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Abstract: Modifying the composition of dental restorative materials with antimicrobial agents might
induce their antibacterial potential against cariogenic bacteria, e.g., S. mutans and L. acidophilus, as well
as antifungal effect on C. albicans that are major oral pathogens. Essential oils (EOs) are widely known
for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating
antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO
against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette,
mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed
significantly highest antibacterial activity against S. mutans and L. acidophilus among all tested EOs.
Anise and limette EOs showed no antibacterial activity against S. mutans. All tested EOs exhibited
antifungal activity against C. albicans, whereas cinnamon EO showed significantly highest and limette
EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and
microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to
unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S. mutans
and C. albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against
L. acidophilus.

Keywords: essential oils; oral pathogens; antibacterial activity; S. mutans; L. acidophilus; C. albicans;
antifungal activity

1. Introduction

Resin composites are the most commonly used dental restorative materials. They are composed
of organic matrix and inorganic filler and their properties can be modeled with addition of specific
components. The literature provides data on various modifications of dental composites and
adhesives performed to enhance their physico-chemical, mechanical and antimicrobial properties [1–5].
Antibacterial activity of monomers, such as 12-methacryloyloxydodecylpyridinium bromide (MDPB),
has been widely investigated [5]. Among antibacterial agents introduced into the composition of
dental resin materials, most commonly described in the literature are nanoparticles, such as silver,
gold, titanium dioxide, zinc oxide or calcium phosphate, as well as fluoride-containing filler and
fluoride compounds [6–12]. Essential oils (EOs) could be promising alternative to contribute to the
antimicrobial effect of resin composite materials [13,14].

Materials 2020, 13, 4383; doi:10.3390/ma13194383 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0003-2348-8515
https://orcid.org/0000-0002-6110-4298
http://dx.doi.org/10.3390/ma13194383
http://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/13/19/4383?type=check_update&version=2


Materials 2020, 13, 4383 2 of 18

Essential oils are natural, volatile complex compounds characterized by the odor of their
corresponding aromatic plants [15]. There is no systematic chemical nomenclature for chemical
compounds found in EOs. However, the scientific names are based on their properties or prominent
sources (e.g., limonene, pinene and thymol) [16–18]. They exhibit hydrophobic nature and often lower
density in comparison to water and are generally lipophilic. Moreover, EOs are soluble in organic
solvents, but immiscible with water [19].

EOs are plant products that for decades have been used in traditional healing worldwide. EOs are
biosynthesized as secondary metabolites such as bark (cinnamon), buds (clove), flowers (jasmine,
rose, violet and lavender), fruits (star anise), herbs, leaves (thyme, eucalyptus and salvia), twigs,
wood (sandal), rhizome and roots (ginger), seeds (cardamom) and zest (citrus) [19]. EOs represent
a small fraction of plant composition (less than 5% of the vegetal dry matter) and comprise mainly
hydrocarbon terpenes (monoterpenes and sesquiterpenes) and terpenoids (isoprenoids). The chemical
components of EOs may be produced through either the methylerythritol or the mevalonate or the
shikimic acid pathway [19]. Over 100 different components in various ratios (1%–70%) can be found in
a single type of EO.

EOs exhibit different biological and pharmacological activities, such as antibacterial, antifungal,
antiviral, antimutagenic, antiprotozoal, anti-inflammatory, antidiabetic, antinociceptive, antiphlogistic
and antioxidant properties [20–30].

The combination of several EOs may lead to an additive or antagonistic effect against pathogens [31].
The enhanced antibacterial activity of EO mixture in comparison to individual products may result
from the synergic effect of EO compounds. This effect relies either on inhibiting common biological
pathway in microorganisms, suppressing the protective enzymes, or modifying the functions of the
cellular wall [32]. EOs consist of different chemical compounds which may have different antimicrobial
modes of action. Therefore, the possibility of antimicrobial resistance is minimized [17].

