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Abstract

A spatially-resolved understanding of the intensity of a flood hazard is required for accurate

predictions of infrastructure reliability and losses in the aftermath. Currently, researchers

who wish to predict flood losses or infrastructure reliability following a flood usually rely on

computationally intensive hydrodynamic modeling or on flood hazard maps (e.g., the 100-

year floodplain) to build a spatially-resolved understanding of the flood’s intensity. However,

both have specific limitations. The former requires both subject matter expertise to create

the models and significant computation time, while the latter is a static metric that provides

no variation among specific events. The objective of this work is to develop an integrated

data-driven approach to rapidly predict flood damages using two emerging flood intensity

heuristics, namely the Flood Peak Ratio (FPR) and NASA’s Giovanni Flooded Fraction

(GFF). This study uses data on flood claims from the National Flood Insurance Program

(NFIP) to proxy flood damage, along with other well-established flood exposure variables,

such as regional slope and population. The approach uses statistical learning methods to

generate predictive models at two spatial levels: nationwide and statewide for the entire con-

tiguous United States. A variable importance analysis demonstrates the significance of FPR

and GFF data in predicting flood damage. In addition, the model performance at the state-

level was higher than the nationwide level analysis, indicating the effectiveness of both FPR

and GFF models at the regional level. A data-driven approach to predict flood damage using

the FPR and GFF data offer promise considering their relative simplicity, their reliance on

publicly accessible data, and their comparatively fast computational speed.

Introduction

Accurately predicting infrastructure losses incurred by a hazard requires spatially-resolved

knowledge about the hazard’s intensity. For example, to predict electric-power reliability

resulting from hurricane winds at a census tract level, researchers first parametrically
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downscale a hurricane’s 6-hr track to a 3-sec peak wind gust for each census tract centroid [1].

This can be done in a matter of seconds. Peak ground acceleration models similarly exist to

rapidly predict localized peak ground acceleration for earthquakes, which can then be used to

predict building damage, traffic disruption, etc. [2,3]. The state of the practice is quite different

for floods. Currently, researchers who wish to predict flood losses or predict infrastructure reli-

ability following a flood usually rely on computationally intensive hydrodynamic modeling

[4,5] or on flood hazard maps (e.g., the 100-year floodplain) [6] to build a spatially-resolved

understanding of the flood’s intensity. Both have specific limitations. The former requires both

subject matter expertise to create the models and significant computation time. The time limi-

tation prevents comparisons over wide spatial and temporal scales (i.e., it is time-intensive to

create highly spatially-resolved hydrodynamic models for the entire U.S. on an hourly, or even

daily basis, though NOAA’s National Water Model arguably is coming closest to this promise)

[7]. The latter, flood hazard maps, are a good indicator of the area’s general threat over a long-

time scale, but are static. That is, while these metrics provide insight into hazard occurrence

probability, they provide no variability among specific events and do not reflect, for example,

the intensity of particular rainfall or snowmelt events. As a result, special flood hazard area

(SFHA) flood hazard maps may underestimate the depth and extent of some actual floods.

Blessing et al. [8], for example, reports that, in at least two subbasins in Texas, the 100-year

FEMA floodplain fails to adequately predict flood losses compared to more advanced hydro-

logical models (e.g., distributed hydrologic models) for finding the 1% flood.

Data-driven methods to rapidly estimate flood occurrence and intensity at localized levels

are in their infancy, and have not been evaluated at wide spatial or temporal scales in terms of

their ability to predict damage or infrastructure reliability. Two emerging data-driven methods

are the flood peak ratio (FPR) [9] and NASA’s Giovanni Flooded Fraction (GFF) [10]. The

FPR is a ratio of the largest height of a streamgage’s hydrograph (i.e., its instantaneous peak

discharge) during a flood to the same streamgage’s 90th percentile annual maximum instanta-

neous peak discharge (other reference percentiles may be used e.g., see [11]). It measures the

discharge intensity relative to past intense events in order to isolate the relative flood severity.

The metric is found for all streamgages in a region, and then a spatial interpolation method is

used to find the FPR over an entire study region. On the other hand, the GFF grids the entire

US and relies on satellite imagery to report the fraction of each grid that is flooded. From this

data, one can compute the fraction of spatial area that is flooded. The data to compute both the

FPR and the GFF are publicly available and both metrics can be computed in the order of min-

utes for the entire US. The temporal resolution for the FPR varies between 15 and 60 minutes

(depending on how frequently gages report their discharge value) and daily for the GFF.

The objective of this work is to evaluate the usefulness of both the FPR and GFF as data-

driven heuristics for predicting flood damages. More specifically, we evaluate the adequacy of

the FPR and GFF in terms of being able to predict National Flood Insurance Program (NFIP)

claims for every flooding event in 2016 for the entire contiguous United States at the county

level using statistical learning methods. If one of these metrics proves useful, even for particu-

lar areas, it enables a new branch of flood hazard research in which researchers can use simpli-

fied, data-driven flood metrics to predict localized losses and infrastructure reliability over

wide spatial and temporal scales without first developing complex hydrodynamic models. The

researcher in this case however, would be trading hydrodynamic accuracy for time savings.

This work builds from Czajkowski et al. [11] which uses FPR to predict freshwater flood

risk, proxied by NFIP claims, following 28 landfalling tropical cyclones. The authors power-

fully illustrates the potential uses of the FPR, and found a strong positive relationship between

a FEMA community’s FPR and the number of NFIP claims. The work presented here expands

upon Czajkowski et al. [11] in five ways: First, we develop a data-driven classifier in Stage 1 of
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our model that predicts whether a county had a flooding event intense enough to produce at

least one NFIP claim. Thus, our work is not event-driven, meaning that we are not only

attempting to find the number of NFIP claims conditioned on knowing an event, say a tropical

cyclone, has occurred. Rather, our work is data-driven and “discovers” when a flooding event

is significant enough to produce at least one NFIP claim at a county-level by using a fully-vali-

dated classifier. Stage 2 of our model then predicts the number of claims, given an event has

been predicted. Second, we consider additional statistical learning techniques to better capture

the relationship between our independent variables, including the FPR and GFF, and the num-

ber of claims. We evaluate models specifically in terms of their predictive accuracy, which is

accomplished through cross-validation and evaluation of out-of-sample error reduction.

Third, to expand the data-driven approach, we include additional independent variables that

are known to influence flood intensity, including land cover and land slope [12–14]. Fourth,

we build separate models for both the FPR and GFF metrics to identify which is most influen-

tial in improving predictive accuracy, and in which regions of the county each is potentially

more useful. Finally, we expand the spatial and temporal resolution to consider all flooding

events in the contiguous U.S. for all of 2016. The start of a flooding event in a county is discov-

ered using a classifier we construct using daily NFIP and FPR data between 2005 and 2015 to

make a county-level binary prediction for whether at least one claim is made. It is then applied

to 2016 data.

