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ABSTRACT
Obesity is a complex medical condition that affects multiple organs in the body. However, the 
underlying mechanisms of obesity, as well as its treatment, are largely unexplored. The focus of this 
research was to use bioinformatics to discover possible treatment targets for obesity. To begin, 
the GSE133099 database was used to identify 364 differentially expressed genes (DEGs). Then, 
DEGs were subjected to tissue-specific analyses and enrichment analyses, followed by the creation 
of a protein-protein interaction (PPI) network and generation of a drug-gene interaction database 
to screen key genes and potential future drugs targeting obesity. Findings have illustrated that 
the tissue-specific expression of neurologic markers varied significantly (34.7%, 52/150). Among 
these genes, Lep, ApoE, Fyn, and FN1 were the key genes observed in the adipocyte samples from 
obese patients relative to the controls. Furthermore, nine potential therapeutic drugs (dasatinib, 
ocriplasmin, risperidone, gemfibrozil, ritonavir, fluvastatin, pravastatin, warfarin, atorvastatin) that 
target the key genes were also screened and selected. To conclude the key genes discovered (Lep, 
ApoE, Fyn, and FN1), as well as 9 candidate drugs, could be used as therapeutic targets in treating 
obesity.
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Introduction

Obesity is a major global public health concern and is 
considered the most common and costly nutritional 
problem [1,2]. Affecting around 2.1 billion people 
worldwide, the number of people with obesity only 
continues to rise. Moreover, it is estimated that over 
3 million people succumb to obesity-related diseases 
every year [3–5]. Obesity has been linked to high mor-
bidity and mortality rates, with consequences leading to 
many diseases and comorbidities, such as liver disease, 
cardiovascular disease, type 2 diabetes, stroke, osteoar-
thritis, obstructive sleep apnoea, and cancer [6–9].

Obesity is characterized by increased mass in the adi-
pose tissue, which is linked to the persistent activation of 
inflammatory pathways in both adipocytes and macro-
phages living in or invading the adipose tissues [10–12]. 
A previous study has revealed that the adipocyte’s p62 is 
a critical regulator of energy balance and adiposity in vivo 
[13]. Moreover, Trayhurn P. demonstrated that adipose 
hypoxia might be a causative factor for adipose dysfunction 

in obesity [14]. Despite the new knowledge and theories 
regarding adipose and obesity, current research methods 
fall short in providing personalized therapies for obese 
patients. As this condition may lead to multiple diseases 
if left untreated, urgent interventions are therefore highly 
imperative. Thus, specific therapeutic targets for obesity are 
needed to alleviate the consequences and curb the growing 
population of obese patients worldwide.

With the development of molecular technology and 
bioinformatics, more and more highly differentially 
expressed candidates’ genes are screened. Gene 
Expression Omnibus (GEO), an online dataset com-
prised of gene profiles produced primarily utilizing 
DNA microarray technology [15,16]. In this research, 
we analysed the DEGs that participate in obesity 
through microarray and bioinformatic analysis to 
screen for disease-associated genes, gain a new under-
standing concerning the mechanisms that underlie obe-
sity, and contribute to the development of a more 
strategized approach for controlling obesity.
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Materials & methods

Data acquisition and processing

The microarray dataset GSE133099 was acquired from 
the Gene Expression Omnibus (GEO) database (www. 
ncbi.nlm.nih.gov/geo/). The dataset was based on the 
GPL16791 platform comprising six obese and six 
healthy (control) adipocyte samples excised from 
a slice of subcutaneous tissue, and the six obese patients 
were all female, and the mean age was 55 (range 41–79) 
years with BMI >27 kg/m2.

The R (version 4.0.2) was utilized to process and 
analyse raw data. The raw GSE133099 dataset was pre-
processed using the same programme. DEGs involved in 
obesity were validated utilizing the criteria: FDR <0.05 
and |log2 Fold Change| >1 [17]. Genes were further 
processed and plotted into volcano plots using ggplot2.

Gene ontology and pathway of DEGs

Obesity-related GO terms and pathways were obtained 
through the web-based platform DAVID (ver. 6.8) 
(https://david.ncifcrf.gov/) [18]. Gene enrichment was 
analysed using GO [19] and KEGG [20] analysis to 
predict the potential biological value of DEGs. P value 
of <0.05 was defined as significant.

