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Abstract

Drug–drug interaction (DDI) prediction has received considerable attention from industry

and academia. Most existing methods predict DDIs from drug attributes or relationships with

neighbors, which does not guarantee that informative drug embeddings for prediction will

be obtained. To address this limitation, we propose a multitype drug interaction prediction

method based on the deep fusion of drug features and topological relationships, abbreviated

DM-DDI. The proposed method adopts a deep fusion strategy to combine drug features and

topologies to learn representative drug embeddings for DDI prediction. Specifically, a deep

neural network model is first used on the drug feature matrix to extract feature information,

while a graph convolutional network model is employed to capture structural information

from the adjacency matrix. Then, we adopt delivery operations that allow the two models to

exchange information between layers, as well as an attention mechanism for a weighted

fusion of the two learned embeddings before the output layer. Finally, the unified drug

embeddings for the downstream task are obtained. We conducted extensive experiments

on real-world datasets, the experimental results demonstrated that DM-DDI achieved more

accurate prediction results than state-of-the-art baselines. Furthermore, in two tasks that

are more similar to real-world scenarios, DM-DDI outperformed other prediction methods for

unknown drugs.

1. Introduction

When multiple drugs are taken together, unexpected drug–drug interactions (DDIs) may

occur, which may have either beneficial or detrimental effects on treatment. Beneficial DDIs

have a "1+1 > 2" synergistic effect and thus can be exploited as a safe and effective therapeutic

strategy for severe diseases, such as cancer and AIDS [1]. In contrast, harmful DDIs may

lead to serious adverse drug reactions and even threaten a patient’s life. Therefore, accurate

identification of potential DDIs is an urgent and practical task. Currently, the main DDI iden-

tification methods need long-term clinical trials in vivo and in vitro, which are costly and
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time-consuming. If DDI can be effectively identified in advance using artificial intelligence

(AI)-based computer approaches, the risk of medication coadministration will be reduced.

Many methods have been proposed to predict DDIs, and these methods can be mainly divided

into three categories.

Literature-based methods [2, 3] usually utilize natural language processing (NLP) tech-

niques to extract important relationship information between drugs from scientific literature,

electronic medical records, etc. The extracted text information is used as feature information

to predict potential DDIs. For example, Shen et al. [4] proposed the knowledge-oriented repre-

sentation learning method KMR, which collected drug pharmacology, drug classes, and drug

textual description feature to learn unified drug embeddings for DDI prediction. These meth-

ods achieved satisfactory performance, but there are still many challenges with DDI extraction,

such as the flexibility of the language, which is often not standardized.

Feature similarity-based methods [5, 6] assume that drugs with similar features may

have the same drug interactions. Therefore, in early studies, a variety of machine learning

approaches were proposed to build prediction models based on the similarity of drug-related

features, such as profile fingerprints [7], chemical structures [8], pharmacological phenotypes

[9], and RNA [10] for link prediction. Later, some efforts have been made to improve model

accuracy by incorporating multiple feature information [11–13]. For instance, Chen et al. [1]

integrated three types of feature information to predict the combination efficacy of drugs

using a least squares classifier based on Laplace constraints. Cheng et al. [14] proposed an

HNAI method, which combined four drug feature similarities and adopted four classifiers to

build a prediction model. Gottlieb et al. [12] presented an INDI computational framework,

which calculated seven feature similarities and used a logistic regression model for classifica-

tion. These methods reasonably achieve better results than an individual feature, but it is

challenging to collect multiple complete feature datasets. In addition, these methods fail to

consider the topological relationships between drugs.

Network structure-based methods [15, 16] aim to project the topological network between

drugs into low-dimensional space, and the learned embedding is treated as the potential drug

features. There are three common methods for constructing networks. Factorization methods

[17, 18] decompose the known DDI matrix into several low-dimensional matrices and recon-

struct them for prediction tasks. For example, Yu et al. [19] developed a DDINMF method

based on semi-nonnegative matrix factorization. Random walk methods [20, 21] perform ran-

dom wander in the network and obtain sequences of nodes that can preserve the original topo-

logical information of the network. For instance, Park et al. [22] applied a random walk with

a restart algorithm on the protein–protein network to identify DDIs. The neural network

method [23, 24] leverages the powerful nonlinear learning ability of a neural network to obtain

potential drug representations. For example, Zitnik et al. [16] constructed a multirelational

network and used a graph convolutional network (GCN) as an encoder to obtain drug embed-

dings for DDI prediction. The above three types of methods consider the topological relation-

ship between drugs and have attracted significant attention in bioinformatics network studies

[15]. Subsequently, some methods for optimizing network topology information for specific

DDI tasks have been developed [25–27]. For example, SkipGNN [25] aggregates the neighbor

information within two hops for DDI prediction.