Neither the FPR nor the GFF has been extensively used in the literature. The FPR was devel-

oped by Villarini et al. [9] as a way to make comparisons of inland flooding resulting from

three tropical cyclones. The purpose of normalizing the highest instantaneous peak discharge

during a flood by the 90th percentile (i.e., 10-year) annual maximum instantaneous peak dis-

charge is to account for the fact that larger watersheds have larger drainage areas which are

usually linked to larger discharge values [15]. Czajkowski et al. [16] and Czajkowski et al. [11]

then use the FPR to predict NFIP claims to evaluate the extent of freshwater flood risk due to

tropical cyclones both now and into the future. They found, for example, through regression

models, that if the rate of urbanization were to keep pace with 2001–2011 levels, future flood

insurance claims would increase by 2.4%—roughly keeping pace with the rate of urbanization.

The Giovanni Flooded Fraction (GFF) variable is available through the National Climate

Assessment—Land Data Assimilation System (NCA-LDAS ver. 2.0) [10]. NCA-LDAS includes

42 variables including routing variables (e.g., flooded area), land-surface fluxes (e.g., precipita-

tion), and stores (e.g., soil moisture and snow). Jasinski et al. [17] evaluated many NCA-LDAS

variables by comparing them to other independent datasets concluded that, in general,

NCA-LDAS is an effective tool for merging diverse satellite data products for scientific under-

standing and decision support [17]. This work leverages the flooded area variable which

reports the area within a grid that is flooded. The grid is extended over the entire U.S.

Both the FPR and the GFF are conceptually simple and computationally rapid to compute.

The FPR proxies flood stage as it is based on the height of a streamgage, while the GFF is a bet-

ter proxy for the spatial extent of the flood. Obviously, both the FPR and GFF have significant

limitations, which ultimately may not be mitigated by their computational ease. The FPR relies

on a spatial interpolation which does not take into consideration topography that governs

flooding patterns (e.g., levees, mountains) and is especially unrepresentative of the actual flood

depth in regions with variable terrain. Further, while streamgages are fairly abundant east of

the Mississippi River, they are comparatively sparse to its west (See S1 Fig). In some instances,

spatial interpolation of over 100 miles is required. GFF data are only available through 2016,

but this could soon change. Furthermore, its spatial resolution is 0.125 deg. by 0.125 deg. grids

—extremely coarse relative to more sophisticated hydrodynamic models.
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This research uses data from the National Flood Insurance Program (NFIP) to proxy flood

damage. In the United States, the NFIP is the main provider of flood insurance and currently

insures over $1.3 trillion of assets [18]. The growing economic activity and development in

risky areas are directly influencing the increasing insured losses since the early 1990s [19–21].

These increased losses have required the NFIP to borrow money from the U.S. Treasury,

which has led to a deficit of nearly $25 billion [22]. Many papers, including Mobley et al. [23]

and Knighton et al. [24], have developed statistical models to predict NFIP claims as a function

of hydrologic, socioeconomic, and development variables. An anonymized NFIP dataset has

been made publicly available, and includes all U.S. records of flood claims, along with the level

of the damage and spatial information about the claim. It also includes information on the

start and termination dates of (anonymized) policyholders. Specific limitations, however, exist

when using NFIP claims as a proxy for damage. While the NFIP has the bulk of the market

share for flood insurance products, only about 50% of households within the 100-year flood

zone (i.e., the Special Flood Hazard Area) have flood insurance [25,26]. Further, 25% of NFIP

claims are outside the 100-year floodplain boundaries—i.e., areas not required to have flood

insurance to obtain a federally-backed mortgage—showing that flooding does occur outside

the 100-year floodplain [27]. Thus, this dataset is highly likely to exclude a significant number

of uninsured homes that have been flooded.

Data and methods

Data description

The data for this study is obtained from several publicly available U.S. government sources,

including the Department of Homeland Security (DHS), the U.S. Geological Survey (USGS),

and the U.S. National Aeronautics and Space Administration (NASA). S1 Table summarizes

the data and includes summary statistics. In addition, S2 Fig provides density plots of key vari-

ables. A description of the data follows:

Spatial and temporal extent. This study focuses on flooding events that occurred in 2016

in the contiguous United States to predict NFIP claims. The year 2016 was selected because (i)

it had the highest number of billion-dollar flooding events [28], and (ii) it is the last year for

which GFF data are available.

However, the Stage 1 classifier is built using FPR data and NFIP claims data between 2005

and 2015 in the contiguous United States. It is then applied to 2016 data to predict flooding

events. The FRP data are used over GFF data in Stage 1 because a comparative sampling of the

two datasets in a few states suggest that the FPR data would have better predictive performance

overall; future work could expand this analysis to see if this is true nationwide.

NFIP claims. The response variable in this study is the number of residential NFIP claims

at a county-level during a predicted flooding event (determined by the Stage 1 classifier).

Anonymized NFIP data is freely available through OpenFEMA, with records dating back to

1970. The records of claims include the date of the flood and information about the county

code of the parcel. While flood insurance is available for businesses, these data are excluded

from the analysis to focus on residential claims because businesses are a small fraction of the

claims data.

The NFIP had 97,253 residential claims in 2016 in 1,239 counties, which resulted in over

$3.4 billion (USD) in residential building payouts, along with another $570 million (USD) in

residential content payouts [29]. The average and median combined payout were $43,000 and

$25,200 (USD) respectively, though this ranges from $0 to $250,000 (USD), which is the maxi-

mum allotted by the NFIP. S3 Fig shows the number of county-level claims in 2016. Louisiana
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had the highest number of claims, with 34% of all records. 69% of all claims were within the

100-year floodplain in 2016.

NFIP policies-in-force (i.e., the penetration rate). NFIP coverage is known to vary

throughout the U.S., and penetration rates strongly depend on prior flooding [30], the fraction

of the region inside the 100-year floodplain, and regional wealth [31]. The best approach for

computing NFIP penetration rates is to divide the number of policies-in-force by the number

of residential buildings in a given area. However, data on the number of policies-in-force are

not publicly available for years other than 2020. Thus, we use the number of policies-in-force

in 2020 and divide by the number of households in that county. At the time of the analysis, the

number of households in a county was available through 2019, and thus 2019 data were used.

We do not expect significant changes in county-level data between 2016–2020, but acknowl-

edge this limitation. A nationwide map of computed penetration rates is shown in S4 Fig.

100-year floodplain. Past studies found a strong influence between the percentage of a

region in the 100-year floodplain and flood-induced property damage [21,32]. Thus, we con-

sider the fraction of the county in the floodplain. This is computed by overlapping FEMA

Flood Insurance Rate Maps (FIRMs) over county boundaries to identify the fraction of a

county in the Special Flood Hazard Area (SFHA) using ArcGIS. As mentioned earlier, a limita-

tion of using this metric alone (without e.g., GFF or FPR) is that this metric is static; it does

not vary from event to event.