Tissue-specific gene expression analysis

The information about gene functions can be obtained 
from tissue-specific genes. The BioGPS database 
(http://biogps.org/#goto=welcome) was utilized to 
screen for tissue-specific DEGs [21]. Transcripts that 
were extremely tissue-specific and mapped to a single 
tissue were considered for inclusion if the median 
expression of the transcript is more than 10 times that 
of all other tissues.

PPI network construction and analysis

STRING (https://string-db.org/) database was utilized 
to create the PPI networks [22]. A confidence score of 
≥ 0.4 was adjusted as the cut-off for this program. The 
Cytoscape software (version 3.7.2) and the CytoHubba 
plugin (version 0.1) were then utilized for visualizing 
and identifying the PPI network. Next, the 20 highest- 
ranking hub genes were determined by employing three 
calculation methods, Degree, Stress, and EcCentricity, 
based on a filtering algorithm. This is followed by the 
construction of a Venn diagram to validate the signifi-
cance of principal genes in obesity and look for the 
intersecting genes between the tissue-specific genes and 
hub genes as key genes.

Screening of candidate drugs

The drug-gene interaction database (DGIdb, http:// 
www.dgidb.org/) is an online resource that presents 
drug-gene interactions from different sources such as 
databases and web resources [23,24]. Drug candidates 
that were selected from the detected drug-gene interac-
tions were all approved by the Food and Drug 
Administration (FDA). Lastly, drugs with more than 
two dataset sources and/or PubMed references suppor-
tive of the drug-gene interaction were considered as 
candidate drugs.

Results

Differential expression analysis

The microarray data from 6 obese patients and 6 nor-
mal subjects were gathered and analysed for this study. 
A total of 364 obesity-specific DEGs were recognized 
with criteria of FDR at <0.05 and |log2 Fold Change| >1 
(Figure 1). The 11 considerably expressed genes 
between the 2 cohorts were retrieved utilizing thresh-
olds at |log2 (FC)| >3 and FDR <0.001 (Figure 1).

Enrichment analysis of DEGs

GO functional analysis was separated into 3 cohorts, 
including Molecular function (MF), Cellular 
Component (CC), and Biological Process (BP). Based on 
the analysis, DEGs were primarily enriched in ‘Integrin 
binding’, ‘Proteinaceous extracellular matrix’, and 
‘Extracellular matrix organization’ with Sanger Box 
(Table 1 and Figure 2). KEGG pathway enrichment ana-
lysis further revealed that the genes are primarily enriched 
in ‘ECM-receptor interaction’, ‘Protein digestion and 
absorption’, and ‘Focal adhesion’ (Table 2 and Figure 3).

DEGs specificity in tissue expression

Utilizing BioGPS, we identified an aggregate of 150 
DEGs that were expressed preferentially in specific 
tissues. The expression of tissue-specific markers of 
the neurologic system varied significantly (34.7%, 52/ 
150), followed by the immune system (34%, 51/150), 
genital system (25.3%, 38/150), respiratory system 
(18.7%, 28/150), digestive system (18%, 27/150), circu-
latory system (17.3%, 26/150), skeletal muscle system 
(17.3%, 25/150), endocrine system (16%, 24/150), urin-
ary system (9.3%, 14/150), and the haematological sys-
tem (8%, 12/150) (Table 3).
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Key gene identification and analysis

Using the Cytohubba plugin, the top 20 connected 
proteins from the PPI network were gathered together 
with the rank of each hub gene. From this list, common 
hub genes were identified (Figure 4). Then, the Venn 
diagram shows the intersecting genes between common 
hub genes and tissue-specific genes, referred to as the 
key genes (Figure 5).

Candidate drugs screening

In the present study, nine FDA-approved medica-
tions that possibly target the protein products of the 
four key genes were identified using DGIdb. Results 
show that the promising targets for potential anti- 
obesity drugs include the APOE (55.6%, 5/9), LEP 
(22.2%, 2/9), FYN, and FN1 (11.1%, 1/9) genes 
(Table 4).