The mechanism of action of EOs against microorganisms has not been completely understood
so far. EOs owe the antimicrobial properties to their volatile components, including terpenoids and
phenolic compounds [33]. EO phenolic compounds are known to penetrate through the microbial
membrane (formatting pores) leading to the leakage of ions and cytoplasmatic content and finally to
cellular breakdown [17,34].

In oral hygiene and dentistry, essential oils are used as components of mouthwashes (i.e., Cool Mint,
Listerine Antiseptic, Johnson&Johnson, Skillman, NJ, USA), toothpastes, antiseptic solutions
and temporary filing materials (eugenol-based products, i.e., zinc oxide-eugenol cement) [35,36].
Incorporating essential oils into adhesive systems may contribute to the decrease in occurrence of
secondary caries due to its antimicrobial activity reported in an in vitro microcosm dental biofilm
model [14]. The main oral pathogens, Streptococcus mutans and Lactobacillus acidophilus are crucial
in caries development. S. mutans plays main role in early demineralization of dental hard tissues,
while L. acidophilus is pivotal in caries development. Various attempts has been made to enhance
antibacterial properties of dental materials, involving the addition of silver-releasing filler [6,7],
calcium fluoride [8,12] or amorphous calcium phosphate [9] into the composition of dental resin
materials or adhesives. Studies reported that incorporation of essential oil into dental composite
structure do not significantly compromise the mechanical properties [13,37], while it could improve its
antibacterial activity and thus reduce the risk of secondary caries.

Yeasts, such as Candida albicans, are found in oral cavity as structural component of dental plaque
biofilm, but more recently it has been recognized as part of cariogenic microbiota [38–41]. C. albicans is
capable of producing acids that might demineralize dental hard tissues. According to Nikawa et al. [42],
C. albicans possesses the ability to dissolve hydroxyapatite to a greater extent (approximately 20-fold)
when compared with S. mutans. Furthermore, the presence of streptococci may promote C. albicans
colonization of dental hard tissues [43]. Studies suggest symbiotic fungal-bacterial relationship
between S. mutans and C. albicans within the biofilm that prevents from killing or inhibiting each
other [44]. However, Maijala et al. [45] claimed that the role of C. albicans in cariogenic process is highly



Materials 2020, 13, 4383 3 of 18

overestimated. Incorporating essential oils into dental materials composition seems like a promising
alternative that would allow for enhancement of antimicrobial activity of dental restorative materials.
In terms of potential anticariogenic effect, it would be favorable to investigate antimicrobial activity
of various EOs against major cariogenic pathogens, such as S. mutans, L. acidophilus and C. albicans,
in the same study, in homogeneous conditions. That would help to select the most active EOs in order
to further incorporate them into dental materials composition to enhance their clinical performance.
Thus, the primary aim of this study was to assess which of the different essential oils has the highest
antimicrobial activity against oral pathogens (S. mutans, L. acidophilus and C. albicans). Next, the most
effective essential oil would be selected to incorporate into resin material and the secondary aim of
the study was to evaluate antimicrobial activity against S. mutans, L. acidophilus and C. albicans of the
modified resin composite material.

2. Materials and Methods

This study used the following ten commercially available essential oils (dr Beta, Pollena Aroma,
Nowy Dwór Mazowiecki, Poland): anise, cinnamon, citronella, clove, geranium, lavender, limette, mint,
rosemary and thyme. The composition of tested EOs was presented in Table 1, based on data obtained
from previous studies analyzing the EOs’ composition by gas chromatography with flame-ionization
and mass spectroscopic detection (GC-FID-MS) [46–52] or data from European Pharmacopoeia [53].

Table 1. Characteristics of essential oils used in the study.