Land cover. Past studies have shown a significant relationship between the land cover of

the study region and the level of losses [12]. Land cover data are publicly available through the

National Land Cover Database (NLCD) [33]. The database has a spatial resolution of 30m by

30m and is sorted into 20 classes. For simplicity and to enhance interpretability, classes with

similar characteristics are aggregated into 11 categories consistent with Nateghi et al. [34]. For

each county, the fraction of the area covered by each land cover category is computed. The

four land cover variables related to development are indicators of the level of impervious

surface.

Land slope. Multiple studies have shown a significant positive correlation between slope

and flood losses [13,35,36]. The argument is that higher slopes result in greater rainfall concen-

tration and subsequently result in faster and higher stream peaks and mean annual flows [37].

To calculate slope, we use a digital elevation model (DEM) obtained from the Amazon Web

Services (AWS) Terrain Tiles using the ‘elevatr’ package in R [38,39]. The slope has a spatial

resolution of 500m by 500m. The average of slope grids in each county is calculated to indicate

the mean slope.

Coastal indicator. We include a binary variable indicating whether the county is coastal.

The rationale is that instantaneous discharge data from streamgages, used to compute the

FPR, is an indicator of freshwater (riverine) flooding and is less likely to indicate flooding due

to coastal inundation.

Population per area. Because exposure can vary significantly between counties, and

counties with more exposure are expected to receive more damage, we control for exposure by

including population per unit area, similar to Highfield and Brody [20] and Czajkowski et al.

[16]. This metric is calculated by dividing the estimated population of a county by the land

area (in square miles) of the county [40].

Flood Peak Ratio (FPR). The FPR is the ratio between the maximum instantaneous dis-

charge during a flooding event at a given streamgage and the 90th percentile of annual maxi-

mum instantaneous peak discharge for that streamgage (i.e., the 10-yr flood peak value)

[9,16,41]. A FPR value is calculated for all streamgages in the region of study. These FPR rec-

ords are geographic point data. Next, consistent with Czajkowski et al. [16], an Inverse Dis-

tance Weighted (IDW) interpolation method is applied to assign an FPR value across the
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entire region [42], making it, in principle, a continuous variable over space. Note that one of

the limitations of the FPR method as applied in this study is that it does not consider drainage

areas or river networks in its analysis. The FPR is computed daily for the entire US between

2005 and 2016 (using the peak daily discharge for each gauge) to build the classifier and predict

flooding events in Stage 1. An example of daily FPR data, interpolated across a large spatial

area, is shown in S5 Fig. In order to obtain county-level intensity measures, we compute five

FPR metrics. The first is the maximum flood peak ratio in a county and the others are the frac-

tion of the county with an FPR above 0.2, 0.5, 1.0, 1.5, and 2.0.

Giovanni Flooded Fraction (GFF). Historically, NASA’s NCA-LDAS data, from which

we extract the flooded fraction of a region, and other land data assimilation systems that collect

their data through satellite imagery, have been used for climatic assessment and trend studies

[17,43,44]. We use NCA-LDAS Version 2.0, which includes 42 climate variables measured

daily at a 0.125 deg. x 0.125 deg. grid-size across the U.S. from January 1, 1979 to December

31, 2016 [43]. We overlaid the spatial extent of the flood atop the counties to compute the frac-

tion of the county that was flooded. For grid cells that encompass two or more counties, we

proportionally divided the flooded area in the grid cell with the fraction of the county in the

grid cell. Initially, eight county-level metrics are computed: the maximum flood fraction of the

county, which is the maximum flooded fraction of any grid cells within a county, and average

flooded fraction, which is the average flooded fraction over all grid cells within a county, and

the fraction of the county covered by flooded fractions greater than 0.05, 0.1, 0.2, 0.4, 0.6, and

0.8.

Methods

This work uses statistical learning theory to build statistical models that first predict whether a

flood occurred in a county with intensity significant enough to trigger at least one NFIP claim

(i.e., our Stage 1 “classifier”) and then to predict the number of NFIP claims during that event

(i.e., our Stage 2 NFIP regression model). Separate statistical models are built for both the FPR

variables and the GFF variables when predicting the number of NFIP claims in Stage 2. An

overview of the approach is presented in Fig 1.

Statistical learning theory. Supervised learning theory is becoming increasingly popular

in the hazards literature, especially for identifying the relationship between hazards intensity

and infrastructure serviceability (e.g., predicting electric power outages [45], predicting pipe

breaks [46]). Broadly, supervised learning models are categorized into parametric, semi-

parametric, and non-parametric models and seek to find the structural relationship between

independent variables and a response variable that minimizes the cumulative delta between

observations and predicted outcomes. Parametric models—in which parameters are computed

that best project the data onto a prescribed functional model form (often linear)—are popular,

especially in hazards research and policy analysis, because of their stability and interpretability.

Non-parametric models do not assume a relationship between the predictor variables and the

response variables, and rather extract patterns from the data that elicit the functional relation-

ship. Thus, they may better approximate the true relationship between the predictor and

response variables, but this comes at the cost of interpretability, (potentially) model stability,

and (potentially) requirements for a lot of data [47].

Stage 1 classifier—Identification of flooding events. The ultimate objective of this work

is to predict the number of NFIP claims during a flood “event” in a county, where an event is a

date range during which flooding occurs. Prior work pre-defines the time window of an event

by considering only specific incidents. For example, when Czajkowski et al. [11] makes predic-

tions on the number of NFIP flood claims, they do so for a (large) set of predefined tropical

PLOS ONE Predicting flood damage using FPR and GFF

PLOS ONE | https://doi.org/10.1371/journal.pone.0271230 August 3, 2022 6 / 24

https://doi.org/10.1371/journal.pone.0271230


cyclones to impact the US. The approach in the current work is data-driven, meaning that we

leverage the data to “discover” if an event likely occurred. Thus, we devise an approach to pre-

dict whether a county experiences a flood resulting in at least one NFIP claim regardless of

scale of the flood or source of the water.

Perhaps an intuitive way to approach this is to focus on periods of anomalous precipitation.

This approach, however, could exclude events that resulted in minor flooding and would

exclude events that were not precipitation induced. Another plausible approach would be to

leverage the NFIP dataset, and consider that there is a flood event whenever there is a claim.

However, if we were to define a flood event using the NFIP claim data, we would effectively

introduce endogeneity into our model by preconditioning our model to predict the number of

claims only for events that we knew a priori to have at least one claim. Thus, we develop a

novel approach by building a statistical classifier using 2005 through 2015 county-level data to

find the functional relationship between FPR indicators and the occurrence of at least one

NFIP claim. This classifier is then applied to the 2016 FPR data to define county-level events.

