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CASSPER is a semantic segmentation-based
particle picking algorithm for single-particle
cryo-electron microscopy
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Particle identification and selection, which is a prerequisite for high-resolution structure

determination of biological macromolecules via single-particle cryo-electron microscopy

poses a major bottleneck for automating the steps of structure determination. Here, we

present a generalized deep learning tool, CASSPER, for the automated detection and isolation

of protein particles in transmission microscope images. This deep learning tool uses Semantic

Segmentation and a collection of visually prepared training samples to capture the differences

in the transmission intensities of protein, ice, carbon, and other impurities found in the

micrograph. CASSPER is a semantic segmentation based method that does pixel-level clas-

sification and completely eliminates the need for manual particle picking. Integration of

Contrast Limited Adaptive Histogram Equalization (CLAHE) in CASSPER enables high-fidelity

particle detection in micrographs with variable ice thickness and contrast. A generalized

CASSPER model works with high efficiency on unseen datasets and can potentially pick

particles on-the-fly, enabling data processing automation.
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S ingle-particle cryo-electron microscopy (cryo-EM) has
revolutionized the field of structural biology by facilitating
the structure determination of various biological macro-

molecules and their complexes1–4, which were recalcitrant to
structure determination by X-ray crystallography or were not
suitable for structure determination via NMR. Cryo-EM enables
structure determination of proteins in solution without the need
for protein crystallization or limitations of size, making it the
current method of choice. A number of research projects are
currently being carried out around the world to further improve
the hardware5–7 and software8–12 in order to streamline and
automate the data collection and processing steps for 3D structure
determination. One of the obstacles that still remains for auto-
mating the single-particle cryo-EM structure determination is the
manual identification and selection of particles (protein) from
micrographs for extraction and subsequent 2D classification.

To achieve a high-resolution protein structure, the selection of
a large number of good-quality particles is the prime requisite.
However, particle identification, picking, and selection is a
tedious and challenging process due to the increasingly larger
datasets that are being collected nowadays. Moreover, the low
signal-to-noise ratio (SNR) of the micrographs, presence of
contaminants, contrast differences owing to varying ice thickness,
absence of well-segregated particles, etc. further increase the
difficulty levels. To overcome the above-mentioned drawbacks
introduced primarily by EM grid vitrification and low dose
imaging, one often has to rely on manual or semi-automated
methods of particle-picking which could be slow and laborious
for large-sized datasets. A fast, automatic method that can replace
the manual processing is thus a necessity for automating the
structure determination process.

Presently, considerable effort is being devoted to the development
of automated particle picking methods in order to circumvent the
manual intervention. These can be broadly categorized into two
groups: (i) template-free and (ii) template-based methods, which
rely mainly on cross-correlation with the template images. Gauto-
match13 is one of the widely used methods for particle picking from
cryo-EM micrographs with or without templates. In RELION11 and
cryoSPARC12, a Gaussian blob of defined size is used as a template
for particle picking. Similarly, DoGpicker14 uses mathematically
derived Gaussian functions as templates to recognize and select
particles from the micrographs. However, these tools are prone to
pick huge amounts of contaminants, background, and ice, and do
not work optimally for datasets with poor SNR or small particle
sizes. These problems are resolved to a certain extent in template
(reference)-based particle picking tools implemented in SIG-
NATURE15, RELION11, cryoSPARC12, EMAN8, SPHIRE16, cis-
TEM17, FindEM18, gEMpicker19, SPIDER20, etc. In all these
methods, templates are generated by manually picking a few hun-
dred to several thousand particles from multiple micrographs.
These particles are then sorted, and 2D classified to generate tem-
plates for automated particle selection via template matching
algorithms. While this methodology works better than previously
described reference-free methods, it is time-consuming, computa-
tionally expensive, and also requires manual intervention prevent-
ing its integration into automated pipelines for structure
determination. Besides, manual particle picking may introduce a
strong template bias, especially for asymmetric molecules that may
result in a high false picking rate.