The latest studies tend to incorporate multiple drug-related entities (e.g., targets, enzymes,

and pathways.) to construct heterogeneous drug graphs and use knowledge graph-based meth-

ods to predict DDIs. Many excellent methods have been developed, such as KGNN [28] and

KG2E-capsule [29] methods, which better capture structural and semantic information and

achieve satisfactory results. Comparisons with knowledge graph-based methods are not
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included in this study, as DM-DDI and other comparative methods are performed on homo-

geneous drug graphs.

Reviewing previous prediction methods, few works have focused on the deep fusion of drug

features and topological relations. In these papers, the two types of information are usually

combined relatively simply [30, 31], as in GCNs, where matrices containing the network struc-

ture and feature attributes are constructed and jointly input, and these features are propagated

along the network. However, when the number of layers becomes large, oversmoothing prob-

lems may be encountered. To address the above deficiencies, we propose a deep fusion strategy

to exchange and fuse the information between drug features and topological networks. Specifi-

cally, we set up two channels to process drug features and topology separately (capturing drug

features with AE and relational networks with GCN), and also designed delivery operations

between each layer to exchange information. Before the output layer, we use an attention

mechanism to fuse the information from the two channels and obtain the final drug embed-

ding, which is used for drug interaction prediction.

In addition, most traditional methods formulate DDI prediction as a binary classification

problem, using "0" or "1" to indicate the presence or absence of a reaction. These methods do

not describe whether the reactions are beneficial or harmful and are unable to provide useful

guidance for coadministration. Therefore, several methods that can predict DDI-related events

were proposed later [32–34]. For instance, Deng et al. [34] proposed DDIMDL, in which three

features (substructure, target, and enzyme) were calculated and fed into the constructed sub-

models for separate training. The results of the submodels were combined using a deep neural

network. Finally, 65 types of predicted labels were used as outputs, and each type of label corre-

sponded to rich interaction content with chemical and pharmacological descriptions. The spe-

cific prediction results promoted the understanding of the underlying mechanisms behind

adverse drug reactions. Inspired by this idea, our proposed model also predicts multiple types

of DDI events.

Our contributions are summarized as follows:

1. DM-DDI provides a novel deep fusion strategy to fuse drug features and topological rela-

tionships, which helps to obtain informative and predictive drug representations. The great

performance in comparison with multiple state-of-the-art methods validates the advantages

of DM-DDI.

2. We use an attention mechanism to achieve a weighted fusion of drug features and network

topology. Moreover, the distribution of attention scores can provide interpretability for the

drug prediction process.

3. DM-DDI can predict many types of DDI events and is not limited to binary prediction

results. The more detailed DDI prediction results can give us more insight into the coad-

ministration of different drugs.

2. Materials and methods

2.1 Dataset

The DDI dataset used in the experiment comes from DDIMDL [34], which contains 37,264

pairwise interactions between 572 drugs characterized by four features: chemical substructure,

target, enzyme, and pathway. Based on previous studies [34], we selected the three features

with the best effects (chemical substructure, target, and enzyme) for similarity calculation.

We introduce how to calculate the similarity of drugs using the chemical structure as an

example. PubChem defines 583 types of substructures (other feature descriptors are shown in
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Table 1), so each drug can be represented by a set of 583-bit feature descriptors with the value

"1" or "0" indicating the presence or absence of the corresponding substructure. Finally, we can

obtain a feature matrix of the chemical structures with the shape of (572, 583), and the same

operation is performed on the target and enzyme features. Since the obtained feature matrices

have high dimensionality and contain many "0" values, which may degrade the performance of

the model, we conduct the Jaccard similarity calculation for each feature matrix to mitigate the

impact, as shown in Eq (1).

J di; djð Þ ¼
jdi \ djj
jdi [ djj

¼
jdi \ djj

jdij þ jdjj � jdi \ djj
ð1Þ

Where di and dj represent bit vectors drugs i and j, respectively; |di \ dj| is the intersection of

di and dj, and |di \ dj| is the union. After the Jaccard similarity calculation, we can obtain

three 572 × 572 feature similarity matrices (Xs, Xt, Xe), which are concatenated as an initialized

feature matrix X. The feature vector of drug i is represented as shown in Eq (2), and the symbol

� denotes the concatenation operation.

Xdi ¼ Xi
s � Xi

t � Xi
e ð2Þ

2.2 Overview

The overall framework of DM-DDI is shown in Fig 1. The DDI matrix can be constructed as a

network G = {V, E}, where the vertices V denote the drugs involved and the edges E denote the

types of drug reactions. The three drug features (chemical substructure, target, and enzyme)

can be calculated by Eq (1) to obtain three similarity matrices (Xs, Xt, Xe), which are

concatenated as a unified drug feature matrix X. The model is composed of four main mod-

ules: the node feature extraction module uses a DNN model on the feature matrix to capture

drug feature information, and the learned feature embedding is represented by H; the

Table 1. DDIMDL dataset.

