NJ. In press.
- Behlke, M.A., D.G. Spinella, H.S. Chou, W. Sha, D.L. Hartl, and D.Y. Loh. 1985. T cell receptor β chain expression: dependence on relatively few variable region genes. *Science (Wash.* DC). 229:556.
- 17. Gascoigne, N.R.J., Y.-H. Chien, D.M. Becker, J. Kavaler, and

M.M. Davis. 1984. Genomic organization and sequence of T cell receptor β chain constant and joining region genes. *Nature (Lond.).* 310:387.

- Becker, D.M., P. Patten, Y.-H. Chien, T. Yokota, Z. Eshhar, M. Giedlin, N.R.J. Gascoigne, C. Goodnow, R. Wolf, K.-I. Arai, and M.M. Davis. 1985. Variability and repertoire size of T cell receptor Vα gene segments. *Nature (Lond.)*. 317:430.
- Saito, H., D.M. Kranz, Y. Takagaki, A.C. Hayday, H. Eisen, and S. Tonegawa. 1984. A third rearranged and expressed gene in a clone of cytotoxic T lymphocytes. *Nature (Lond.)*. 312:36.
- Winoto, A., S. Mjolsness, and L.E. Hood. 1985. Genomic organization of the genes encoding mouse T cell receptor α chain. *Nature (Lond.).* 316:832.
- Arden, B., J.L. Klotz, G. Siu, and L.E. Hood. 1985. Diversity and structure of genes of the α family of mouse T cell antigen receptor. *Nature (Lond.)*. 316:783.
- Chothia, C., D.R. Boswell, and A.M. Lesk. 1988. The outline structure of T cell αβ receptor. EMBO (Eur. Mol. Biol. Organ.) J. 7:3745.
- Brunner, K.T., and J.-C. Cerottini. 1971. Cytotoxic lymphocytes as effector cells of cell-mediated immunity. Symposium on effector mechanisms of cell-mediated immunity. *In* Progress in Immunology. B. Amos, editor. Academic Press, Inc., Orlando. 385-398.
- Boon, T., J. Van Snick, A. Van Pel, C. Uyttenhove, and M. Marchand. 1980. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. II. T lymphocyte-mediated cytolysis. J. Exp. Med. 152:1184.
- 25. Aebisher, T., S. Oehen, and H. Hengartner. 1990. Preferential usage of V α 4 and V β 10 T cell receptor genes by lymphocytic choriomeningitis virus glycoprotein-specific H-2D^b restricted cytotoxic T cells. *Eur. J. Immunol.* 20:523.
- Yanagi, Y., P. Macekawa, T. Cook, O. Kanagawa, and M.B.A. Oldstone. 1990. Restricted V-segment usage in T-cell receptors from cytotoxic T lymphocytes specific for a major epitope of lymphocytic choriomeningitis virus. J. Virol. 64:5919.
- Romero, P., G. Eberl, J.-L. Casanova, A.-S. Cordey, C. Widmann, I.F. Luescher, G. Corradin, and J.L. Maryanski. 1992. Immunization with synthetic peptides containing a defined malaria epitope induces a highly diverse CTL response. Evidence that two peptide residues are buried in the MHC molecule. J. Immunol. 148:1871.
- Kahn-Perles, B., C. Barra, J. Jehan, D. Fourel, M. Bard, J.L. Maryanski, and F. Lemonnier. 1989. Cytotoxic T lymphocyte recognition of secreted HLA class I molecules. *J. Immunol.* 142:3021.
- Barra, C., B. Pérarnau, P. Gerlinger, M. Lemeur, A. Gillet, P. Gibier, and F. Lemonnier. 1989. Analysis of the HLA-Cw3specific cytotoxic T lymphocyte response of HLA-B7 × human β2m double transgenic mice. J. Immunol. 143:3117.
- 30. Letourneur, F., and B. Malissen. 1989. Derivation of a T cell hybridoma variant deprived of functional T cell receptor α and β chain transcripts reveals a nonfunctional α-mRNA of BW5147 origin. Eur. J. Immunol. 19:2269.
- 31. Couez, D., M. Malissen, M. Buserne, A.-M. Schmitt-Verhulst, and B. Malissen. 1991. Each of the two productive T cell receptor α gene rearrangements found in both A10 and BM3.3 T cell clones gives rise to an α chain which can contribute to the constitution of a surface expressed $\alpha\beta$ dimer. Int. Immunol. 3:719.
- 32. Chou, H.S., M.A. Behlke, S.A. Godambe, J.H. Russel, C.G.

Brooks, and D.Y. Loh. 1986. T cell receptor genes in an alloreactive CTL clone: implications for rearrangement and germline diversity of variable gene segments. EMBO (Eur. Mol. Biol. Organ.) J. 5:2149.

- Jouvin-Marche, E., I. Hue, P.N. Marche, C. Liebe-Gris, J.-P. Marolleau, B. Malissen, P.-A. Cazenave, and M. Malissen. 1990. Genomic organization of the mouse T cell receptor Vα family. EMBO (Eur. Mol. Biol. Organ.) J. 9:2141.
- Winoto, A., J.L. Urban, N.C. Lan, J. Goverman, L.E. Hood, and D. Hansburg. 1986. Predominant use of a Vα gene segment in mouse T-cell receptors for cytochrome c. Nature (Wash. DC). 324:679.
- Acha-Orbea, H., D.J. Mitchell, L. Timmerman, D.C. Wraith, G.S. Tausch, M.K. Waldor, S.S. Zamvil, H.O. McDevitt, and L. Steinman. 1988.Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. *Cell*. 54:263.
- 36. Tan, K.N., B.M. Datlof, J.A. Gilmore, A.C. Kronan, J.H. Lee, A.M. Maxam, and A. Rao. 1988. The T cell receptor Vα3 gene segment is associated with reactivity to p-azobenzene-

arsonate. Cell. 54:247.

- Iwamoto, A., P.S. Ohashi, H. Pircher, C.L. Walker, E.E. Michalopoulos, F. Rupp, H. Hengartner, and T.W. Mak. 1987. T cell receptor variable gene usage in a specific cytotoxic T cell response. J. Exp. Med. 165:591.
- Malissen, M., K. Minard, S. Mjolsness, M. Kronenberg, J. Goverman, T. Hunkapiller, M.B. Prystowsky, F. Fitch, T.W. Mak, and L.E. Hood. 1984. Mouse T cell antigen receptor: structure and organization of constant and joining gene segments encoding the β polypeptide. *Cell*. 37:1101.
- 39. Siu, G., M. Kronenberg, E. Strauss, R. Haars, T.W. Mak, and L.E. Hood. 1984. The structure, rearrangement and expression of Dβ gene segments of the murine T cell antigen receptor. *Nature (Lond.).* 311:344.
- 40. Kavaler, J., M.M. Davis, and Y.-H. Chien. 1984. Localization of a T cell receptor diversity element. *Nature (Lond.).* 310:421.
- Hue, I., J. Trucy, C. McCoy, D. Couez, B. Malissen, and M. Malissen. 1990. A novel type of aberrant T cell receptor α chain gene rearrangement. Implications for allelic exclusion and the V-J recombination process. J. Immunol. 144:4410.