Artificial intelligence/machine learning (AI/ML)-based approaches
have the potential to overcome the problems discussed above and
pave the way for full-automation of the data processing pipeline. Not
surprisingly, multiple AI/ML-based methods have already been
proposed, such as XMIPP21, APPLE picker22, DeepPicker23, Dee-
pEM24, FastParticle Picker25, crYOLO26, PIXER27, PARSED28,
WARP29, Topaz30, AutoCryoPicker31, etc. that are based on

Convolutional Neural Networks (CNN), region-based Convolutional
Neural Networks (R-CNN), cross-correlation, and segmentation.
These deep learning classifiers are first trained on available datasets
with known labels. The training process allows the classifiers to learn
intrinsic and unique features/characteristics of the particles. The
trained classifier can then be used to pick similar particles from other
micrographs automatically. Boxnet implemented in WARP uses
ResNet architecture and predicts particles based on the argmax
operations. In CNN-based methods like DeepPicker, DeepEM, and
Topaz, a sliding window is used to analyze the image for classifica-
tion. In crYOLO, which is also a CNN-based tool, the entire image is
split into grids, and part of the image in each grid is taken as an input
to the classifier. However, all the above methods require individual
particles to be manually picked for training, which is a time-
consuming procedure. Further, the exposure difference, noise level,
and the variable ice thickness in micrographs also limit the perfor-
mance of automated particle picking tools.

Here, we present a method packaged as CASSPER (Cryo-EM
Automatic Semantic Segmentation-based Particle pickER) based
on semantic segmentation (SS) for automated particle picking
with high precision and accuracy. To our knowledge, CASSPER is
the first deep learning-based tool that does not require manual
particle picking to train and predict different kinds of particles
(protein, ice, carbon, etc.) in an EM micrograph. Employing SS,
CASSPER learns how to differentiate each pixel of the image by
considering the difference in the scattering intensity of the par-
ticles in the medium. Since protein, ice, and carbon contamina-
tion differ in scattering intensity, CASSPER can differentiate
between them and provide unique labels with high confidence
and reliability. CASSPER learns at the pixel level rather than just
relying on the shapes of the particle to yield high accuracy on
even unseen micrographs. CASSPER has a graphical user inter-
face (GUI) with a few track (slide) bars that can be adjusted to
label all the particles in a micrograph in one go, making it highly
efficient and time-saving in the preparation of the training data.
This unique feature that eliminates manual picking of particles
distinguishes CASSPER from all other existing methods. For
removing regional contrast variability in micrographs, CASSPER
utilizes the Contrast Limited Adaptive Histogram Equalization
(CLAHE)32 algorithm. CLAHE implements adaptive histogram
equalization by dividing the image into grids of small areas called
“tiles”. To smoothen the boundaries, adjacent tiles are combined
using bilinear interpolation. The contrast limiting feature, which
is unique in CLAHE, eliminates noise amplification in an image
by redistributing the excess pixel values in regions with high
contrast to the neighboring pixels.

Results
Implementation of SS in CASSPER. Unlike the traditional
image classification methods that use either derived features or
morphological characteristics of the target image for its identifi-
cation, CASSPER uses SS for identifying the protein molecules at
the pixel level33. CASSPER is coded in Python and employs
InceptionV434 for feature extraction and FRRN (Full Resolution
Residual Network)35 architecture for SS.

The FRRN has two different processing streams, namely, a full-
resolution residual stream that holds high-resolution details for
recovering the location of the detections and a pooling stream for
extracting the hidden features required for learning the abstract
relationships in the image. By using a set of Full Resolution
Residual Units (FRRU) to merge the residual stream and the
information from the pooling layers at each stage, localization, as
well as classification accuracy during reconstruction, is ensured.
This is one advantage of using FRRN instead of the more popular
Fully Convolutional Neural Network (FCN). The network
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architecture of FRRN is shown in Fig. 1a. The Residual Network36

in FRRN is composed of a series of Residual Units (RUs). Each
RU has one input and one output. The skip connection structure
in RU reduces the vanishing gradient problem and increases the
training accuracy. The output of the nth layer of the RU is given
by

xn ¼ xn�1 þ F xn�1;Wnð Þ
where F(xn−1; Wn) is the Residual of the layer.

The FRRU has two inputs and two outputs. The outputs of the
nth layer yn and zn of the FRRU has two functions G and H such
that

yn ¼ yn�1 þ G yn�1; zn�1; Wnð Þ residual streamð Þ

zn ¼ H yn�1; zn�1; Wnð Þ pooling streamð Þ

where yn−1 and zn−1 are the residual and pooling inputs to FRRU.
If the pooling function H is zero, then the FRRU reduces to RU.
The FRRN architecture that is used for the present study employs
five FRRUs for upsampling and four FRRUs for downsampling.
Also, it has five max-pooling and four unpooling layers in the
pooling stream. The detailed structure of the FRRU is shown in
Fig. 1b. CASSPER uses the SS implementation by George Seif37.