Figure 1. Differentially expressed genes (DEGs) between the obesity and control cohorts. Volcano plot of GSE133099 and 11 
substantially expressed genes were detected. Black, green, and red dots represent unchanged, downregulated, and upregulated 
genes, in that order.
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Discussion

Obesity is a growing health problem worldwide, with cases 
tripling in developing countries [25]. Epidemiological data 
from the Framingham Heart Study has demonstrated that 
obesity is contagious, with the probability of obesity 
increases with a family history of the disease [26]. 
Moreover, obesity is also considered a significant risk factor 
for a variety of chronic diseases. Previous studies have 
indicated that brown adipocytes have a responsibility of 
balancing heat production and energy metabolism and are 
crucial for suppressing metabolic diseases and weight gain, 
both in mice and in humans [27,28]. To present, weight 
reduction research has mostly concentrated on diets, exer-
cise, food supplementation, medications, and even surgical 
weight loss, which has the propensity to have negative 
health consequences [29,30]. Since obesity is a risk variable 
for numerous diseases, this calls for the urgency of devel-
oping a personalized approach to clinical management to 
avoid or hinder the development of obesity complications.

As a prediction tool, the bioinformatics tool 
(BioGPS, David and PPI network) and the drug-gene 
interaction database (DGIdb) database was utilized to 

confirm the potential genes and therapeutic drugs. 
However, the bioinformatics tool and the DGIdb itself 
also has several limitations (Predicting the potential 
core genes and drugs only). In the present study, 6 
obese adipocytes samples and 6 normal adipocytes 
samples were included. The results indicated that 150 
obesity-specific DEGs are involved in the body’s multi-
ple organ systems. DEGs enrichment analysis illu-
strated that they were predominantly implicated in 
the extracellular matrix organization, proteinaceous 
extracellular matrix, and integrin binding. Four key 
genes (Lep, ApoE, Fyn, and FN1) were screened and 
analysed to identify potential therapeutic agents for 
obesity.

Fyn is an SRC family kinase (SFK) that comprises 11 
members. It has been previously reported that Fyn per-
forms a function in different biological functions includ-
ing cell growth, metabolism, and adipogenesis [31,32]. 
Several studies showed that Fyn is correlated with the 
regulation of insulin signalling and metabolic diseases 
[33,34]. In this study, we also identified Fyn as one of the 
key genes with a potential role in the immune system. 

Table 1. Significantly enriched GO terms in obesity-related DEGs.
Category Term Genes FDR

BP Extracellular matrix 
organization

ITGB1, EGFL6, HPSE2, ELN, FN1, MFAP5, CCDC80, COL1A2, COL5A1, LOX, COL4A4, COL6A2, 
COL4A3, COL6A3, ITGA5, RECK

0.003150327

Extracellular fibril 
organization

MFAP5, CST3, MFAP4, COL5A1, LTBP2 0.033994008

CC Proteinaceous 
extracellular matrix

WNT2B, HPSE2, ELN, LTBP2, PRELP, FBLN2, ADAMTS10, GLG1, WISP2, PTPRZ1, CHL1, TIMP2, 
ADAMTS9, WNT3, CRTAP, FN1, MMP13, COL1A2, COL5A1, LOX, CILP, COL4A4, COL6A2, 
COL4A3, MGP, COL6A3, CHI3L1, MMP19, CD248, GPLD1

2.65E-13

CC Extracellular exosome SCARB2, CLIC6, ITGB1, HSP90AB1, GALNT16, GDA, PROS1, DNHD1, PTPRJ, SLC2A5, WISP2, 
SCPEP1, UCHL1, ISLR, LAMP1, CHL1, GLIPR2, NCS1, TIMP2, QSOX1, PTGDS, EDIL3, CACNA2D1, 
IL18, RENBP, PSMA6, ALDH1A3, COL6A2, CMPK1, COL6A3, CHI3L1, DNASE2, MFGE8, GPLD1, 
RHOQ, ANGPTL1, PLBD2, ASAH1, SLC22A5, C1S, NPR3, SEMA3G, PRELP, LTBP2, SLC1A4, LIN7A, 
PDHB, SDSL, NDRG2, FBLN2, GNS, THBS4, ACACA, GLG1, CST3, CLEC3B, SCIN, PDLIM2, PSAP, 
SH3BP4, ST3GAL6, IGFBP6, MAP4, APOE, SIAE, WNT3, GSTM3, FN1, DSTN, CDC42BPB, TUBB4B, 
ASS1, RAB11A, PTPRD, MFAP4, BST1, FMNL1, COL1A2, COL5A1, TCN2, MAN2B2, GLB1, CILP, 
FAM151A, XPNPEP2, MGP, APOC1, CD248, NUCB2