#Drugs #Interactions Drug features

#Substructure #Target #Enzyme #Pathway

572 37,264 583 1,162 202 957

https://doi.org/10.1371/journal.pone.0273764.t001

Fig 1. Overall framework of the proposed model. The changes in the node colors indicate the process of node

learning, and H(l) and Z(l) indicate the vector representations learned at the lth layers of the DNN model and GCN

model, respectively.

https://doi.org/10.1371/journal.pone.0273764.g001
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structural relationship extraction module employs the GCN model on the constructed drug

network to learn the structural information, and the learned structure embedding is repre-

sented by Z; the deep fusion module includes delivery operations between layers and an atten-

tion mechanism before the output layer, and the final representation E for all drugs can be

obtained after deep fusion; and model optimization module adopts four different combination

methods (Average, Hadamard, L1-norm, and Concatenation) to construct drug pair vectors

(DPs) and uses the reaction types between the drug pairs as labels. Finally, the DPs and label

are input into the cross-entropy loss function for optimization.

2.3 Node feature extraction module

To learn feature embeddings from raw data, we use the widely used autoencoder (AE). Because

the AE model not only captures the nonlinear relationship between input and output quickly

but also effectively reduces dimensionality. The AE model includes an encoder-decoder,

where the encoder is acted by the DNN model. We treat the embedding obtained after encod-

ing using Eq (3) as drug features. The details are as follows.

Assuming that the DNN model has l layers and that H(l) denotes the embedding learned at

layer l, we formulate H(l) as follows.

HðlÞ ¼ ;ðW lð Þ
e H

l� 1ð Þ þ bðlÞe Þ ð3Þ

where ; represents the ReLU activation function, and W(l) and b(l) are the weight matrix and

bias matrix at layer lth, respectively. H(o) denotes the original feature matrix X. The decoder

uses the inner product operation for decoding, and we train the model by minimizing the

reconstruction loss.

2.4 Topology relation extraction module

The AE model can learn important features of each layer, e.g., H(1), H(2) . . .. . .H(i), but it

ignores the structural relationships between drugs. Therefore, we adopt the GCN model to

extract the topological information between drugs. The structural embedding vector of layer

lth can be obtained from Eq (4).

ZðlÞ ¼ ; ~D � 1
2 ~A ~D � 1

2Z l� 1ð ÞW l� 1ð Þ

� �
ð4Þ

where ~A ¼ Aþ I and ~D ¼
P

j
~Aij:I is the identity diagonal matrix of the adjacent matrix A:~A

is a self-loop matrix, and ~D is the degree matrix. Z(l−1) is the embedding vector learned at layer

(l0 − 1)th, and W(l−1) is a trainable weight matrix that is used to map the information learned

from layer (l − 1)th to layer lth.

Considering that the AE model can obtain different levels of feature information, we inte-

grate two embeddings between each layer to obtain a more informative drug representation, as

shown in Eq (5).

~Z ðl� 1Þ ¼ 1 � αð ÞZ l� 1ð Þ þ αHðl� 1Þ ð5Þ

Where α is the fusion coefficient, which is used to control the fusion weight of the learned vec-

tors between the GCN model and the AE model. Then, ~Z ðl� 1Þ is fed into the next GCN model

to obtain the fused representation Z(l), as shown in Eq (6).

ZðlÞ ¼ ; ~D � 1
2 ~A ~D � 1

2~Z l� 1ð ÞW l� 1ð Þ

� �
ð6Þ

where ; represents the ReLU activation function. In this way, the feature embedding H(l−1) at
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layer (l−1)th can be propagated through the normalized adjacency matrix and the same is true

for the other layers.

2.5 Deep fusion

The key to the model is learning informative and high-quality drug embeddings, which help to

promote the model performance. The deep fusion strategy uses delivery operations to realize

intralayer and interlayer fusion and utilizes an attention mechanism to complete the final

fusion. Eventually, the obtained drug embeddings can simultaneously retain the node features

and topological relationships of different layers.

2.5.1 Delivery operation. (1) Intralayer fusion. Between each layer, the drug feature

embedding learned by the AE model is transferred to the GCN model with a certain weight α
(refer to Eq (5)). Thus, ~Z ðl� 1Þ can accommodate two different types of information, i.e., drug

features and the interaction between drugs.