CASSPER pipeline and preparation of training data. The entire
pipeline of CASSPER can be divided into two phases—the training
phase and the prediction phase. Like all other supervised ML
methods, SS also requires training data. The training data are pre-
pared by labeling the different objects of interest in the image by
assigning them unique colors. Thus, the label itself is an image with
colored pixel mask indicating their type. Since it is a SS-based
learning method, all the different object types must be labeled. In

Fig. 1 Structure of full resolution residual network (FRRN) and the flowchart depicting the labeling tool. a Abstract structure of full resolution residual
network (FRRN). FRRN achieves better recognition and localization performance by image processing in two different streams; namely, pooling and
residual streams. Pooling stream learns the abstract relationships in the image and the residual stream carries a full-resolution feature map that ensures
localization capability. b The detailed structure of FRRU. The schematic representation of FRRU and RU is also shown. FRRU combines the pooling and
residual stream and returns it to the next layer. A Convolutional layer, Batch normalization, and Relu activation layer is performing the pooling operation in
FRRU. c Flowchart of the image-labeling tool which is used for preparing training data for Semantic Segmentation. The motion corrected mrc is filtered
using a Gaussian filter after normalization. This step makes the micrograph more visible for the user. Contrast Limited Adaptive Histogram Equalization
(CLAHE) is applied to eliminate any exposure differences in the image and bilateral filtering followed by contrast enhancement makes the difference
between background and particles more vivid. Intensity thresholding is done to distinguish particles from background. Size thresholding is done for removal
of contaminants or background that is not eliminated at intensity thresholding. The pixels corresponding to proteins are indicated in red. The ice and carbon
contaminations are later labeled selecting the regions of interest.
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order to carry out labeling with minimum user intervention, we
developed a graphical labeling tool. The tool enables visual
enhancements in the image by varying its contrast, bilateral filter
size, intensity, and threshold values. All controls are easily imple-
mented by adjustments of the track bars as explained in the
“Methods”. A schematic of the functionalities of the track bars are
shown in Fig. 1c. The method is independent of the structural details
of the protein, and hence its efficiency is unaltered by the differences
in shape or size of the projected image of the protein. An illustration
of that is shown in Fig. 2, where the micrographs are labeled to show
four different constituents (referred to as classes hereafter), namely
crystalline ice, carbon edges, background, and the protein molecules.
About 12–20 micrographs of each protein were labeled and used to
train the network. The raw and labeled micrographs for training
were provided with the same root names in the pipeline, and about
80% of them were cycled in ~300 epochs to train the network. The
remaining 20% of the data was used for validating the performance
of the trained network. The training round that gives the best
F1 scores (see section “Statistics and reproducibility” for details)
during validation was taken as the criterion for choosing the final
trained model. Subsequent prediction on the larger set of unlabeled
micrographs was done using the trained model. F1 scores for three
proteins during validation are shown in Fig. 3a as an example.
CASSPER labels each particle with the same colors that were used to
represent them in the training data. Since we are interested only in
finding the coordinates of the protein, everything other than the
protein is masked out from the image. The user is then allowed to
specify the size of a circular mask approximately the size of the
protein. This input is needed as occasionally the image of the protein
may appear fragmented, and the machine needs this information to

include those fragments as part of the same particle. CASSPER then
estimates the centers of those contours, and its coordinates are
provided in the popular box and star format for particle extraction
and subsequent processing steps.

Uniform pipeline for comparison. The performance of CAS-
SPER was evaluated by comparing the results with two popular
particle picking tools—ML-based crYOLO and cross-correlation-
based Gautomatch. A proper comparison of the performance of
CASSPER with crYOLO and Gautomatch requires a common
platform, and hence we designed a uniform pipeline where the
particles predicted by these tools are subjected to a minimum
number of processing steps. The goal of using this pipeline is to
allow the particles predicted by these tools to pass through pre-
cisely the same course of data-processing steps and assess the
results. However, it is to be noted that the resolutions achieved
through this uniform scheme could be further improved by
including more number of iterative 2D classification and refine-
ment steps. Since our goal was to compare picked particles from
all the three tools, we have limited the number of steps of data
processing. The uniform pipeline scheme can be divided into
three phases, as illustrated in Fig. 3b. Phase α predicts the particle
coordinates using Gautomatch, CASSPER, and crYOLO. The
same set of micrographs were used for particle prediction by all
the three tools on four datasets discussed later (“CASSPER per-
formance” section). A comparison for the true positive (actual
protein particles) and false positive (wrong prediction as protein
particles) on one representative micrograph for each protein as
picked by Gautomatch, CASSPER, and crYOLO is shown in