First, we compute the FPR for each streamgage at a daily level between 2005 and 2015 using

its maximum daily discharge and then compute the FPR metrics described above for each

county. We also identify whether at least one NFIP claim was made on that day. Unfortunately,

a lag could exist between the maximum FPR and when an NFIP claim is made (i.e., the condi-

tions that cause a flood may not align with the date on which the claim is reported). Therefore,

we aggregate the data to monthly level (e.g., 1-Jan to 31-Jan) by finding the maximum over all

the FPR indicators (i.e., maximum county FPR, and fraction of county with a FPR greater than

Fig 1. Framework of methodology.

https://doi.org/10.1371/journal.pone.0271230.g001

PLOS ONE Predicting flood damage using FPR and GFF

PLOS ONE | https://doi.org/10.1371/journal.pone.0271230 August 3, 2022 7 / 24

https://doi.org/10.1371/journal.pone.0271230.g001
https://doi.org/10.1371/journal.pone.0271230


0.2, 0.5, 1, and 2) over the month and creating a binary response variable that indicates

whether at least one claim was made during that month in a given county. The idea is to take a

snapshot of the worst hydraulic conditions over that month in that county and see whether it

induced at least one flood claim at some point. This assumes that no county had more than

one flooding event in a month—a potentially erroneous assumption that we found to occur

exceedingly infrequently. Finer temporal divisions (e.g., a week as opposed to a month)

increase the likelihood of not capturing potential lags between worst case hydraulic conditions

and the reporting of an NFIP claim, which would divide the actual event into two: one with

severe hydraulic conditions and no claims and one with typical hydraulic conditions and an

NFIP claim. A wider temporal division (e.g., two months) increases the likelihood of having

multiple actual flooding events in the interval.

Using this county-level data, we built a cross-validated random forest statistical model (i.e.,

a “classifier”) to identify the FPR indicators that trigger at least one NFIP claim in each county.

Random forests (RF) are a statistical tree-based ensemble model that bootstraps data to build

multiple decision trees and then averages the predictions over all trees [48]. We choose a RF

model because it is a low-bias, low-variance model given how it is able to capture the structure

of the data and how it averages over uncorrelated trees. Because of its averaging approach, it is

highly effective at variance reduction. We test the classifier using a 5-fold cross-validation

approach, whereby a model is built using 80% of the data and the model is then tested using

the withheld data. This is repeated five times so that all data are withheld once and the entire

process is repeated three times. Because Stage 2 focuses on predicting the number of NFIP

claims should a flood event occur (and it can predict zero), we tune the model to minimize

false negatives as opposed to false positives.

As expected, most counties have a data imbalance, as a majority of counties had no claims

for many of the months. To address the imbalance in the data, we compared the performance

of the classifier when combined with downsampling and upsampling algorithms. While the

details of each algorithm differ, the general concept is similar—when the data are boot-

strapped, more emphasis is placed on observations with the minority class (i.e., the observa-

tions when the response variable is greater than zero) [49]. The downsampling algorithm,

which randomly subset the majority class in the training set to match the frequency of the

minority class, resulted in a better performance of the classifier.

The final classifier, in essence, identifies the unique FPR conditions that portend a flood

event in each county based upon its historical FPR and reported NFIP claims. We then use this

validated classifier on the 2016 FPR data to identify when a flood began in a given county.

Each flood event needs an end date. We add an end date that is four days after the begin date

(rationale below). Then, for each county, we tabulate the number of NFIP records during that

predicted flood event. This becomes the response variable for the model that predicts flood

claims in Stage 2. If the classifier erroneously predicts a flood, but there is not one, zero (0)

NFIP claims are recorded.

The duration of four (4) days was determined as follows. For each county, starting in 2005,

we identified the date of its first actual NFIP claim, and then counted the number of (semi-)

consecutive days in which at least one NFIP claim was made in that county. We allowed for at

most two days without an NFIP claim to pass to consider those observations to be within the

same event. We repeat this process through 2015. By examining the ogive over the lengths of

all events, 95% of them were less than 4 days (see S6 Fig).

Stage 2 model—Prediction of number of claims during each flooding event. Once the

flooding events have been predicted for 2016, we build statistical learning models to predict

the number of claims for each event in each county. The “best” model is identified for the FPR

data (along with the other covariate data) and another model for the GFF data, so that we can
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compare the two flood heuristics. Note that if the classifier from Stage 1 failed to predict an

actual flooding event, the claims from that event would not be captured in the data (which is

why the model is tuned to minimize false negatives at the expense of including more false

positives).

The correlation matrices of the predictors are shown in S7 and S8 Figs. As expected, some

land cover variables are highly correlated, which is also reflected in high Variable Inflation Fac-

tors (VIFs). The VIF is a measure of multicollinearity. To address this, we removed the follow-

ing variables: fraction of the county that is forested, fraction of the county that is highly

development, the fraction of the county with an FPR above 1.5, and the average flooded frac-

tion and the fraction of the county covered by flooded fractions greater than 0.1, 0.4, and 0.8.

Elimination of highly correlated variables above results in a maximum VIF of 4.79 for the FPR

model and a maximum VIF of 5.95 for the GFF model. The predictors are then standardized

to support model prediction. Note that population per area is a continuous unbounded vari-

able. The data are zero-inflated as there are many predicted flood events that do not actually

have claims (i.e., the response variable is 0).

We then evaluate the performance of several statistical models in their ability to predict the

number of claims in a county during a flooding event as a function of the independent vari-

ables. We build both nationwide models and statewide models using county-level observa-

tional data to determine whether models with more data (the nationwide models) are better

predictors of claims despite containing data with significantly more variance. The statistical

models considered are: (1) a zero-inflated negative binomial (ZINB) regression (i.e., the same

model used in [11]; (2) a random forest (RF) model; (3) a support vector regression (SVR)

model; and (4) a classification and regression tree (CART) model. More details on these mod-

els can be found in the S1 Methods. We specifically include a zero-inflated negative-binomial

model as our work builds from Czajkowski et al. [11] which uses a negative-binomial model—

though direct model comparisons between our work and Czajkowski et al. [11] cannot be

made because our work is data-driven, not event-driven, variable selection is slightly different,

and we are operating in a different spatial-scale.

For the zero-inflated negative binomial (ZINB) model, we use a combination of forward

and backward feature selection to identify the subset of variables with the best performance

model. The approach starts with no predictor variables and then iteratively builds a model by

adding one predictor at a time that most contributes to the model performance. In the same

step, it eliminates any variables that do not provide any improvements. The stepwise feature

selection resulted in a significant error reduction and model performance improvement. Simi-

lar stepwise feature selection was used in conjunction with other statistical models (i.e., CART,

RF, and SVR) but the performance improvement was negligible.

We validated each model using a 10-fold cross-validation approach, whereby a model is

built using 90% of the data and the model is then tested using the 10% of the data that is with-

held. This is repeated 3 times. We then compute model performance on out-of-sample data

(i.e., test data). In-sample predictions are vulnerable to bias (i.e., overfitting) and thus the in-

sample metrics are less informative. The error metrics that we use are the root mean squared

error (RMSE) (i.e., the sum of the squared differences between the predicted value and the

observed value) in order to penalize larger deviations from observed values more than smaller

deviations and the mean absolute error (MAE) (i.e., the average difference between the

observed value and predicted value). All models are compared relative to a null model, which

is simply the average number of NFIP claims during predicted events statewide or nationwide

(depending on the spatial-level of the model).