(2) Interlayer fusion. Generally, the shallow layer (near the input) extracts low-level features,

which contain more detailed information but more noise, and the deep layer (near the output)

tends to extract high-level features with stronger semantic information but poorer detail per-

ception. Therefore, effectively fusing information from different layers and overcoming the

oversmoothing problem that GCN models may suffer is crucial to improving the overall

model performance.

To the best of our knowledge, oversmoothing is mainly due to the overemphasis on the

relationship with neighbor nodes while ignoring the node features during aggregation [30].

Kipf et al. [30] proposed residual connectivity to transfer the node feature information learned

in the upper layer of the model to the next convolutional layer. Since then, a series of improved

models have been proposed [35, 36]. For example, He et al. [36] proposed a model called

LightGCN, which considers the representation of different GCN layers. In other words, this

model mitigates the oversmoothing problem by integrating the granularity information of dif-

ferent layers. Inspired by this idea, we design Eqs (5) and (6) to cope with this problem. Specif-

ically, we deliver the node feature information extracted from layer (l − 1)th of the AE model to

the GCN model for weight fusion. Then, the learned vector is used as feature vectors in the

next iteration of the convolutional network to achieve interlayer fusion. Thus, the oversmooth-

ing problem can be relieved by amplifying the node feature information. Bo et al. [37] adopted

similar delivery operations in exchanging feature and topological information and demon-

strated that such operations not only integrate structural information but also solve the GCN

model’s oversmoothing problem.

2.5.2 Attention mechanism. Considering the different importance of the two learned

embeddings for the prediction task, it is necessary to adopt an attention mechanism to assign

learnable weights to fuse.

Given Z(l) and H(l, which are obtained from the GCN model and AE model at the last layer

l, respectively, the attention mechanism is calculated as shown in Eq (7).

αz;αhð Þ ¼ attðZ;HÞ ð7Þ

where αZ and αh denote the attention coefficients of embedding Z and H, respectively. The

detailed calculation process is as follows. Take node i as an example. Node i in embedding vec-

tor Z can be represented as Zi. We first apply a nonlinear transformation and multiply by the

shared attention vector q to obtain its attention value wi
z, as shown in Eq (8).

wi
z ¼ qT � tanhðw � ðZiÞ

T
þ bÞ ð8Þ

where w is the weight matrix, b is a bias vector, and q is a shared attention vector. We can also
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obtain the attention value wi
h of the drug feature embedding. Then, we use the SoftMax func-

tion to regularize the attention value and obtain its attention coefficient, as shown in Eq (9).

αi
Z ¼ softmax wi

z

� �
¼

expðwi
zÞ

exp wi
z

� �
þ expðwi

hÞ
ð9Þ

Similarly, aih ¼ softmax wi
h

� �
. For n nodes, the weight coefficients αz = [αz] and αh = [αh],

which are denoted αz = diag(αz) and αh = diag(αh), respectively. Finally, the final drug embed-

ding representations E are obtained as shown in Eq (10).

E ¼ αZ � Z þ αh �H ð10Þ

2.6 Model optimization

After deep fusion, a 572 × 65 embedding vector E of all drugs are obtained, where row i and

row j represent two drug vectors, denoted Ф(di) and Ф(dj), respectively. We provide four dif-

ferent combinations of methods to construct them into drug pair vectors (DPs), as shown in

Table 2.

The symbol
J

indicates the Hadamard operation, while the symbol
L

indicates the con-

catenation operation. Note that the dimensionality of DPs changes only when the concatena-

tion method is selected.

Suppose that the training set is L and that the set of label categories is c. Given a drug pair i,
i 2 L, we can calculate the cross-entropy loss by using Eq (11).

L ¼
X

l2L

Xc

i¼1

Y lilnŶ li ð11Þ

The true label yci ; c 2 C indicates that drug pair i belongs to class c. The predicted label ŷc
i

denotes the probability that the predicted result belongs to class c. The prediction result for n

drug pairs is denoted Ŷ ¼ ŷc
i

� �
2 Rn�C

, and the true representation is Y ¼ yi
c

� �
2 Rn�C

.

3. Experimental results and discussion

3.1 Baselines

There are two types of comparison methods: feature-based methods and structure-based

methods. For the feature-based methods, only the feature matrix is input. We compare

DM-DDI with popular multiple reaction prediction models (DeepDDI, DDIMDL) as well as

classical classifiers (LR, RF, and DNN). For structure-based methods, only the adjacency

matrix is input. Representative embedding learning methods (LINE, HOPE, Node2Vec, and

SDNE), as well as DPDDI and SkipGNN, are selected. Note that for the representative method,

Table 2. Four different combinations of drug pairs.