Fig. 2 From raw to semantically segmented micrographs. The raw micrographs, contrast enhanced and semantically segmented images of micrographs
from β-galactosidase (EMPIAR 10017), TcdA1 (EMPIAR 10189), TRPV1 (EMPIAR 10005), and HCN1 (EMPIAR 10081), respectively. The entire micrograph
is segmented into different classes and each class is represented by a unique color. The background, protein, ice contamination, and carbon contamination
are represented using cyan, red, yellow, and green colors, respectively. Scale bar is set at 50 nm.
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Fig. 3c, and the total number of particles picked by each tool is
summarized in Fig. 3d. In this phase, each tool outputs a star file
with the particle coordinates they detect. In Phase β, the particle
coordinates were imported into RELION11 and the particles were
extracted from the micrographs. The extraction box size was kept
uniform for each protein predicted with different tools. Phase γ of
the pipeline is carried out in cryoSPARC v1 and includes one
single step of 2D classification, selection of 2D classes followed by
ab initio 3D reconstruction, and a single step of homogenous
refinement to accelerate the data processing. Thus, the extracted
particle stacks obtained by the three tools for each of the four
datasets (explained in the next section) were imported into
cryoSPARC v1, where 2D classification was performed. After a
single round of 2D classification, class averages with discernible
features were selected and used for ab initio reconstruction with
C1 symmetry. Later the 3D models generated from them were
refined with single-step homogenous refinement in their respec-
tive symmetry groups. The number of good 2D classes and par-
ticles therein and the resolution of the map in subsequent 3D
reconstruction achieved, indirectly reflect the performance of the
particle picking tools (Supplementary Table 1).

We trained crYOLO for each dataset, and the trained model
was used to predict the particles for comparison. In the case of

Gautomatch, pixel size and particle diameter were the only two
parameters that were used to predict the particles. (./Gautomatch-
{version} --apixM{pixel size} --diameter {particle diameter} /path
of the folder containing micrographs).

CASSPER performance. To test the performance of CASSPER, we
selected four datasets that are commonly used for benchmarking,
namely, HCN138 (EMPIAR 10081), TRPV139 (EMPIAR 10005),
TcdA116,26 (EMPIAR 10089), and β-galactosidase40 (EMPIAR
10017). Our selection includes proteins with different molecular
weight (464 kDa–1.4MDa) and proteins from different biological
environments ranging from cytoplasmic to membrane proteins.

TcdA1. TcdA1 (EMPIAR 10089) is one of the well-studied
components of tripartite ABC type toxin complexes released by
nematodes in case of insect invasion. It has a molecular weight of
1.4 MDa, and its characteristic shape renders it distinguishable on
the micrographs, making it a suitable candidate to develop an
autopicking tool. This dataset has 97 movies which were acquired
on Titan Krios with Falcon II detector (4k × 4k). The raw movies
were motion-corrected by MotionCor241, and CTF estimation
was performed using CTFFIND442 in RELION. Twenty-six

Fig. 3 Training and picking by CASSPER and comparison with other tools. a The validation F1 scores, which are used to select the best trained model in
training epochs for prediction, for all three proteins. b Schematic representation of the uniform pipeline used to compare the performance of Gautomatch,
CASSPER, and crYOLO. c Representative micrographs (scale bar, 50 nm) for (i) β-galactosidase, (ii) HCN1, and (iii) TcdA1 showing the particle picking
performance of different tools. Highlighted areas indicate the noise picked by the respective tools. d Table showing the number of particles picked by
Gautomatch, CASSPER, and crYOLO on the same micrograph for each protein as shown in c.
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micrographs were randomly picked and labeled for training via
CASSPER. The actual training used 23 micrographs, and three
micrographs were used for validation. The different validation
parameters were monitored in all epochs. The SS model, with the
highest F1 score, was used for making the predictions. The
coordinates of the centers of the predicted particles were returned
in box and star format. CASSPER showed the best performance
for TcdA1 as it picked 11,245 good particles for the 3D recon-
struction from 97 micrographs (Supplementary Table 1).