9.44E-08

Extracellular region LY6K, ADAMDEC1, CSF2, WNT2B, ELN, PROS1, ANTXR2, CHRDL1, LFNG, ISLR, GLIPR2, TMSB4X, 
TIMP2, QSOX1, PTGDS, IGFBP5, IL18, MR1, MMP13, LOX, COL4A4, COL6A2, COL4A3, COL6A3, 
HHIPL1, MMP19, MFGE8, HBEGF, ITIH5, NOTCH3, COLEC10, C1S, NXPH4, PRELP, SEMA3E, 
FBLN2, THBS4, SCUBE2, CST3, CLEC3B, FRZB, PSAP, PENK, FAM180A, IGFBP6, APOE, 
C11ORF45, PLTP, WNT3, ANGPT4, NMB, FN1, PRSS35, BMP6, MFAP5, MFAP4, COL1A2, 
COL5A1, TCN2, LEP, APOC1

1.38E-07

Extracellular matrix FN1, PRELP, LTBP2, TUBB4B, FBLN2, ADAMTS10, THBS4, MFAP4, CLEC3B, MMP13, COL1A2, 
COL5A1, CILP, COL6A2, MGP, TIMP2, MMP19, COL6A3, APOE, MFGE8, EDIL3, ADAMTS9

1.60E-06

Extracellular vesicle LFNG, OLFML3, COL6A2, COL6A3, PRELP, APOE, MFGE8, TUBB4B, EDIL3, FBLN2 6.09E-06
Extracellular space CSF2, WNT2B, PROS1, WISP2, TIMP2, QSOX1, PTGDS, ADAMTS9, EGFL6, METRN, IL18, MMP13, 

LOX, COL6A2, COL6A3, CHI3L1, MFGE8, GPLD1, ANGPTL1, HBEGF, ASAH1, GCNT1, SEMA3G, 
PRELP, LTBP2, SEMA3E, THBS4, CST3, CLEC3B, FRZB, PSAP, IGFBP6, APOE, SIAE, PLTP, WNT3, 
ANGPT4, CRTAP, FN1, SULF1, BMP6, COL1A2, TCN2, GLB1, CILP, VNN3, LEP, NUCB2, CCL26

1.51E-05

Lysosomal lumen SCARB2, ASAH1, TCN2, GLB1, MAN2B2, PSAP, PRELP, GNS, PLBD2 0.003123445
Collagen trimer COLEC10, MMP13, COL1A2, COL5A1, LOX, COL4A4, COL6A2, COL4A3, COL6A3 0.00478510818157352
Endoplasmic reticulum 
lumen

CRTAP, STS, COL1A2, ERAP2, COL5A1, COL4A4, COL6A2, COL4A3, CERCAM, P3H2, COL6A3, 
WNT3

0.010883682

MF Integrin binding ADAMDEC1, ADAM32, MMP8, MMP9, ADAM18, ADAMTS3, KEL, MMP16, FAP, MMP26, CLCA1, 
TLL1, CLCA4

4.65E-04

Extracellular matrix 
structural constituent

OAS1, OAS2, OAS3, OASL 4.65E-04
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Yamada et al. found that mice lacking Fyn kinase had an 
increased metabolism of fatty acids, consumed more 
energy, and were thinner than mice with functional 
Fyn kinases [35]. Alternatively, the selective lack or 

suppression of Fyn might eradicate inflammation during 
pro-inflammatory processes and autoimmune [36].

Fibronectin 1 (FN1), on the other hand, is pre-
sented in the extracellular matrix and performs a key 

Figure 2. Biological functions based on Gene Ontology (GO) analysis of obesity-related DEGs.

Table 2. Significantly enriched pathways in obesity-related DEGs.
Pathway ID Name Genes P-Value

hsa04512 ECM-receptor interaction ITGB1, COL1A2, COL5A1, COL4A4, COL6A2, COL4A3, FN1, COL6A3, ITGA5, THBS4 2.86E-05
hsa04510 Focal adhesion ITGB1, FN1, THBS4, COL1A2, CCND2, COL5A1, COL4A4, COL6A2, COL4A3, ERBB2, 

COL6A3, FYN, ITGA5
3.94E-04

hsa04974 Protein digestion and absorption COL1A2, COL5A1, XPNPEP2, COL4A4, ELN, COL6A2, COL4A3, COL6A3 0.001138329
hsa04151 PI3K-Akt signalling pathway ITGB1, ANGPT4, CSF1R, HSP90AB1, FN1, THBS4, COL1A2, CCND2, COL5A1, PPP2R2C, 