Combination method Dimensionality Description

Average d F di; djð Þ ¼ 1
2 F dið Þ þ F djð Þ½ �

Hadamard d F(di, dj) = F(di)
J

F(dj)
L1-norm d F(di, dj) = |F(di)

J
F(dj)|

Concatenation 2d F(di, dj) = F(di)
J

F(dj)

https://doi.org/10.1371/journal.pone.0273764.t002
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we could reimplement BioNEV [15] to save the learned embedding for downstream

experiments.

• Cascade drug features

We represent drug‒drug pairs as feature vectors and use the interaction types as labels.

Then, they are fed into the classifier for training and prediction. These methods are tradi-

tional supervised learning methods, which we instantiate with logistic regression (LR) [38]

and random forest (RF) [39] classifiers.

• DNN

Deep neural networks (DNNs) and Lee’s [33] ideas are similar. They both directly concate-

nate three feature similarity matrices and feed them to a DNN classifier. The difference is

that the DNN in this paper does not use autoencoders to reduce the dimension but directly

combines the feature matrix as the input features instead.

• DeepDDI

DeepDDI [32] selects a chemical structure feature matrix, which is dimensioned to 100 by

principal component analysis (PCA), as a drug feature. Then, it is fed into a deep learning

model for DDI prediction. In this work, we changed the output of the original implementa-

tion from the 86th class to the 65th class.

• DDIMDL

DDIMDL [34] calculates the similarity of three drug-related features (substructure, target,

enzyme). When combined directly, the different features may suffer from interference with

each other. Thus three drug-related feature matrices are separately fed into three constructed

submodels for training. Then, the DNN model is built for drug reaction prediction.

• HOPE

HOPE [40] is a factorization method in which the model uses generalized singular value

decomposition to decompose the adjacency matrix to maintain higher-order proximity.

• Node2Vec

The graph embedding learned by node2vec [41] can represent both homogeneous similarity

(the more shared neighbors there are, the greater the similarity) and structural similarity

(the more similar the role that is played, the greater the similarity). The model adopts a

biased random walk strategy to obtain neighbor nodes, and the hyperparameters are set to p
= q = 1; therefore, the model can contain two different similarities.

• LINE

LINE [42] focuses on learning embeddings based on distributional similarity. First-order

nearest neighbors and second-order nearest s are trained separately, and then the two vectors

are combined by the inner product as the vector representation.

• SDNE

SDNE [43] utilizes deep AE models to maintain first- and second-order network proximity.

This model uses highly nonlinear functions to obtain embeddings that retain local and global

structural information.

• DPDDI

The DPDDI model [26] uses graph convolutional networks (GCNs) to extract low-dimen-

sional structural embeddings from the drug relationship network and then predicts the DDI

using deep neural network (DNN) models.
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• SkipGNN

SkipGNN [25] receives messages from two-hop neighbors and immediate neighbors in the

interaction network; thus, it captures higher-order topology information for DDI

prediction.

3.2 Metric evaluation

To comprehensively evaluate the performance of DM-DDI, we use the accuracy (ACC), area

under the precision-recall curve (AUPR), area under the receiver operating characteristic

(ROC) curve (AUC), F1, precision (Pre), and recall as the evaluation metrics. We use micro

metrics for AUPR and AUC and macro metrics for the other metrics (Pre_macro, F1_macro,

Recall_macro). Pre_micro, Recall_micro, and F1_micro scores are the same as ACC scores in

the multiclass task. Due to the imbalanced distribution of the DDI dataset, we focus on the

AUPR_micro score, which provides a more accurate assessment of the model’s performance.

3.3 Experimental setup

The DM-DDI model utilizes multi-layer fusion with different numbers of nodes at different lay-

ers. We first discuss the effect of the number of layers on the experiment. In this paper, we con-

sider five layers, and the number of nodes per layer is empirically set to {512, 1024, 2000, 256,

65}. We fix the number of neurons in the last hidden layer to 65, as there are 65 types of DDI

events. Then, the number of layers is gradually increased to see how the number of layers affects

the experimental results. The model learning rate hyperparameter is set to 0.003, and the num-

ber of epochs is set to 1,000, as the loss curve does not change when the number of epochs is

close to 1,000. We apply fivefold cross-validation and randomly split all DDI pairs into five sub-

sets in our experiments. We train models based on DDIs in the training set and then make pre-

dictions for DDIs in the test set. The evaluation score is the average of the output of the five

rounds. We select the Adam optimizer to optimize DM-DDI and use the early-stopping strat-

egy to prevent overfitting, which automatically stops the training if no improvement is observed

after 20 epochs. The parameters of the other comparative models follow the original paper.