β-Galactosidase. β-Galactosidase (EMPIAR 10017) is a soluble
protein that is routinely used for benchmarking cryo-EM data-
processing tools and softwares. It is derived from Escherichia coli
and forms a biological tetramer whose molecular weight corre-
sponds to 464 kDa. The data were obtained from the EMPIAR

database and were acquired by a POLARA microscope equip-
ped with a Falcon II detector. For the study, 84 micrographs were
used. Out of 44,261 particles picked from 84 micrographs by
CASSPER, 40,467 were used for 3D reconstruction. Homogeneous
refinement was performed by enforcing D2 symmetry for the 3D
maps to obtain a resolution of 7.26Å, which is better than the other
tools under the uniform pipeline approach (Supplementary Table 1).

HCN1. HCN1 (EMPIAR 10081) is a membrane protein that plays
a pivotal role in controlling the rhythmic activity of cardiac and
neuronal cells. A total of 997 micrographs obtained from the
EMPIAR database were used by all the three tools to predict the
protein particles. After the 2D classification step in the uniform
pipeline, 76% of the total number of particles picked by CASSPER
were used for 3D reconstruction. The number of particles picked

Fig. 4 3D EM density map of TcdA1 obtained by implementing additional refinement steps to the uniform pipeline scheme. a Side view, b highlighted
view of the side chains fitted (PDB 1VW1) into the EM density, c top view, and d FSC curve for TcdA1 showing resolution (Å) at gold standard cutoff (0.143).
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by the three tools for 3D reconstruction through the uniform
pipeline and the corresponding resolutions are shown in Sup-
plementary Table 1.

TRPV1. TRPV1 (EMPIAR 10005) is involved in mediating
responses to various physical and chemical stimuli from the
environment. For this dataset, 771 micrographs obtained from
the EMPIAR database (collected on FEI POLARA 300 using
GATAN K2 detector) were used to compare the performance of
CASSPER with other tools through the uniform pipeline
approach. Even though the total number of particles picked by
CASSPER is less in this case, 2D class averages and 3D maps
obtained were comparable with the other tools.

The 2D class averages for all the datasets obtained by
processing the coordinates from different tools showed similar
features (Supplementary Fig. 1). The EM density maps for β-
galactosidase, TcdA1, TRPV1, and HCN1 shown in Supplemen-
tary Fig. 2a clearly indicate the difference in resolution achieved
by these tools. Resolutions for all the EM density maps were
estimated by Fourier shell correlation at FSC= 0.143 criterion
indicated in Supplementary Fig. 2b–e.

High-resolution 3D reconstruction. The ultimate goal of mac-
romolecular structure determination is to explore biologically
relevant intramolecular and intermolecular interactions in its
native environment. This is possible only if we achieve a high-
resolution structure which furnishes atomic-level details. To
demonstrate the utility of CASSPER in obtaining high-resolution
3D reconstruction, we processed two (TcdA1 and TRPV1) of the
four benchmarking datasets used in the uniform pipeline above.
These two datasets were subjected to additional numbers of

particle clean up by iterative 2D classification and 3D refinement
steps like homogeneous, non-uniform, and local refinement
protocols implemented in cryoSPARC v2 to achieve high-
resolution 3D reconstructions. This additional processing yiel-
ded a resolution of 3.5 Å and 3.19 Å, for TcdA1 and TRPV1
respectively. Previous reports showed the resolution of TcdA1
with the same set of micrographs (EMPIAR 10089; EMD 3645) as
3.5 Å and TrpV1 structure was solved with same set of micro-
graphs (EMPIAR 10005; EMD 5778) to achieve a resolution of
3.275 Å. Thus, resolution for TcdA1 obtained with CASSPER is
equal to the published report; however, for TrpV1, the resolution
achieved with CASSPER was better than that of the published
reports13,39. Figures 4 and 5 show the final 3D maps of TcdA1
and TRPV1 obtained using the coordinates derived from CAS-
SPER, where high-resolution features are clearly visible indicating
high quality of EM density map obtained. This demonstrates the
ability of CASSPER to automatically pick high-quality particles
for high-resolution structure determination.