Essential Oil
(Name of EO in INCI) Composition

Star anise
(Illicium Verum Oil)

trans-anethole (86.0%–93.0%), linalool (0.2%–2.5%), estragole
(0.5%–6.0%), α-terpineol (<0.3%), cis-anethole (0.1%–0.5%),

anisaldehyde (0.1%–0.5%), foeniculin (0.1%–3.0%) [53]

Cinnamon
(Cinnamomum Zeylanicum Bark Oil)

cinnamaldehyde (76.8%), methoxycinnamaldehyde (11.7%), cinnamyl
acetate (3.2%), cumarin (1.5%), benzaldehyde (1.1%) [48,49]

Citronella
(Cymbopogon Winterianus Oil)

citronellal (36.2%), geraniol (22.4%), citronellol (14.1%), limonene (3.5%),
elemol (3.3%), citronellyl acetate (3.2%) [51]

Clove
(Eugenia Caryophyllus Oil) eugenol (85.3%), β-caryophyllene (10.6%), α-humulene (2.0%) [47,49]

Geranium
(Pelargonium Graveolens Oil)

citronellol (26.7%), geraniol (13.4%), nerol (8.7%), citronellyl formate
(7.1%), isomenthone (6.3%), linalool (5.2%), 10-epi-γ-eudesmol (4.4%),

geranyl formate (2.5%), menthone (1.6%), β-caryophyllene (1.5%),
geranyl butyrate, cis-rose oxide (1.4%), geranial (1.1%), β-baurobonene

(1.1%) [47–49,52]

Lavender
(Lavandula Angustifolia Oil)

linalool (34.1%), linalyl acetate (33.3%), lavandulil acetate (3.2%),
β-ocymene (3.2%), β-caryophyllene (2.7%), cineole (2.5%), terpinen-4-ol

(2.5%), myrecene (2.4%), α-terpineol (1.8%) [48,49]

Limette
(Citrus aurantifolia oil)

linalyl acetate (48.06%), linalool (26.88%), α-terpineol (5.74%), geranyl
acetate (3.92%), geraniol (3.05%), geranial (2.44%) [50]

Mint
(Mentha Piperita Oil)

menthol (30.0%–55.0%), menthone (14.0%–32.0%), cineole (3.5%–14.0%),
menthyl acetate (2.8%–10.0%), isomenthone (1.5%–10.0%), menthofuran

(1.0%–9.0%), limonene (1.0%–5.0%), isopulegol (<0.2%), pulegone
(<4.0%), carvone (<1.0%) [53]

Rosemary
(Rosmarinus Officinalis Oil)

1.8-cineole (46.4%), camphor (11.4%), α-pinene (11.0%), β-pinene (9.2%),
camphene (5.2%), β-caryophyllene (3.5%), borneol (3.1%), αa-terpineol

(1.8%), p-cymene (1.3%), myrecene (1.2%) [47,49]

Thyme
(Thymus Vulgaris Oil)

thymol (38.1%), p-cymene (29.1%), γ-terpinene (5.2%), linalool (3.7%),
β-Caryophyllene (3.1%), carvacrol (2.3%) [46,47,49]

Legend: INCI = International Nomenclature of Cosmetic Ingredients.
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2.1. Microbiological Studies of Essential Oils

Microbiological studies were performed on three reference strains: Streptococcus mutans ATCC
25175 (Oxoid, Basingstoke, UK), Lactobacillus acidophilus ATCC 4356 (Oxoid, Basingstoke, UK) and
Candida albicans ATTC 10231 (Biocorp, Warsaw, Poland). The colonies were stored in Microbank system
(Viabank, Medical Wire&Equipment, Corsham, UK) in the temperature of −30 ◦C until the experiment
was performed. The study protocol was described in detail in previous research paper [8].

Antimicrobial activity of essential oils was tested using agar diffusion test. After 18 h of cultivation,
the suspension has been prepared with the turbidity of the 0.5 McFarland standard and inoculated on
Mueller–Hinton II Agar medium (Becton Dickinson, Franklin Lakes, NJ, USA) for S. mutans, on RPMI
1640 + NaHCO3 + L-Glutamine + phenol red medium (Biocorp, Warsaw, Poland) for C. albicans and
media consisting of 90% IST (Oxoid, Basingstoke, UK) agar and 10% MRS (Oxoid, Basingstoke, UK)
agar adjusted to pH 6.7 for L. acidophilus.