3.4 Experimental results

3.4.1 Comparison with state-of-the-art methods. To make a fair comparison, we uni-

formly saved the results learned by the model as embedding vectors and then classified them

with a DNN classifier. All results are evaluated by 10 runs of validations under the same condi-

tions. The results are shown in Table 3, and the best results are marked in bold.

Table 3 shows that the DM-DDI model outperforms the other comparison methods, espe-

cially in the F1_macro, Pre_macro, and Recall_macro metrics (the highest F1_macro in the

comparison method is 0.780, while the score of F1_macro in DM-DDI model is 0.852). The

result demonstrates the great performance of the DM-DDI, which may benefit from incorpo-

rating different levels of feature and structural information. An interesting phenomenon is

observed: the Node2Vec model works best among the structure-based methods. A possible

reason is that it incorporates two types of similarities (homogeneous and structural similari-

ties) and therefore can better represent the topological relationships of neighbors. In contrast,

the DPDDI and SDNE models seem to underperform, which we speculate may be caused by

data imbalance. Because the imbalanced dataset has a great impact on the GCN convolution

effect [44], the encoders of the DPDDI and SDNE models exactly use the GCN model. Note

that the DM-DDI model also captures topology information by using the GCN module.
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3.4.2 Ablation study. To explore the effectiveness of each model component, we set the

following ablation variants (shown in Table 4) for ablation experiments.

• DM-DDIw/o AE: This variant has no AE module and sets the fusion coefficient alpha = 0.

The DM-DDI model degrades to a multilayer GCN model; thus, the model captures topolog-

ical information.

• DM-DDIw/o GCN: This variant has no GCN module, and the embedded representation

obtained by the AE model is directly used for end-to-end training. Only the attribute feature

information of the drugs is used.

• DM-DDIw/o Att: This variant has no attention mechanism. The obtained embeddings after

GCN fusion are summed with the embedding learned by AE as the final drug embedding

vector. This ablation variant is used to explore the impact of the attention mechanism.

• DM-DDIw/o Delivery: This variant has no delivery operation for cross-fusion. Two embed-

dings from the GCN and AE modules are input into the attention mechanism to obtain the

fused embedding vector. This variant is designed to verify the importance of the delivery

operation.

The results from the bar chart in Fig 2 show that DM-DDI exceeds all ablation variants in

all metrics, demonstrating the validity of each module of the model. Specifically, the ablation

variant DM-DDIw/o AE significantly decreases in numerous metrics compared to the

DM-DDI model, indicating that drug features contribute significantly to the prediction of

multiple drug reactions.

3.4.3 Multi-class DDI dataset for link prediction. To verify the speculation in Section

3.4.1, we counted the reaction events for all classes and the results are shown in Fig 3. The

Table 3. Performance of our model against competitive approaches.

Method ACC AUPR_micro AUC_micro F1_macro Pre_macro Recall_macro

LR 0.721 0.785 0.993 0.306 0.504 0.254

RF 0.772 0.846 0.995 0.481 0.713 0.408

DNN 0.880 0.913 0.996 0.722 0.805 0.703

DeepDDI 0.837 0.890 0.996 0.685 0.728 0.661

DDIMDL 0.885 0.921 0.998 0.759 0.847 0.718

LINE 0.883 0.949 0.999 0.750 0.774 0.746

HOPE 0.901 0.952 0.999 0.762 0.794 0.749

Node2Vec 0.903 0.962 0.999 0.780 0.806 0.770

SDNE 0.777 0.848 0.995 0.466 0.579 0.441

DPDDI 0.784 0.860 0.996 0.491 0.587 0.454

SkipGNN 0.758 0.863 0.855 0.755 0.773 0.759

DM-DDI 0.908 0.964 0.999 0.852 0.879 0.839

https://doi.org/10.1371/journal.pone.0273764.t003

Table 4. Ablation variants settings.

_AE _GCN _Delivery _Att

DM-DDI w/o AE ✓

DM-DDI w/o GCN ✓

DM-DDI w/o Att ✓ ✓ ✓

DM-DDI w/o Delivery ✓ ✓ ✓

https://doi.org/10.1371/journal.pone.0273764.t004
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results show that the distribution is unbalanced over 65 classes: the number of DDI events

decreases significantly as the number of classes increases, with only a few numbers in the final

class. To explore more deeply, we remove classes with few labels at the end and extract the first

30 classes of the DDI dataset (termed Class_30), and also select the first 10 classes of the DDI

dataset (termed Class_10) with the popular multitype DDI prediction models (DeepDDI,

DPDDI, and DDIMDL) for link prediction experiments. The experimental results are shown

in Table 5.