Benchmarking CASSPER using the KLH dataset. Apart from
the above benchmarking, we also used the standard KLH
benchmark datasets43 to evaluate the performance of CASSPER.
KLH dataset has micrographs imaged in pairs of high and low
defocus allowing the evaluation of the effect of defocus on the
picking efficiency. Using the track bars of our GUI, we labeled
and trained CASSPER on 17 high defocus KLH micrographs.
This trained model was used to pick particles on a separate set of
15 high defocus and 15 low defocus KLH micrographs. The
Precision–Recall curves (Supplementary Fig. 3) gave an AUC of
0.96 and 0.915 for high and low defocus micrographs, respec-
tively, which is comparable to that obtained by other tools

Fig. 5 3D cryo-EM density of TRPV1 obtained by implementing additional refinement steps to the uniform pipeline scheme. a Side view, b highlighted
view of the side chains fitted (PDB 3j5p) into the EM density, c top view, and d FSC curve for TRPV1 showing resolution (Å) at gold standard cutoff (0.143).
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(crYOLO26 and gempicker19) (Supplementary Table 2). This
illustrates that the performance of CASSPER is at par with other
tools and CASSPER has the ability to pick particles across variable
defocus conditions. CASPPER being a SS-based method, detects
MAVS filaments, stacked KLH particles as well but they are
excluded due to particle radius defined during extraction of
coordinates in the final step of prediction.

Cross model performance of a generalized CASSPER model.
Since CASSPER does not rely only on the morphological features,

it has the ability to recognize proteins belonging to novel protein
families with little information concerning their putative struc-
tures. In such cases, a generalized classifier or a pretrained model
is required which can be used to predict particles on such unseen
datasets. Hence, a generalized model was obtained by training
CASSPER on 180 micrographs from 13 different protein datasets
with a wide range of molecular weights (Supplementary Table 3).
This general model was then used to predict a set of 15 randomly
selected micrographs each of TcdA1 (EMPIAR 10089), 80S
ribosome (EMPIAR 10028), afTMEM16/nanodisc complex

Fig. 6 Evaluation of the performance of CASSPER cross model. Panels a–d show representative unlabeled micrograph (scale bar, 50 nm), semantically
segmented and labeled micrograph using CASSPER cross model and AUC curves for proteins; a TcdA1 (EMPIAR 10089), b Plasmodium falciparum 80S
ribosome bound to the anti-protozoan drug emetine (EMPIAR 10028), c afTMEM16/nanodisc complex (EMPIAR 10240), and d human Bact spliceosome
(EMPIAR 10160), respectively. The high values of AUC score indicate the generalization ability of CASSPER. The PR curve is obtained by comparing the
coordinates with manually picked ground truth labels.
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(EMPIAR 10240), and Human Spliceosomal Bact Complex
(EMPIAR 10160) that were not part of the training dataset. AUC
scores were calculated as described in the “Methods” section and
were 0.93, 0.92, 0.90, and 0.77 for EMPIAR 10089, EMPIAR
10028, EMPIAR 10240, and EMPIAR 10160, respectively.
Representative micrographs for these datasets predicted by this
general model and the precision–recall curves are shown in Fig. 6.
The plots, with more than 90% scores, ascertain that our cross
CASSPER model performs very efficiently in predicting the par-
ticles even for the unseen datasets, making it suitable for inte-
gration in any of the available cryo-EM data-processing pipelines.

The SNR dependence. One of the major reasons for reduced
efficiency of automated particle picking tools is low SNR,

therefore it is necessary to evaluate the performance of CASSPER
over a range of SNRs. Different levels (0.8 dB–17.6 dB) of Gaus-
sian and Poisson noise44,45 were introduced to the subset of 80S
ribosome micrographs (EMPIAR ID 10028) (Fig. 7). The gen-
eralized CASSPER model was used to pick particles on each of the
micrograph and it was observed that for Gaussian noise, the AUC
and average precision (AP) were 0.96 and 0.88, respectively, up to
a SNR of −9.5 dB (Fig. 7). The AUC was 0.93 up to a SNR of
−15 dB (Table 1). Similarly, for micrographs with Poisson noise,
performance of CASSPER was promising as the AUC and AP
were found to be 0.91 and 0.88 or better up to a SNR of −16 dB
(Fig. 7 and Table 1). These evaluations demonstrate robust per-
formance of CASSPER in detecting particles even with low con-
trast and low SNR.