An automatic micropipette (Proline® Plus 2–20 µL, Sartorius Biohit Liquid Handling Oy, Helsinki,
Finland) was used to apply 6 µL of tested essential oil on filter paper discs (Oxoid, Basingstoke, UK).
Chlorhexidine digluconate (CHX) aqueous solution (0.2%) served as a positive control. Filter paper
discs (6 mm in diameter) were incubated for 20 min in room temperature in order to ensure the
homogenous absorption of tested essential oil. Blank discs were used as negative control.

Next, sterile filter paper discs with tested oils, CHX and blank ones were placed directly on the
inoculated agar surface. Special care was taken to ensure uniform contact of the paper disc with
the media surface. The cultures were incubated for 18 h at temperature of 35 ◦C: for S. mutans in
CO2 enriched conditions—GENbox CO2 (bioMerieux S.A., Marcy l’Etoile, France), for L. acidophilus
in anaerobic conditions; GENbox anaer (bioMerieux S.A., Marcy l’Etoile, France), for C. albicans—in
aerobic conditions. After the removal of paper discs, the inhibition growth zones were measured
(without subtracting disc diameter). For each tested EO and CHX, twelve filter paper discs were used
to measure inhibition growth zone of every tested strain.

2.2. Microbiological Studies of Composite Resin Material Modified with Essential Oil

The chosen essential oil was introduced into flowable bulk-fill composite resin (CR) material
(SDR flow, Dentsply Sirona, Konstanz, Germany) and mixed mechanically until obtaining uniform and
homogenous consistency. The essential oils and dimetacrylate resins possess hydrophobic features
hence they can be easily mixed to obtain homogeneous material. The material was modified with the
essential oil that exhibited the highest antimicrobial activity. The concentrations of the essential oil
were chosen as follows: Group 1: 1 µL of EO in 2 g of CR; Group 2: 2 µ of EO in 2 g of CR; Group 3: 5 µL
of EO in 2 g CR.

Disc-shaped (3 mm of height and 6 mm in diameter) samples of composite resin material modified
with essential oil were performed. Each sample was light-cured with halogen lamp (Megalux Soft-start,
Mega-PHYSIC Gmbh & Co. KG, Rastatt, Germany) according to the manufacturer’s instruction
(i.e., 20 s). To evaluate antimicrobial activity against S. mutans, L. acidophilus and C. albicans of essential
oil modified composite resin (EO-CR) eluate method was used.

The samples were placed in 2.5 mL of 0.95% NaCl solution and incubated for 24 h in temperature
of 35 ◦C. Next, after removing tested samples from the eluate, serial dilutions of the tested microbial
strains were prepared (10−1, 10−2, 10−3, 10−4, 10−5 and 10−6) by the introduction of 200 µL of the strains
into 1.8 mL of eluate. Strains were incubated for 18 h.

The control group was a sample of composite resin material, not modified with essential oil,
that was incubated in the same conditions as the study groups samples.

After the incubation, to evaluate bacterial susceptibility, 100 µL of the control and 100 µL of
bacteria dilution (of each dilution) in eluate were cultivated as follows: S. mutans on MH agar
medium (Becton-Dickinson, Franklin Lakes, NJ, USA) in CO2-enriched conditions—GENbox CO2

(bioMerieux S.A., Marcy l’Etoile, France); L. acidophilus in anaerobic conditions on GENbox anaer
medium (bioMerieux S.A., Marcy l’Etoile, France), and C. albicans in aerobic conditions on RPMI
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1640 medium (Thermo Fisher Scientific, Waltham, MA, USA). The strains were incubated for 24 h in
temperature of 35 ◦C.

Upon the cultivation period, bacterial colonies in the studied samples and the control group were
counted. The experiment was repeated twelve times for each EO-CR group and for the control group.

2.3. Statistical Analysis

The descriptive analysis of numerical variables encompasses the calculation of the mean (M)
along with standard deviations (SD) values. The statistical analysis of the significance consisted of the
following: Shapiro–Wilk W test for normality; Levene’s tests for equality of variances; One-way analysis
of variance; Kruskal–Wallis equality-of-populations rank test; Post-hoc multiple comparison tests;
Zero-inflated Poisson regression with robust standard errors. A level of p < 0.05 was deemed statistically
significant. The statistical analyses of were carried out using Stata®/Special Edition, release 14.2
(StataCorp LP, College Station, TX, USA). The post-hoc statistical power was calculated using post-hoc
power analysis calculator (https://clincalc.com/stats/Power.aspx) and a statistical power of 98.56%
was found.