After model selection for both the FPR and GFF approach, we built variable importance

plots, which rank each variable’s importance in terms of its contribution towards error
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reduction. The variable that contributes most to out-of-sample predictive accuracy (based on

models with and without that variable) is deemed most important, and so on [50]. Finally, par-

tial dependence plots are built to map the relationship between each covariate and the response

variable, without the influence of other variables (i.e., they are held constant).

Results

Stage 1—Flood-event classifier

The classifier is built for each county using 2005–2015 data using a Random Forest (RF)

model and then is validated using 2016 data from the same county. Note that we exclude coun-

ties for which there are no claims between 2005 and 2015, which leaves 2,555 counties remain-

ing. For each of the 2,555 counties, the classifier predicts which months in 2016 had at least

one claim. A confusion matrix is then computed for each of the 2,555 counties using the 2016

data, and these confusion matrices are summed together to produce an aggregated out-of-sam-

ple confusion matrix for the 2016 data (Table 1).

Table 1 summarizes the results of 30,660 county-months in 2016 (i.e., 12 months for each

of 2,555 counties). The classifier successfully predicted 71% of county-months; 66% of county-

months had no claims in actuality, and the model predicted no claims while 5% of county-

months had at least one claim in actuality, and the model predicted there to be at least one

claim. As mentioned above, because Stage 2 predicts the number of NFIP claims for a pre-

dicted flood event, which can be zero, we are interested in minimizing the number of county-

months that falsely predict no claim at the expense of falsely predicting a county-month with a

claim. This ensures that Stage 2 includes as many actual claims as possible. To this end, the

Stage 1 model has a 4% false negative rate as opposed to 25% false positive rate. However,

while the model did miss 4% of county-months with actual claims, 81% of all actual claims in

2016 are contained within the 1,639 county-months that were predicted correctly. In other

words, while the model misclassified many months with actual claims, these months generally

had relatively few claims.

The classifier then is applied to daily FPR data at the county-level in 2016 to determine

when an event began (i.e., on which dates are the conditions beyond the county-level thresh-

old, created by the classifier, that would suggest at least one NFIP claim). We assume a flood

event lasts three days beyond the initiating day. As expected, due to the high false positive rate

in the classifier, 94.4% of the predicted events have no actual claims. Ultimately, however, 81%

of the 97,253 claims are contained within events that were correctly predicted. (We account

for the 19% of actual claims that we fail to predict when evaluating cumulative model error

later.)

Stage 2—Predicting number of claims

The second stage predicts the number of claims given that the classifier in Stage 1 predicted a

flooding event. Separate models are built using the FPR and GFF statistics. The remaining

Table 1. Out-of-sample confusion matrix for monthly-county records in 2016. This matrix sums together each of

the 2,555 counties’ confusion matrices.

Scale: county-month Predicted

No claim At least one claim
Actual No claim 20,188 (66%) 7,587 (25%)

At least one claim 1,246 (4%) 1,639 (5%)

https://doi.org/10.1371/journal.pone.0271230.t001
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covariates, described in the data section, are identical among the models. Two types of models

using county-level observations are built—one for the entire U.S. and one for each state.

Nationwide model. The nationwide model includes county-level data from the 48 contig-

uous states. It benefits from a much larger dataset, but in totality, these data are also high in

variance which potentially reduces the predictive power. The results are shown in Tables 2 and

3. We ran pairwise t-tests among the models built for the FPR data and the GFF data to con-

firm statistical performance differences exist among the errors; the results are different at a 5%

level of significance.

For the nationwide FPR model, the RF model performed the best in terms of out-of-sample

MAE but slightly worse in terms of out-of-sample RMSE when compared to the CART model.

However, because the final model developed by RF provides the best fit to the data as deter-

mined by the correlation between the observed and predicted values, the RF model is selected

as the best model overall. The RF model shows a 23% improvement and 9% improvement over

the null model in terms of MAE and RMSE, respectively. For the nationwide approach using

GFF, the RF model outperformed all other models in terms of all performance metrics and

thus was selected as the best model. In this case, the RF model results in a 22% improvement

in terms of MAE and 7% improvement in terms of RMSE over the null model.

Overall, the performance of the best models that use FPR and GFF data are marginal, given

their low predictive power. These findings somewhat align with Czajkowski et al. [11] where

the authors found an R2 of 0.13 (compared with 0.15 and 0.11 for our FPR and GFF models,

respectively) though the scale and methodology of that study differ from ours. The nationwide

GFF model had higher errors in comparison to the FPR model among all the four models eval-

uated in the nationwide analysis (except the RMSE for ZINB model). Ultimately, at a nation-

wide level, the RF model using the FPR data had better performance.

S9 Fig shows county-level error using the nationwide RF models for the FPR and GFF data.

The R2 values for the GFF model are greater than those for the FPR model for a majority of

counties using the nationwide RF model (i.e., 54% of the counties considered). In addition, for

counties with more than 100 actual claims in 2016, for which there are 63 counties, the R2 val-

ues for the nationwide GFF model were higher 71% of the time. The MAE and RMSE values

for the GFF model are less than those for the FPR model for a majority of counties using the

nationwide RF model (i.e., 75% and 72% of the counties considered, respectively). Overall, the

GFF model provides lower county-level errors more often and a slightly better model fit in

comparison to the FPR model. However, the GFF model is worse when considering aggregate

nationwide error (Tables 2 and 3), meaning that in counties where GFF performed poorly, it

likely performed especially poorly.

Figs 2 and 3 show the variable importance plot for the nationwide RF models using the FPR

and GFF data respectively. For the FPR model, the three most important variables are the frac-

tion of a county with FPR greater than 1, maximum FPR in a county, and the fraction of a

county with FPR greater than 0.5. On the other hand, for the GFF model, the three most

important variables are the fraction of a county with FF greater than 0.05, maximum FF in a

county, and the fraction of a county with FF greater than 0.2. In both approaches, variables

that reflect characteristics of the flood are among the top important variables.

Partial dependence plots for the three most important variables for both nationwide models

are provided in Fig 4. As expected, for both the FPR and GFF models, the expected number of

NFIP claims increases as flood intensity metrics increase. For the FPR model, an FPR greater

than one at a county-level is the most important predictor variable in terms of its contribution

to error reduction; when this fraction is close to 0, the number of claims is similarly expected

to be around 0, ceteris paribus. As this fraction approaches 1, the expected number of claims

rises to over 20, ceteris paribus. A nearly identical pattern emerges for the most important
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variable in the GFF model (fraction of grids with GFF greater than 0.05). S10a and S10b Fig

plot the fitted and the observed values for the FPR and the GFF models respectively (ρFPR =

0.73 and ρGFF = 0.86). 99.2% of flood events predicted by the classifier (i.e., the observations

shown in these figures) are captured within the red boxes; S10c and S10d Fig plot the fitted

and the observed values in these red boxes for the FPR and the GFF models respectively.