Fig. 7 Analysis of the noise dependence on performance of CASSPER cross model. A representative EMPIAR 10028 (Plasmodium falciparum 80S
ribosome bound to the anti-protozoan drug emetine) micrograph (scale bar, 50 nm) added with different levels of Gaussian and Poisson noise is shown
along with the PR curve. The labels were predicted using CASSPER cross model.
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Computational efficiency and processing speed. A desktop
computer with NVIDIA GeForce GTX 1070 graphics card, 64 GB
RAM, and an Intel(R) Xeon (R) CPU was used to train CASSPER.
With 12 micrographs for training for TcdA1 and KLH, CASSPER
took 16 s for each epoch. The evaluation metrics are shown in
Fig. 3a. With the same computer configuration, 0.94 s and 0.53 s
were taken per micrograph to predict for a set of 97 TcdA1 and
82 KLH micrographs, respectively. This high processing speed
suggests that CASSPER could be easily integrated into automated
data-processing pipelines to pick particles while collecting data.
Detailed comparison of processing speed of CASSPER with other
tools has been summarized in Supplementary Table 4.

The minimum number of micrographs required for training
depends on the possible orientations, the shape of the protein,
and the relative coverage of the particles in the micrographs. The
relative coverage of KLH is 19%, and that of TcdA1 is 13%. Thus,
it is observed that training with at least 12 micrographs was
required for KLH, whereas training with 20 micrographs was
required for TcdA1 to get a prediction AUC above 0.9 (Fig. 8).

Discussion
In this study, we present a tool named CASSPER that can be used
for automated particle picking from cryo-EM images. Using a
powerful and robust SS deep learning framework, CASSPER
assigns unique colors to pixels corresponding to various objects in

micrographs such as ice, background, protein, and carbon edges,
thereby labeling them as different classes. To the best of our
knowledge, CASSPER is the first particle picking tool imple-
menting the Residual Network architecture together with FRRN
in pooling stream for efficient pixel-wise classification. Rather
than searching for morphological features only, it takes into
account the intrinsic differences in the scattering densities of
protein and non-protein entities. Unique color labels are assigned
to different classes such as protein, ice, and carbon based upon
these variations. If a machine can learn how each pixel, corre-
sponding to the protein particle, differs from non-protein entities,
the collection of connected pixels can locate the position and
shape of the protein. The particle coordinates are then extracted
and returned in the popular box and star format for easy inte-
gration with any data-processing software package such as
RELION. This method is only limited by the intrinsic differences
in protein scattering density that may cause fragmentation in the
label for a single protein structure. Since this can be corrected
visually, we allow the user to specify a size threshold based on the
labels predicted by CASSPER before it is used to count and pick
individual particles.

In earlier segmentation-based tools like PIXER27, the feature
map is segmented to get the protein-containing regions, and these
regions are then given to a trained classifier to determine the
center of particles. In CASSPER, the output of the SS network
itself is classified into different classes in the micrograph, and no
additional post-processing steps are needed for classification.

CASSPER offers a friendly GUI to allow the users to train the
classifier on specific datasets without any manual particle picking.
Apart from excellent performance of CASSPER model trained on
specific datasets, CASSPER cross model also performs very well
on unseen proteins. Efficiency of CASSPER as an automated
particle picking tool remains consistent over a wide range of SNR.
In addition, CASSPER cross model also performs promisingly on
some low SNR datasets available in the lab (Supplementary
Fig. 4), thus pointing at its robust performance.

Methods
Training of CASSPER
Training data preparation. SS is a potent tool to learn the relation between an
object and its surroundings. The semantically segmented labels required for
training the network are determined using the CASSPER labeling tool. The pro-
cessing steps of the tool are explained in Fig. 1. The raw micrograph image is
enhanced using a Gaussian filter followed by contrast enhancement. The combi-
nation of range and domain filtering with bilateral filters preserves the image edges
and removes the noise. In our implementation, the filter size is tuned using slide
bars (Fig. 9). Sample vitrification usually leads to variable ice thickness in EM grid
holes, which results in contrast differences in the micrographs and reduces the
efficiency of particle picking tools. To address this limitation, we employed
CLAHE31 on the images (Supplementary Fig. 5). The contrast limiting (CL) value
for CLAHE can be adjusted using the slide bar. Usually, low positive CL values are
suitable for most proteins. The final segmentation in the enhanced image is done in

Fig. 8 Effect of the number of micrographs used for training. Graph
showing the average precision values for coordinates of TcdA1 and KLH
which are predicted by models trained using different numbers of
micrographs. It is to be noted that the number varies for different datasets.
Training with at least 12 micrographs was required for KLH, whereas
training with 20 micrographs was required for TcdA1 to get a prediction
AUC score above 0.9.

Table 1 The AUC and average precision scores for EMPIAR 10028 (Plasmodium falciparum 80S ribosome bound to the anti-
protozoan drug emetine).