COL4A4, COL6A2, COL4A3, COL6A3, ITGA5
0.004374222

hsa04142 Lysosome SCARB2, ASAH1, LAMP1, GLB1, PSAP, DNASE2, ABCB9, GNS 0.00686595
hsa05205 Proteoglycans in cancer ITGB1, WNT2B, HPSE2, ERBB2, FN1, TWIST1, ITPR3, ITGA5, WNT3, HBEGF 0.011432848
hsa05204 Chemical carcinogenesis SULT1A1, GSTM3, ALDH1A3, ADH4, GSTM5, SULT1A2 0.015821
hsa04924 Renin secretion EDNRA, PDE3A, ITPR3, CACNA1C, KCNJ2 0.030065163
hsa05146 Amoebiasis CSF2, COL1A2, COL5A1, COL4A4, COL4A3, FN1 0.045859559
hsa00531 Glycosaminoglycan degradation HPSE2, GLB1, GNS 0.047121568
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function in maintaining cell morphology, differentia-
tion, migration, and growth [37]. Berger et al. demon-
strated that FN1 is one of the adipocyte-specific 

dysregulated genes in obese adipose tissues [38]. 
Similar findings were implied by Yang et al. when 
they found that FN1 is strongly associated with 

Figure 3. KEGG pathway analysis of obesity-related DEGs.

Table 3. Tissue-specific genes identified using BioGPS.
System Genes

Neurologic EGFL6, ALDH1A3, MFAP4, IGFBP6, TSPAN13, GALNT17, PTGDS, CERCAM, MEF2C, SLC4A3, NDRG4, LTBP2, LTBP3, LMOD1, PENK, CHRDL1, 
UCHL1, PEG10, PPP2R2C, OLFML3, ITPR3, SGCE, CLIC6, PLTP, PURA, NPTX1, CHI3L1, CLIP2, TAGLN, CDR2L, SCRN1, CDC42BPB, THBS4, 
FBLN2, METRN, NDRG2, SCARB2, PEA15, SASH1, RBP1, FEZ1, C1S, PTPRD, PSD3, FN1, DYNC1LI2, UBE2QL1, PROS1, CD99L2, PTPRZ1, CHL1, 
PDE4D

Immune TSPAN13, MEF2C, OSTM1, LTBP3, P3H2, ADCY7, ERAP2, CHRDL1, UCHL1, GYPC, ITPR3, SAMHD1, CLIC6, MCUB, GLB1, PDLIM1, CSF1R, 
APOC1, ELOVL6, CLIP2, RASSF5, SH3TC1, COL6A3, RAB6B, UNC13C, BST1, NUCB2, MZF1, NPR3, SFT2D1, SCRN1, GNS, NLRP1, NDRG2, 
SCARB2, SULT1A1, BCL7A, MAFB, CCND2, PBXIP1, CCNL1, MCM2, NKTR, SCPEP1, PDLIM2, MYL4, FYN, RGS2, REXO2, DDX39B, SMURF2

Genital EGFL6, MFAP5, MFAP4, PALLD, CD248, LMOD1, PENK, CHRDL1, PEG10, CALD1, TEX26, OLFML3, ITPR3, PLTP, CSF1R, SLC2A5, CHI3L1, FRZB, 
TAGLN, CLEC3B, EMX2, COL6A3, LEP, PAEP, COL5A1, FBLN2, NOTCH3, TIMP2, RBP1, CCIN, C15orf48, C1S, PDLIM2, GSTM3, EDNRA, RGS2, 
GPNMB, TWIST1

Respiratory EGFL6, ALDH1A3, MFAP4, TSPAN13, COL6A2, CCN5, ELN, SFTPA2, SFTPA1, LTBP3, ITPR3, PDLIM1, APOC1, ELOVL6, FRZB, BNC1, CLEC3B, 
NPR3, TCEAL9, COL5A1, TIMP2, FEZ1, C1, PDLIM2, PRELP, EDNRA, GPNMB, SMURF2

Digestive ALDH1A3, IGFBP6, TSPAN13, PALLD, LTBP3, LMOD1, CILP, PEG10, SLC2A5, APOC1, SH3BP4, PNKD, COL6A3, APOE, ADAMDEC1, SULT1A1, 
RBP1, C15orf48, CASQ2, C1S, MYL4, RAB11A, FN1, PROS1, XPNPEP2, ADH7, ASS1