3. Results

3.1. Antimicrobial Activity of Essential Oils (Inhibition Growth Zone)

Figure 1 shows a measurement of representative inhibition growth zone of tested EO. The inhibition
growth zones of tested microbes measured for each essential oil were presented in Figures 2–4. All tested
essential oils, with exception to anise and limette EOs, were found to possess antibacterial activity
against S. mutans (Figure 2). The diameter of the inhibition zone of S. mutans ranged from 0 mm for
anise and limette essential oils up to 40 mm for cinnamon essential oil.

The cinnamon oil showed significantly highest antibacterial activity among all ten tested essential
oils. Next, it was the thyme EO that exhibited significantly higher activity than anise, citronella, clove,
geranium, lavender, limette, mint and rosemary EOs, but significantly lower than the cinnamon EO.
Clove and lavender EOs exhibited antibacterial activity comparable to the one of 0.2% CHX. Citronella,
geranium and mint showed significantly lower activity than other EOs, with exception to anise and
limette EOs (Table A1). The latter showed the lowest antibacterial activity against S. mutans among all
EOs tested.

All tested essential oils were found to possess antibacterial activity against L. acidophilus (Figure 3).
The diameter of the inhibition zone of L. acidophilus bacteria ranged from 8 to 40 mm. Again,

significantly highest antibacterial activity among all tested essential oils showed cinnamon and thyme
EOs, followed by anise and citronella EOs. Geranium, mint EOs and CHX showed significantly higher
activity than lavender, limette and rosemary EOs, but significantly lower—than anise, cinnamon,
citronella, clove and thyme EOs (Table A2). Lavender and rosemary EOs exhibited the significantly
lowest antibacterial activity.
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All tested essential oils were found to possess antifungal activity (Figure 4). The diameter of the
inhibition zone of C. albicans ranged from 12 to 56 mm.

The significantly highest antifungal activity among all tested essential oils showed cinnamon
EO, followed by thyme EO. Clove and mint EOs showed significantly higher activity than other EOs
(with exception to cinnamon and thyme EOs). Citronella, geranium and lavender EOs exhibited
significantly lower activity than anise, cinnamon, clove, mint and thyme EOs (Table A3). CHX possessed
similar antifungal activity as citronella and lavender EOs. Limette exhibited the significantly lowest
antifungal activity among all tested EOs.

3.2. Antimicrobial Activity of Composite Resin Modified with Essential Oil

The highest antimicrobial activity against all tested pathogens showed cinnamon EO, hence it
was introduced into composite resin material. Next, the modified material was tested for antimicrobial
activity against oral pathogens, i.e., S. mutans, L. acidophilus and C. albicans.

For all tested microbes, the essential oil modified composite resins showed statistically
significant different CFU than for the control group regardless of the EO concentration (Figures 5–7).
Antimicrobial activity of EO-CRs was significantly higher than that of unmodified CR. Furthermore,
Fisher’s post-hoc test revealed, that for each tested oral pathogen, the differences in CFU between the
study groups were statistically significant.

As for S. mutans, the significantly highest antibacterial activity showed 2µL/2 g EO-CR, followed by
1 µL/2 g EO-CR and 5 µL/2 g EO-CR (p < 0.001). Whereas, for L. acidophilus the least CFU were noted
for 1 µL/2 g EO-CR, followed by 2 µL/2 g EO-CR and 5 µL/2 g EO-CR (p < 0.001).