Statewide models

We use the same dataset of predicted flood events to perform state-level analyses. More specifi-

cally, for each state, we predict the number of NFIP claims using county-level predicted flood

events, FPR or GFF data, and the other shared county-level covariate data. RF model is selected

as the best model because, in combination, it outperformed all other models in the nationwide

analysis, and when we tested different models using state-specific data, the RF model consis-

tently outperformed others. Predictive accuracy measures for each state using RF models are

shown in Fig 5.

The R2 for FPR models generally performed about 10% better than the GFF models; the R2

for FPR models ranged from 0.2% to 67.9% with a mean of 19.6%, while the R2 for GFF models

ranged from 0.1% to 52.8% with a mean of 14.3%. Note that, on average, this is a significant

improvement over the nationwide model (R2 of 0.15 for the FPR model and R2 of 0.11 for the

GFF model) and Czajkowski et al. [11] (R2 of 0.13, though differences in approaches exist).

The FPR model outperformed the GFF model in 28 out of the 46 states with predicted claims

Table 2. Summary of model performance for FPR model.

Model In-Sample Out-of-sample yŷ corr.
MAEa RMSEb MAEa SD-MAEc RMSEb SD-RMSEd R2

CART 0.64 6.11 0.67 0.08 6.70 1.37 0.16 0.58

RF 0.51 5.41 0.64 0.08 6.75 1.37 0.15 0.73

SVR 0.98 7.09 1.01 0.07 7.09 1.39 0.14 0.48

ZINB 0.79 13.88 0.81 0.20 12.45 10.81 0.13 0.28

Null Model 0.83 7.39

aMAE—Mean Absolute Error.
bRMSE—Root Mean Squared Error.
cSD-MAE—Standard Deviation of MAE.
dSD-RMSE—Standard Deviation of RMSE.

https://doi.org/10.1371/journal.pone.0271230.t002

Table 3. Summary of model performance for GFF model.

Model In-Sample Out-of-sample yŷ corr.
MAEa RMSEb MAEa SD-MAEc RMSEb SD-RMSEd R2

CART 0.67 6.36 0.73 0.10 6.97 1.72 0.08 0.57

RF 0.42 4.33 0.65 0.10 6.91 1.59 0.11 0.86

SVR 1.04 7.26 1.05 0.09 7.11 1.75 0.10 0.42

ZINB 0.81 7.86 0.83 0.12 7.89 1.93 0.02 0.10

Null Model 0.83 7.39

aMAE—Mean Absolute Error.
bRMSE—Root Mean Squared Error.
cSD-MAE—Standard Deviation of MAE.
dSD-RMSE—Standard Deviation of RMSE.

https://doi.org/10.1371/journal.pone.0271230.t003
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in terms of RMSE reduction. The mean of RMSE reduction among all states over the null

model was 30% and 28% for FPR and GFF models, respectively. For FPR and GFF models, 45

and 42 states (out of the 46 states) had an improvement of more than 10% in RMSE reduction,

respectively. Note that in two states (North Dakota and Rhode Island), all predicted events had

zero actual claims, and therefore we did not build an RF model for these states. North Dakota

and Rhode Island had only 7 and 3 actual claims in 2016, respectively, which occurred during

events that were not predicted in Stage 1.

The RMSE reduction over the null model for both approaches is significant in some states,

including Texas which had 14,751 actual claims in 2016, and Georgia, which had 1,582 actual

claims in 2016 (See S2 Table). The predictive performance was poorest in Alabama, which had

66 claims in 2016. However, few claims alone does not destine a state to poor model accuracy.

Vermont had only 5 claims in 2016 and yet had a 45% RMSE improvement for the FPR model

over the null model and a 63% RMSE improvement for the GFF model over the null model.

This shows how other factors, such as insurance penetration rates and land cover factors play a

significant part in predicting claims. For MAE metric, the FPR model provides significantly

higher error reduction in many states compared to the GFF model, including California,

North Carolina, and much of the central U.S. However, the MAE metric in the GFF model is

higher for some states, including Arkansas, New Hampshire, and Vermont.

Finally, comparing the correlation between prediction and observation values using the RF

model at the state level, the GFF model provides a higher correlation in states with the most

Fig 2. Variable importance plot for the FPR model. See S1 Table for a description of variables.

https://doi.org/10.1371/journal.pone.0271230.g002
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actual claims, including Louisiana, Florida, Texas, and South Carolina. This may suggest that

the GFF model delivers a better model fit for coastal states, which are more likely to experience

extreme precipitation, surge, and more claims. On the other hand, the FPR model performs

better in terms of correlation in most midwest states and west-coast states which may experi-

ence more riverine flooding. Over all states, the average correlation for the FPR models is 0.69,

which is slightly higher than that for the GFF models at 0.66.

Table 4 shows the most important variable in terms of error reduction for the RF models

(the FPR and GFF models) developed for each state. For the FPR statewide models, in all

except eight states, the most important variable was a FPR indicator. The FPR indicator with

the highest occurrence as the top most important variable was the maximum FPR. For the

GFF statewide models, only seven states had a most important variable other than a GFF indi-

cator. Similar to the FPR statewide models, in GFF statewide models, the maximum GFF was

the indicator with the highest occurrence as the top indicator.

Cumulative model performance over Stages 1 and 2

The validation approaches in Stages 1 and 2 are stage specific, and unable to capture cumula-

tive model error over both stages. What makes computing cumulative model error challenging

is that if the classifier in Stage 1 misses an actual flood event, or misses days from an actual

flood event (say because the 4-day window does not perfectly align with what occurred), there

is no record of those claims to validate the model built in Stage 2. Thus, to evaluate the

Fig 3. Variable importance plot for the GFF model. See S1 Table for a description of variables.

https://doi.org/10.1371/journal.pone.0271230.g003
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aggregated performance, we compute three different county-level residuals using 2016 data

and the state-level models: (1) the difference between the number of actual claims for the

actual event with the most claims over the year and the number of predicted claims for the pre-

dicted event with the most claims over the year in each county; (2) the difference between the

total number of actual claims and the total number of predicted claims summed over the year

in each county and (3) the difference between the number of claims for predicted and actual

events in each county with any temporal overlap. The residuals are then used to compute

MAE, RMSE, and R2 for each of the three approaches above.

The first metric determines the degree to which Stages 1 and 2 together are able to predict

the peak number of claims in a county over all of its events. The metric is unable to capture

whether the event that produced the peak number of actual claims aligns in time with the pre-

dicted event that produced the peak number of predicted claims. Results are shown in Table 5.

The null model is the average of the maximum number of actual claims for all actual events

over all counties. The FPR and GFF models resulted in similar performance. The approach

made no improvement over the null model for RMSE and the R2 is low. The high RMSE is

driven by the small number of observations that are significantly underpredicted. However,

the MAE presents a significant error reduction in comparison to the null model, suggesting

most predictions, on average, were better than the null.