Circulatory CCDC80, MFAP5, MFAP4, IGFBP6, PTGDS, LOX, SLC4A3, NDRG4, LTBP2, UCHL1, APOC1, TAGLN, SH3TC1, CLEC3B, MGP, ID3, COL1A2, SULF1, 
NEK7, COL5A1, FBLN2, MAFB, CASQ2, MYL4, FN1, GPNMB

Skeletal muscle MFGE8, ALDH1A3, CCDC80, MFAP5, IGFBP6, FKBP9, CCN5, ITGB1, CD248, LOX, ELN, LTBP2, CILP, CHRDL1, OLFML3, SGCE, ELOVL6, SH3BP4, 
TAGLN, RECK, NPR3, COL1A2, SULF1, PTGFRN, MEDAG

Endocrine TSPAN13, LTBP3, CA3, CHRDL1, UCHL1, ITPR3, CLIC6, PDLIM1, ASAH1, CLEC3B, COL6A3, MGP, NUCB2, ID3, CDC42BPB, TCEAL9, COL1A2, 
COL5A1, METRN, RBP1, MAFB, MCM2, SCPEP1, ISLR

Urinary PALLD, ALDH1A3, PTGDS, NDRG4, LTBP3, LMOD1, P3H2, NOX4, TAGLN, PGAP1, GNS, SYT17, XPNPEP2, ASS1
Haematological MFAP4, OSTM1, UCHL1, ITPR3, MCUB, SLC2A5, CHI3L1, CLIP2, PNKD, SFT2D1, MCM2, KCNJ2
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metabolic syndrome (MetS) and insulin resistance 
(IR) [39].

Leptin (LEP) is another key gene that codes for 
a hormone that is predominantly produced and 
secreted by adipose tissues and functions mainly by 
regulating food intake, energy expenditure, and lipid 
metabolism by binding with the LEP receptor (LEPR) 
[40,41]. LEP is associated with insulin signalling, as well 
as with inflammatory and immune response [42]. The 
DNA location of Lnc-Leptin interfaces directly with 
LEP in mature adipocytes to sustain protein expression 
in vitro and in vivo, hence supporting adipogenesis 
[43]. In addition, previous studies have indicated that 
the concentration of LEP in the blood increases with 
improved adipose tissue mass [44,45]. Our study also 
showed that LEP is tightly linked with the genital 

system, consistent with research conducted by Sun 
et al. [46].

APOE is a gene situated in chromosome 19q13.2. 
This gene has three isoforms namely APOE epsilon2 
(APOE2), APOE epsilon3 (APOE3) and APOE epsi-
lon4 (APOE4) [47]. The APOE gene product, APOE, 
is an apolipoprotein that is known to bind lipids and 
participates in cholesterol metabolism [48]. Previous 
studies show that the ApoE e2 allele is associated with 
insulin resistance and increases the risk of type 2 dia-
betes mellitus diabetes mellitus (T2DM) [49–51].

With the use of the DGIdb database, nine candidate 
drugs targeting obese-related complications were iden-
tified. Among them, lipid-modifying drugs 
(Gemfibrozil, fluvastatin, pravastatin, and atorvastatin) 
have functionally significant values in improving 

Figure 4. Common hub genes based on Degree, Stress, and EcCentricity algorithm.
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insulin function in the body and in ameliorating insulin 
resistance [52]. Although previous studies have demon-
strated that the treatment of insulin resistance benefits 
the bodyweight, relevant clinical studies about body-
weight with nine of the candidate drugs are rare. 
Prospective clinical trials and the specific molecular 
mechanisms are warranted to prove its efficacy in 
obese is required.

Limitation

First, the study employed a relatively small sample size; 
hence, future research will be warranted to validate 
these findings using larger sample sizes and other data-
bases. Second, to better understand the functions of 
these key genes, more large-scale validation studies 
and elucidation of the molecular processes of obesity 
ought to be conducted. Third, obese-related comorbid-
ities should be considered well. Fourth, future studies 
are warranted to validate these potential candidate 

drugs for obese therapy and explore the underlying 
mechanisms.

Conclusion

In summary, this research demonstrates that FYN, 
FN1, LEP, and APOE are closely related to the occur-
rence and progression of obesity. These four genes and 
their associated signalling pathways and candidate 
drugs are excellent potential candidates for targeted 
anti-obesity therapy. Additional investigations invol-
ving multi-centre and large populations sizes are war-
ranted to verify these findings.
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Figure 5. Venn diagram showing the key genes involved in obese adipocyte samples.

Table 4. Nine FDA-approved drugs potentially targeting the four key genes.
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