Gaussian noise
SNR (dB) 0.8 −5.5 −7.5 −9.5 −11 −13 −16 −17.66
SNR 1.202 0.2828 0.1778 0.1122 0.0794 0.0501 0.0251 0.0171
AUC 0.991 0.985 0.981 0.964 0.932 0.893 0.725 0.660
Avg. precision 0.988 0.957 0.935 0.887 0.695 0.496 0.534 0.465
Poisson noise
SNR (dB) 0.8 −5.5 −7.5 −9.5 −11 −13 −16 −17.66
SNR 1.202 0.2828 0.1778 0.1122 0.0794 0.0501 0.0251 0.0171
AUC 0.982 0.994 0.986 0.988 0.991 0.988 0.912 0.687
Avg. precision 0.980 0.990 0.983 0.983 0.988 0.984 0.881 0.495

The coordinates were predicted using CASSPER cross model. Different levels of Gaussian and Poisson noise were added to the micrograph and prediction. SNR values are shown in decibels as well.
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two steps: (a) intensity thresholding and (b) size filtering. Track bars are used to set
the threshold values for the intensity and the area of the particles. Based on these
inputs, the final labels are created. This is a one-time procedure performed on a
training subset, and the generated values can be used for prediction on all the
micrographs of the dataset under consideration, thereby making the labeling
procedure extremely fast and accurate. In addition to protein particles, by following
the same procedure, ice and carbon contaminants that have different scattering
density are also labeled with different colors.

Pre-processing. The grayscale cryo-EM images have very low SNR, so they have to
be enhanced before submitting to the SS algorithm. Also, the SS algorithm can
work on multichannel color images and in our implementation, the three-channel
input images are obtained by applying three different filters to the motion-
corrected micrographs. In the first channel, contrast enhancement and edge pre-
served noise removal of the input image is done by histogram equalization followed
by bilateral filtering. The second channel is prepared by median thresholding that
retains only pixels with intensities around a set threshold of the median pixel. In
effect, this channel enhances the contrast around the median pixel range of the
image. The third channel is generated by applying a Gaussian adaptive threshold to
the second channel. These enhanced images are then combined to form a three-
channel image. This image is then adaptively histogram equalized using CLAHE to
reduce the contrast difference effects and improve the efficiency of SS.

Test for precision–recall curve. Published particle annotations were used as ground
truth to evaluate the quality of the predicted labels. Manually annotated labels by
experts were used in case of datasets where particle annotations were unavailable.
However, in SS, each pixel is assigned a probability to be a member of one of the
classes. A cluster of pixels of the same kind that has more than some threshold
representation is labeled as the location of the particle. The PR curve is plotted by
varying this threshold, and the value corresponding to the maximum F1 score is
taken as the final threshold for prediction.

Statistics and reproducibility. Definition of the statistical terms used.
True positive: Number of pixels that are predicted to the correct class.
False positive: Number of pixels that are predicted to a wrong class.
Precision: Percentage of correct predictions.
Recall: Ratio of correct pixels in the predicted label to the ground truth.
Intersection over Union (IoU): Ratio of the number of common pixels in the

predicted and ground truth images to the union of the pixels in both images.
F1 score: Weighted average of precision and recall,

F1 Score ¼ 2 ´ precision ´ recallð Þ=ðprecisionþ recallÞ

is used as the parameter for evaluating the validation performance, and the model
with the highest F1 score is used for the prediction of the unseen proteins.

Average precision: AP summarizes PR curve as the weighted mean of precisions
achieved at each threshold value. The increase in recall from the previous threshold
is used as the weight AP= Σn(Rn − Rn−1)Pn, where Rn and Pn are the recall and
precision at the nth threshold46.

For evaluating the performance of the prediction using the cross model, we
employed F1, accuracy, and mean IoU scores to pixel-wise compare the predicted
labels with the labels made using our labeling tool. The weighted average of particle
and non-particle pixels are indicated in these scores.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The training datasets for this study, particle stacks, and 2D class stacks are available on
the GitHub page “CASSPER” along with a detailed practical manual for download under
the GitHub page https://github.com/airis4d/CASSPER.

Code availability
The source code is contained in the CASSPER software package which is available at
GitHub page (https://github.com/airis4d/CASSPER) and Zenodo (https://doi.org/
10.5281/zenodo.4289389). Its use is restricted by the end-user license agreement: Creative
Commons License.
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