As seen from the experimental results in Table 5, when there are fewer classes, all models

obtain higher scores on multiple metrics. This demonstrates that the performance of the mod-

els is affected by the data balance. The proposed model exhibits optimal performance in all

cases, which shows that DM-DDI has a stable network structure. In addition, DPDDI experi-

ences the most significant increase, with the value of F1_macro increasing by 25.6% from

0.491 in the Class_65 dataset to 0.747 in the Class_10 dataset. The observed increase could be

attributed to a better convolution effect of the GCN encoder in DPDDI. Moreover, we output

the distribution of attention values on different classes as auxiliary information. The results are

shown in Fig 4. As the DDI dataset class decreases, the weight of attention values for the GCN

embedding continues to increase and even exceeds that of the AE. This suggests that the ability

of the GCN model to capture network topology information increases, leading to a higher con-

tribution to the DDI prediction. These two findings further support the experimental

Fig 2. Comparison of the ablation experiment results.

https://doi.org/10.1371/journal.pone.0273764.g002

Fig 3. Statistical analysis of the DDI class distribution.

https://doi.org/10.1371/journal.pone.0273764.g003
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speculation in Section 3.4.1. According to the above observations, we can infer that the GCN

component can work better when the classes become more balanced and DM-DDI might

achieve better results.

3.4.4 Multi-task analysis. Usually, we are more concerned with the ability to predict

unknown drugs, so we design tasks A and B that are closer to real cases for the experiment.

Task A aims to predict the reaction between known drugs and unknown drugs, and Task B

predicts the reaction between two new drugs. The two tasks differ from previous experiments,

which predict unobserved reactions among known drugs, while this section predicts reactions

with new drugs. Another difference is that the dataset in this section is divided based on drugs

rather than drug pairs, and we randomly divide 572 drugs into 5 subsets and take 20% (115

drugs) for testing to simulate drugs without known interactions. In Task A, DM-DDI is per-

formed on the training drugs and tested between the training drugs and testing drugs. In Task

B, model training is also performed on the training drugs, whereas the predictions are all taken

Table 5. Comparison of the link prediction results obtained over multiple classes.

Method ACC AUPR_micro AUC_micro F1_macro Pre_macro Recall_macro

Class_65 DeepDDI 0.837 0.890 0.996 0.685 0.728 0.661

DPDDI 0.784 0.860 0.996 0.491 0.587 0.454

DDIMDL 0.885 0.921 0.998 0.759 0.847 0.718

DM-DDI 0.906 0.964 0.999 0.852 0.879 0.839

Class_30 DeepDDI 0.825 0.901 0.994 0.758 0.785 0.738

DPDDI 0.789 0.867 0.992 0.610 0.657 0.583

DDIMDL 0.889 0.939 0.996 0.856 0.888 0.835

DM-DDI 0.912 0.970 0.999 0.910 0.908 0.916

Class_10 DeepDDI 0.845 0.920 0.988 0.819 0.830 0.808

DPDDI 0.812 0.890 0.983 0.747 0.803 0.713

DDIMDL 0.897 0.949 0.992 0.876 0.891 0.863

DM-DDI 0.923 0.978 0.999 0.926 0.912 0.923

https://doi.org/10.1371/journal.pone.0273764.t005

Fig 4. Distributions of the attention values over different classes. (A) Attention distribution for Class_65. (B) Attention distribution for Class_30. (C)

Attention distribution for Class_10.

https://doi.org/10.1371/journal.pone.0273764.g004
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on the testing drugs, which is equal to predicting two completely new drugs. The experimental

results are shown in Fig 5.

The results from the two tasks show that the performance of all models drops obviously

when predicting new drugs. However, the proposed model significantly outperforms other

competitive models in all metrics. For example, in Fig 5B, the DM-DDI model outperforms

the second-best DDIMDL model in six metrics, namely, ACC, AUPR_micro, AUC_micro,

F1_macro, Pre_macro, and Recall_macro, by 11.9%, 11.1%, and 3.6%, 7%, 7.6%, and 10.5%,

respectively, which demonstrates the effectiveness of the model for new drug predictions. The

advantage of prediction may benefit from the mutual reinforcement of drug features and topo-

logical information, and DM-DDI can make predictions from drug features even without

neighbors.

3.4.5 Sensitivity analysis. In our work, three essential parameters are included: the coeffi-

cient α, the number of fusion layers, and the drug pair combination method. The set of α is

given as {0.1, 0.3, 0.5, 0.7, 0.9}, the number of fusion layers varies from 1 to 5 layers, and the

combination methods include the Average, Hadamard, L1-norm, and Concatenation meth-

ods. We conduct experiments to analyze the influences of parameters according to the predic-

tion performances and fix the specific parameter with the best results. The experimental

results are given in Fig 6.