As far as antifungal activity against C albicans was concerned, the highest activity showed 2 µL/2 g
EO-CR and the lowest 5 µL/2 g EO-CR (p < 0.001).
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4. Discussion

Essential oils have been used in many walks of life, including dentistry. Researchers constantly
search for new possibilities of application of effective formulas into dental products. EOs seem to
be the promising ingredients of future oral care products and dental materials used both by patients
and dentists. The present study investigated antibacterial activity of ten essential oils against three
cariogenic pathogens: S. mutans, L. acidophilus and C. albicans. Such great variety of essential oils
tested in one study seemed advantageous as the experiment was performed in the same standardized
conditions and allowed for reliable assessment and comparison of EOs’ antimicrobial properties.
As far as oral pathogens are concerned, most of the previous studies described only a few essential
oils [13,14,37,54,55] against one or two most cariogenic bacteria in one setting [56,57].

In the present study, among ten tested essential oils, the most prominent antimicrobial activity
exhibited two EOs: cinnamon and thyme. The other EO that showed both significant antibacterial
and antifungal effect was clove oil. These results confirmed other findings that EOs possessed
potent antibacterial activity and antifungal properties against oral pathogens, including cariogenic
bacteria [54,56–58]. The study used S. mutans and L. acidophilus, due to their undisputable involvement
in the carious process. The former one is responsible for the initiation of the process and the latter for
its development [59–61]. Given their proven cariogenic activity, S. mutans as well as Lactobacillus spp.,
have been used in the present study. In addition, C. albicans is considered to play a supportive role
in cariogenic process [42]. Similarly to other studies [62], current study used 0.2% chlorhexidine
digluconate aqueous solution as a positive control due to its proved antimicrobial and antifungal
activity [63,64].

The composition of EOs determines their antibacterial potential. The highest activity of EOs is
provided by thymol, eugenol and carvacrol content, followed by alcohol-containing EOs, with alcohols
such as citronellol, geraniol, linalool, menthol, terpinen-4-ol and α-terpineol. Another bioactive
group comprise of EOs that contain either ketones, e.g., camphor, carvone, menthone, or thujene or
aldehyde groups, i.e., cinnamaldehyde, as well as those with other functional groups, such as anethole
and cineole.
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Cinnamon essential oil has high percentage of aldehydes (cinnamon aldehydes), that possess
antifungal, anti-inflammatory and disinfectant qualities [65]. The effectiveness of cinnamon EO and
cinnamon aldehyde against S. mutans, S. mitis, S. salivarius, A. actinomycetemcomitans, P. gingivalis and
Fusobacterium nucleatum was reported by Zainal-Abidin et al. [66]. Other studies also confirmed
antibacterial activity of cinnamon [47,67] and clove [47,68,69] essential oils against S. mutans.
High antibacterial activity of clove EOs depends on its aromatic compound content: eugenol
(85.3%). Eugenol was reported to have antiseptic, antimicrobial, anesthetic, analgesic, antioxidant,
anti-inflammatory and cardiovascular activities [70]. In the present study, cinnamon EO showed
significantly higher antimicrobial activity than clove EO, which is consistent with other study [69].
Clove and cinnamon were found to inhibit fungal growth at a concentration of 6% [57]. The results
of the present study are consistent with other findings [71] reporting cinnamon oil to have the most
potential antibacterial properties. Another study [72] proved cinnamon essential oil to possess the
highest antibacterial activity against S. mutans among other nine oils (eucalyptol, lime, clove, mint,
vinegar, cedar and citrus grass). In addition, Arora and Kaur [73] observed the antimicrobial activity
of clove EO against C. albicans. It was confirmed by the present study, in which clove EOs exhibited
significantly higher activity against C. albicans and L. acidophilus than CHX, whereas no significant
difference between in activity of clove EO and CHX against S. mutans was found.

Thyme EO was reported to show antimicrobial activity against oral pathogens due to high
content of thymol (38.1%) and p-cymene (29.1%) [47,74]. Phenolic compound—thymol, the main
component of thyme EO—is reported to disintegrate the outer membrane of Gram-negative bacteria
and make bacterial cytoplasmic membrane more permeable to ATP [75]. Another constituent of thyme
EO—carvacrol—is proved to exhibit antibacterial potential against S. mutans and C. albicans [54,62].
Carvacrol emulsion might be also a promising alternative to NaOCl in irrigation of dental root canal
system and eradication of intracanal bacteria: E. feacalis [76]. Studies proved also a potent antimicrobial
activity of thymol against S. mutans and C. albicans [54,57], as well as against Porphyromonas gingivalis
and A. actinomycetemcomitans, which play a role in development of periodontal disease [77]. That was
confirmed by the present study. Thyme EO exhibited the significantly highest antimicrobial activity
against C. albicans and S. mutans, whereas the antibacterial activity against L. acidophilus was significantly
higher than of other EOs, but lower than that of cinnamon EO. Another study stated that clove, thyme,
cinnamon and peppermint EOs are potent antimicrobial phenols [17].