For the second metric, we tally all predicted claims among all predicted events for each

county and compare this to the actual number of claims in that county in 2016. The null

Fig 4. Partial dependence plots of top three important variables for both the FPR model and the GFF model. See S1 Table for a description of variables.

https://doi.org/10.1371/journal.pone.0271230.g004
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model is the average of the actual number of claims in each county. Table 6 shows the error

performance. Comparable to the first metric, the results are similar for the FPR and GFF mod-

els. However, the results show significantly better performance (R2 ~ 0.22) and greater error

reduction compared to the first performance metric. Thus, while our two-stage modeling

Fig 5. Predictive accuracy measures for each state using RF model. a. R2 (FPR model), b. R2 (GFF model), c. RMSE reduction compared to null model (FPR

model, out-of-sample), d. RMSE reduction compared to null model (GFF model, out-of-sample), e. MAE reduction compared to null model (FPR model, out-

of-sample), f. MAE reduction compared to null model (GFF model, out-of-sample), g. Correlation between predicted and actual values (FRP model), h.

Correlation between predicted and actual values (GFF model). Note: MAE—Mean Absolute Error; RMSE—Root Mean Squared Error. The base map in this

figure is from 2010 TIGER/Line Shapefiles, prepared by the U.S. Census Bureau. It is in the public domain and is not copyrighted [51].

https://doi.org/10.1371/journal.pone.0271230.g005
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approach has some ability to accurately predict the worst events in a county (as measured by

the peak of claims), it has a stronger ability to predict the cumulative number of claims that a

county experienced over a year. Similar to the first metric, the higher MAE reduction and

lower RMSE reduction relative to the null model show that the FPR and GFF models generally

perform better for the events with fewer claims.

In the third metric, we identify the predicted and actual events in each county with any

temporal overlap, and for all those events in a given county, compare the sum of the number

of predicted and actual claims. The goal of this metric is to assess generally how well the two-

stage approach is at predicting the correct number of claims at the approximate right point in

time. However, it is unable to capture error produced by erroneously predicting a flood event

that did not actually occur (and thus potentially predicting erroneous claims), and error pro-

duced by predicting an event that did occur, but at a different point in time. The null model is

Table 4. The most important variable, in terms of error reduction, for each state in statewide analysis. See S1 Table for a description of variables and abbreviations.

State Top Important Variable (FPR) Top Important Variable (GFF) State Top Important Variable (FPR) Top Important Variable (GFF)

AL ratio_greater_0.2 flooded.frac.max MT ratio_greater_1 flooded.frac.max

AZ population_density flooded.frac.max NE ratio_greater_0.5 flooded.frac.max

AR max_ratio gff_greater_0.05 NV ratio_greater_0.5 population_density

CA max_ratio barren NH ratio_greater_0.5 flooded.frac.max

CO devmed herbaceuous NJ max_ratio flooded.frac.max

CT ratio_greater_0.2 water NM penetration_rate flooded.frac.max

DE ratio_greater_1 gff_greater_0.05 NY penetration_rate penetration_rate

FL ratio_greater_0.5 gff_greater_0.05 NC ratio_greater_1 gff_greater_0.05

GA max_ratio gff_greater_0.05 OH ratio_greater_0.5 flooded.frac.max

ID population_density devmed OK ratio_greater_0.5 flooded.frac.max

IL ratio_greater_1 gff_greater_0.05 OR max_ratio flooded.frac.max

IN ratio_greater_2 flooded.frac.max PA ratio_greater_1 flooded.frac.max

IA ratio_greater_1 gff_greater_0.05 SC max_ratio gff_greater_0.05

KS ratio_greater_0.5 flooded.frac.max SD max_ratio gff_greater_0.05

KY water flooded.frac.max TN max_ratio gff_greater_0.05

LA max_ratio gff_greater_0.2 TX max_ratio gff_greater_0.05

ME max_ratio flooded.frac.max UT max_ratio flooded.frac.max

MD ratio_greater_0.5 gff_greater_0.05 VT ratio_greater_0.5 herbaceuous

MA planted/cultivated flooded.frac.max VA ratio_greater_1 gff_greater_0.05

MI population_density flooded.frac.max WA max_ratio flooded.frac.max

MN ratio_greater_0.5 gff_greater_0.05 WV max_ratio flooded.frac.max

MS ratio_greater_1 gff_greater_0.05 WI max_ratio gff_greater_0.05

MO ratio_greater_0.2 flooded.frac.max WY max_ratio flooded.frac.max

https://doi.org/10.1371/journal.pone.0271230.t004

Table 5. Comparison of the maximum actual number of claims from actual events versus the maximum predicted number of claims from predicted events using

the state-level analysis in 2016 at the county level.

Error metric Null model Maximum actual vs. maximum predicted claims Error reduction compared to null model (%)

FPR model GFF model FPR model GFF model

MAEa 112.77 62.28 62.60 44.77 44.49

RMSEb 471.65 471.57 472.07 0.02 -0.09

R2 0.05 0.06

aMAE—Mean Absolute Error.
bRMSE—Root Mean Squared Error.

https://doi.org/10.1371/journal.pone.0271230.t005
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the average of the actual number of claims from the actual events with temporal overlap with

predicted events in each county. Table 7 shows the model performance. In contrast to the

prior metric, the GFF model provides slightly lower error and better model fit in comparison

to the FPR model. Although the model fit (in terms of R2) is lower than the prior metric, the

error reduction relative to the null model is higher, particularly for the RMSE. This shows that

by focusing on the predicted and actual events with any temporal overlap, the model perfor-

mance relative to the null model improves. Particularly, the higher reduction of RMSE relative

to the null model demonstrates there are fewer predicted outliers (albeit, based on the RSME,

the number of outliers is still large).

Discussion and conclusion

Making accurate and rapid predictions of flood losses is challenging; hydrodynamic models

can provide detailed representations of floods but can be difficult to produce with limited

time. Flood hazard maps, such as FEMA’s flood insurance rate maps, are static and do not

reflect current hydraulic conditions. Further, mapping hazard intensity to losses provides

additional challenges because of localized differences in exposure. Over time, data-driven

approaches, such as the one proposed in this work, may provide long-term value for being able

to rapidly and accurately predict local losses, and how to direct state and federal mitigation

and recovery resources efficiently.

The present work evaluated the usefulness of two flood heuristics—the FPR and GFF—in

accurately predicting localized flood losses, as proxied by the number of National Flood Insur-

ance Program claims. The two-stage approach is novel in that it is the first work, to the

authors’ knowledge, to develop a data-driven approach to determining when floods severe

enough to cause at least one NFIP claim have occurred on a national-scale. It is also the first to

use the GFF to investigate flood losses. While the work is not exactly comparable to prior stud-

ies that use the FPR to predict insurance claims—due to differences in spatial-scale (ours is

Table 6. Comparison of the total actual number of claims from actual events versus the total predicted number of claims from predicted events using the state-level

analysis in 2016 at the county level.