As shown in Fig 6A, when the number of GCN layers is 3, the model achieves the best

results. This outcome may be attributed to the appropriate capture of topological relations and

Fig 5. Experimental results in different tasks. (A) Task A. (B) Task B.

https://doi.org/10.1371/journal.pone.0273764.g005
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Fig 6. Results of ablation experiments. (A) Effect of the number of GCN layers. (B) Effects of drug combination

methods. (C) Effect of the fusion coefficient.

https://doi.org/10.1371/journal.pone.0273764.g006
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drug feature information. Too few layers cannot capture sufficient information, while too

many layers introduce noise and degrade the model performance. Therefore, we fix the num-

ber of layers to 3, and the number of hidden layer nodes is set to {2000, 256, 65}. In Fig 6B, we

can see that when utilizing the average method, the model performs best overall, which means

that the average combination approach can maintain the meanings of drug pairs well. The

results in Fig 6C show that the best result is obtained when the fusion coefficient α is set to 0.5,

namely, when the GCN embedding is equally fused with the AE embedding.

3.4.6 Case study. A desirable DDI prediction model should not only pursue good predic-

tion accuracy but also pursue the ability to accurately predict the types of drug interactions

[45]. Therefore, this experiment conducts 65 types of DDI event prediction among 572 drugs

and 37,264 drug pairs with known interactions. We predict the remaining 289,920 unknown

drug reactions to verify the model’s ability. We focus on the top 10 classes of DDI events with

the highest frequencies and output DDI events with the highest prediction scores. We find evi-

dence in DrugBank [46] for verification, and the experimental results are shown in Table 6.

Out of the top ten predicted DDI events with the highest scores, eight reactions are confirmed.

For example, the true drug interaction type that occurs between abiraterone and fentanyl is

“1”, and the predicted probability that falls into type “1” is 0.93. Therefore, the prediction is

correct, which means that the metabolism of fentanyl can be decreased when combined with

abiraterone.

Furthermore, we counted the top 100 drug pairs with the highest prediction scores, and the

results are displayed in Fig 7. The size of the drug node correlates with the number of reac-

tions; the red edge indicates that the interaction is confirmed, and the grey edge indicates that

no evidence is found. Sixty-nine percent of the reactions in the graph are validated. The case

study results show that the proposed model can predict the unknown DDI events well.

4. Conclusion

We propose a novel drug interaction prediction model (DM-DDI), which deeply fuses drug

features with topological information of neighbors through delivery operation and attention

mechanisms. Finally, the information-rich drug embedding vectors are obtained by end-to-

end training. The experimental results showed that DM-DDI outperformed numerous com-

petitive methods, even on unbalanced 65 class DDI datasets. The prediction accuracy can

reach 0.908, and the AUPR can reach 0.964. The case study’s prediction results are well-

Table 6. Case study prediction results.

Drug1 Drug2 Score Label Evidence Description

Abiraterone Fentanyl 0.943 1 Drugbank The metabolism of fentanyl can be decreased when combined with abiraterone.

Acetylcholine Cinchocaine 0.970 2 Drugbank The risk or severity of adverse effects can be increased when cinchocaine is combined with acetylcholine.

Naproxen Clofarabine 0.949 3 Drugbank Clofarabine may decrease the excretion rate of naloxone which could result in a higher serum level.

Apalutamide Betrixaban 0.939 4 Drugbank The serum concentration of betrixaban can be decreased when it is combined with apalutamide.

Acetohexamide Memantine 0.969 5 Drugbank The excretion of memantine can be decreased when combined with acetazolamide.

Hydroxyzine Cisplatin 0.975 6 N.A. The metabolism of hydrocodone can be decreased when combined with cisplatin.

Bortezomib Hydroxyzine 0.889 7 Drugbank The risk or severity of QTc prolongation can be increased when bortezomib is combined with

hydroxyzine.

Alimemazine Eprosartan 0.872 8 Drugbank Eprosartan may increase the hypotensive activities of amifostine.

Amobarbital Fenofibrate 0.834 9 Drugbank The metabolism of fenofibrate can be increased when combined with amobarbital.

Droxidopa Loxoprofen 0.920 10 N.A. The risk or severity of hypertension can be increased when droxidopa is combined with loxoprofen.

N.A.: evidence not available.

https://doi.org/10.1371/journal.pone.0273764.t006
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readable and more accurate, which provides strong support for drug interaction prediction.

However, our model still has the following limitations: only a single drug–drug relationship

was used to capture topological information. In the future, we will collect multitype drug-

related entities (e.g., drugs, proteins, diseases, and side effects) and construct multi-relation-

ship networks to characterize the structural embedding of drugs. In addition, we only utilized

basic model components to learn feature representations, such as the GCN model used to cap-

ture topological information. Later, we can replace them with more advanced models to better

address the imbalance problem.
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