Other EOs tested in the study, such as citronella, geranium, lavender, limette, mint,
rosemary presented medium antibacterial activity that is associated with the content of citronellol
and geraniol, linalool and linalyl acetate, 1.8-cineole, camphor and α-pinene [74]. As for anise EO,
it showed no antibacterial activity against S. mutans, whereas its activity against L. acidophilus and
antifungal activity were high. Antifungal potential of this EO can be attributed to high content of
trans-anethole, which can interact with fungal plasma [78].

The positive correlation between antibacterial activity of EOs and high content of certain
components was reported only for few EOs (e.g., mint, thyme and oregano). For others (e.g., limette and
lavender), it is most likely that their antibacterial potential is the result of synergistic effect of the
components, since some of those major components exhibit higher antibacterial effect than the EO
itself [79].

The present study proved that cinnamon and thyme followed by clove EOs exhibited significantly
higher or equal antimicrobial properties against oral pathogens than CHX. These findings would be the
introduction to further investigations aiming at the incorporation of these oils into oral care products,
i.e., tooth pastes, mouth rinses. The antimicrobial potential of these EOs might be also used to enhance
the antibacterial properties of dental materials such as dental resin materials, temporary dressings,
disinfectants or root canal filling materials. Furthermore, extracting the most active components from
EOs and introducing them into dental products (e.g., restorative materials) composition might be
promising line of research. The abundance literature reported that there is great need for development
of dental materials with antibacterial properties [4,8,10,12,55,80]. The results of previous studies
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on antibacterial properties of dental materials seemed promising and suggested that introducing
antimicrobial agents into the composition of dental materials might improve their antibacterial potential
without deteriorating the physico-mechanical performance [8,12,37].

Given the highest antimicrobial activity obtained in the present study, cinnamon essential oil
was used to incorporate, in three different concentrations, into composite resin material composition.
Based on preliminary experiments performed, the tested concentration of the EO in composite resin
was established as 1, 2 or 5 µL of EO in 2 g of CR. The best antimicrobial properties against S. mutans
and C. albicans were achieved for composite resin containing this essential oil in concentration 2 µL/2 g,
whereas against L. acidophilus in concentration 1 µL/2 g. Ideally, the composite resin material would
present antimicrobial effect and possess very good mechanical properties. The addition of antibacterial
or antifungal agents should not change the mechanical performance of the resin material. The current
experiment showed that the addition of 2 µL of cinnamon essential oil into 2 g of composite material
allows for limiting microbial growth of tested oral pathogens in comparison to unmodified material.
This composition might be optimal in terms of antimicrobial properties due to mild influence on
polymerization process and enabling release of active compounds into environment.

Still, the present study has some limitations. First of all, the study used single-species model with
isolated strains of specific oral pathogens tested in in vitro conditions, without saliva involvement,
whereas oral cavity is complex environment holding variety of pathogens interacting in formation
of oral biofilm on hard dental tissues. Therefore, these findings must be confirmed in further
microbiological studies.