Error metric Null model Total actual vs. total predicted claims Error reduction compared to null model (%)

FPR model GFF model FPR model GFF model

MAEa 138.76 67.32 66.23 51.48 52.27

RMSEb 581.69 560.83 560.15 3.59 3.70

R2 0.22 0.22

aMAE—Mean Absolute Error.
bRMSE—Root Mean Squared Error.

https://doi.org/10.1371/journal.pone.0271230.t006

Table 7. Comparison of the total actual number of claims from actual events versus the total predicted number of claims from only predicted events with some

time overlap with the actual events using the state-level analysis in 2016 at the county level.

Error metric Null model Actual claims vs. overlapped predicted claims Error reduction compared to null model (%)

FPR model GFF model FPR model GFF model

MAEa 65.79 28.82 27.50 56.19 58.19

RMSEb 195.17 180.27 178.21 7.63 8.69

R2 0.16 0.18

aMAE—Mean Absolute Error.
bRMSE—Root Mean Squared Error.

https://doi.org/10.1371/journal.pone.0271230.t007
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coarser), differences in being data-driven versus event-driven (ours is data-driven), and differ-

ences in the independent variables that were used—our state-level models found slightly better

accuracy in terms of the correlation between the actual and observed variables. There are likely

two explanations for this. The first is that we consider non-parametric machine learning mod-

els that do not presuppose a specific shape for the response surface, which in this case, leads to

better predictive accuracy compared to, say, a negative binomial model. The second explana-

tion is that the state-level models (using county data) are not mired by high variance data that

exist in a singular national-level model. Local factors, such as exposure, risk tolerance, and

local adaptation to flooding, that drive NFIP claims likely vary significantly across the U.S. The

complexity of these factors are challenging to capture in a few simple variables, such as popula-

tion and NFIP penetration rates. The state-level models, to some degree, are able to weed out

the variance stemming from local factors, though this comes at the cost of less data availability.

For the national-level models, the top three important covariates impacting the error reduc-

tion of the models are FPR or GFF metrics. Similarly, for most statewide models, the most

important covariate in terms of error reduction is one of the FPR or GFF metrics; this is reas-

suring as these covariates are supposed to proxy flood intensity—the driver of the losses. There

are moderate spatial differences where the statewide FPR and the GFF models performed bet-

ter. The FPR approach showed slightly better predictive performance for most states. Interest-

ingly, the GFF model provided higher correlation in states with the most actual claims (i.e.,

Louisiana, Florida, Texas, and South Carolina), which also happen to be coastal states, while

the correlation is higher in midwestern states for the FPR models, where riverine flooding

tends to be the driver. Thus, there could be important considerations for where particular met-

rics are more useful.

There are specific limitations with the metrics and modeling approach that could be

addressed. First, there are serious concerns whether NFIP claims are truly indicative of direct

flood losses [52]. Penetration rates are especially low in some areas, and just because there is

not a claim does not mean that there was no flood damage to a house. Stage 1 of our model

predicted many counties had at least one NFIP claim during a given month but did not in

actuality (i.e., false positives). It is possible that in many of these counties, there was housing

damage, but the houses were uninsured. Also, there are likely community characteristics that

impact the number of claims, such as construction practices, building codes, local regulations,

past flood experience, socioeconomic characteristics, etc., that are not included in our models.

This may lead to lower predictive accuracy. Finally, it is likely that more spatially-granular

models (e.g., using ZIP-code data as opposed to countywide data) would lead to better predic-

tive accuracy. However, this would be more computationally intensive and we found that the

majority of ZIP-codes did not have sufficient number of historical NFIP claims to develop a

reliable Stage 1 classifier.

With the advancements of continental scale hydrological modeling and real-time flood

mapping, this line of research could support real-time flood damage prediction by anticipating

flood intensity ahead of extreme events. This could ultimately support rapid and appropriate

deployment of recovery resources in flood-impacted areas. Overall, the models using the FPR

and GFF data offer promise considering their relative simplicity, their reliance on publicly

accessible data, and their comparatively fast computational speed.

Supporting information

S1 Fig. The location of USGS streamgages throughout the continental U.S. Note: The base

map in this figure is from 2010 TIGER/Line Shapefiles, prepared by the U.S. Census Bureau. It
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is in the public domain and is not copyrighted [51].

(TIF)

S2 Fig. Density plots of key variables. See S1 Table for a description of variables.

(TIF)

S3 Fig. Distribution of NFIP claims in 2016 aggregated to the county level.

(TIF)

S4 Fig. Computed NFIP penetration rates at the county level. Note: The base map in this fig-

ure is from 2010 TIGER/Line Shapefiles, prepared by the U.S. Census Bureau. It is in the pub-

lic domain and is not copyrighted [51].

(TIF)

S5 Fig. An example of daily maximum FPR spatially interpolated across the entire U.S.

(Louisiana flooding event, Aug. 12, 2016). Note: The base map in this figure is from 2010

TIGER/Line Shapefiles, prepared by the U.S. Census Bureau. It is in the public domain and is

not copyrighted [51].

(TIF)

S6 Fig. Ogive of the length of all flood events between 2005 and 2015. An event starts on the

day of the first NFIP claim in a county and then continues for all the (semi-)consecutive days

in which at least one NFIP claim is made. We allowed for at most two days without an NFIP

claim to pass to consider those observations to be within the same event. The empirical data

show that 95% of flood events are four days or shorter.

(TIF)

S7 Fig. A correlation matrix of the predictor variables for the FPR model. See S1 Table for a

description of variables and abbreviations.

(TIF)

S8 Fig. A correlation matrix of the predictor variables for the GFF model. See S1 Table for a

description of variables and abbreviations.

(TIF)

S9 Fig. County-level error using the nationwide RF models for the FPR and GFF data: a.

R2 (FPR model), b. R2 (GFF model), c. RMSE (FPR model), d. RMSE (GFF model), e. MAE

(FPR model), f. MAE (GFF model). Note: These maps exclude counties that have zero claims

in predicted events. Note: MAE—Mean Absolute Error; RMSE—Root Mean Squared Error.

The base map in this figure is from 2010 TIGER/Line Shapefiles, prepared by the U.S. Census

Bureau. It is in the public domain and is not copyrighted [51].

(TIF)

S10 Fig. Plot of fitted vs observed values of the dependent variable for RF model. 99.2% of

flood events predicted by the classifier (i.e., the observations shown in these figures) are cap-

tured within the red boxes. a. Plot of fitted vs observed values for FPR approach, b. Plot of fit-

ted vs observed values for GFF approach, c. Plot of fitted and observed values in the red

box for FPR approach, d. Plot of fitted and observed values in the red box for GFF approach.

(TIF)

S1 Table. Flood metrics and summary statistics of 2016 data.
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