Next, mechanical properties of composite resins modified with essential oils should be tested if
considering such materials for clinical application. One study [13] tested mechanical properties of
composite resin material modified with cinnamon EO, such as hardness, tensile and flexural strength.
The results of the study provided inconsistent data on the proper concentration of the EO in the
CR to obtain desirable mechanical performance of the EO-CR material. However, the addition of
cinnamon EO to composite material did not adversely affect all the mechanical properties. CR material
showed significantly higher flexural strength when modified with 1 µL of cinnamon EO (in 2 g of the
material) than non-modified CR. In contrast, non-modified CR showed significantly higher hardness
(HV1) and tensile strength values in comparison to modified CR. As far as tensile strength of EO-CR
material was concerned, the addition of 2 µL of cinnamon EO (in 2 g of the material) allowed for
obtaining significantly highest results. On the contrary, the addition of high amount of EO (5 µL/2 g)
significantly deteriorated all tested mechanical properties. Still, such EO-modified bulk-fill material
could be clinically used in pediatric dentistry as a final filling in primary teeth or in permanent teeth as
a temporary filling, as a liner or in two-step bulk restorative technique in deep cavities. Furthermore,
class V cavities, with minimum occlusal loading could be restored with such composite material. Still,
long-term performance of such restorations and their aesthetic features must be evaluated.

Moreover, long term study should be performed to evaluate possible allergic reaction to essential
oil modified composite resin material as well as the cytotoxic effect of EOs released from EO-CRs.
Study showed that EOs present cytotoxic effects on living cells and the severity depends on their type
and concentration [16]. Hence, further studies should be conducted to evaluate the potential cytotoxicity
and long-term antimicrobial effect of essential oils incorporated into the dental restorative materials.

Since the present study tested only one restorative material, the results cannot be translated to
other composites resin materials due to some variation in their composition.

5. Conclusions

The study showed that all ten tested essential oils possess antibacterial activity against L. acidophilus
and antifungal activity against C. albicans. Only two essential oils, anise and limette were ineffective
towards S. mutans. Among tested essential oils, the cinnamon and thyme showed overall the highest
antibacterial and antifungal activity against oral pathogens used in the study. Composite resin
modified with cinnamon essential oil showed antimicrobial effect regardless of the EO concentration.
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Considering these preliminary results, essential oils seem promising alternative to other antibacterial
agents incorporated into resin composite and further studies should be conducted to further
evaluate the antimicrobial effect of dental composites modified with essential oils, as well as their
mechanical properties.
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Table A1. Levels of statistical significance (p) in Fisher’s post-hoc test of EOs activity against S. mutans.

Essential Oil Anise Citronella Cinnamon Clove Geranium Lavender Limette Mint Rosemary Thyme

Anise NS NS NS NS NS NS NS NS NS
Citronella 0.688
Cinnamon <0.001 <0.001 <0.001 <0.001 <0.001

Clove <0.001 0.157 <0.001
Geranium 0.905 <0.001 <0.001 <0.001 NS 0.604 <0.001 <0.001
Lavender <0.001 <0.001
Limette NS NS NS NS NS NS

Mint
Rosemary <0.001 0.181 0.940 <0.001

Thyme <0.001 <0.001 <0.001 <0.001 NS <0.001 <0.001

NS = not significant.

Table A2. Levels of statistical significance (p) in Fisher’s post-hoc test of EOs activity against L. acidophilus.

Essential oil Anise Cinnamon Citronella Clove Geranium Lavender Limette Mint Rosemary Thyme

Anise <0.001 0.544 <0.001 < 0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Cinnamon <0.001 <0.001 <0.001 <0.001 <0.001
Citronella <0.001

Clove <0.001 <0.001 <0.001
Geranium <0.001 <0.001 <0.001 <0.001 <0.001 0.209 <0.001 <0.001
Lavender <0.001 <0.001
Limette <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Mint
Rosemary <0.001 <0.001 0.557 <0.001

Thyme 0.734 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
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Table A3. Levels of statistical significance (p) in Fisher’s post post-hoc test of EOs activity against C. albicans

Essential oil Anise Cinnamon Citronella Clove Geranium Lavender Limette Mint Rosemary Thyme

Anise <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Cinnamon <0.001 <0.001 <0.001 <0.001 <0.001
Citronella <0.001

Clove <0.001 <0.001 0.486
Geranium <0.001 0.030 <0.001 0.001 <0.001 <0.001 0.648 <0.001
Lavender 0.252 <0.001
Limette <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Mint
Rosemary 0.009 <0.001 <0.001 <0.001

Thyme <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
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