
Interrogating Patient-level Genomics and Mouse Phenomics towards 
Understanding Cytokines in Colorectal Cancer Metastasis  

 
Xiaoshu Cai, BS1, Yang Chen, PhD2, Chunlei Zheng, PhD2, Rong Xu, PhD2 

1Department of Electrical Engineering and Computer Science, School of Engineering, Case 
Western Reserve University, Cleveland, Ohio, USA; 2Department of Epidemiology & 

Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA 
 

Abstract  
Background: Colorectal cancer is the second leading cancer-related death worldwide and a majority of patients die 
from metastasis. Chronic intestinal inflammation plays an important role in tumor progression of colorectal cancer. 
However, few study works on systematically predicting colorectal cancer metastasis using inflammatory cytokine 
genes. 
Results: We developed a supervised machine learning approach to predict colorectal cancer tumor progression using 
patient level genomic features. To better understand the role of cytokines, we integrated the metastatic-related genes 
from mouse phenotypic data. In addition, pathway analysis and network visualization were also applied to top 
significant genes ranked by feature weights of the final prediction model. The combined model of cytokines and mouse 
phenotypes achieved a predictive accuracy of 75.54%, higher than the model based on mouse phenotypes 
independently (70.42%, p-value<0.05). In additional, the combined model outperformed the model based on the 
existing metastatic-related epithelial-to-mesenchymal transition (EMT) genes (75.54% vs. 71.61%, p-value<0.05). 
We also observed that the most important cytokine gene features of the our model interact with the cancer driver 
genes and are highly associated with the colorectal cancer metastasis signaling pathway.   
Conclusion: We developed a combined model using both cytokine and mouse phenotype information to predict 
colorectal cancer metastasis. The results suggested that the inflammatory cytokines increase the power of predicting 
metastasis. We also systematically demonstrated the critical role of cytokines in progression of colorectal tumor.   
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Background   
Metastasis is responsible for the majority of colorectal cancer mortality, and 90% patients with metastasis die within 
5 years [1, 2]. However, the pathogenesis of metastasis remains poorly understood. Metastatic dissemination contains 
two phases: physical translocation and colonization at a secondary site [3, 4, 5]. The initial steps in the early phase are 
hard to detect and metastasis may lurk for years in most cases. This has become a complex situation for patients and 
can be hardly saved by surgeries [6]. Understanding the underlying mechanisms of metastatic process is an essential 
way to detect colorectal cancer metastasis and develop effective therapeutic strategies accordingly. 

 Inflammatory cytokines play a critical but disparate role in the colonization phase of colorectal cancer metastasis [7]. 
On the one hand, cytokines act as tumor antigen and curtail cancer progression [8]. On the other hand, cytokines 
conduct non-specific inflammatory activities can also promote cancer proliferation, invasion and metastasis [9]. 
Specifically, since the gut contains the highest density of microorganisms and has a well-developed immune system, 
chronic intestinal inflammation is a risk factor for colorectal cancer, showing a great potential for tumor progression 
[10, 11]. Recent studies identified mechanism of several critical inflammatory cytokine genes in CRC development 
[12-15], and emphasized the role of functional groupings of cytokines within complex networks [16]. However, few 
study works on systematic approach for inflammatory cytokine genes to predict CRC metastasis. Here, we investigated 
the combinational role of cytokines through combining patient genomics in The Cancer Genome Atlas (TCGA) and 
mouse phenomics data from Mouse Genome Informatics (MGI).       

TCGA is a massive, comprehensive database that provides genomic data for over 20 types of cancers and clinical data 
for a large group of patients [17]. Gene expression profiling is a major component of data collected by TCGA. The 
data in TCGA is large-scale and well-organized, overcoming the limited sample size and incomplete available data of 
other relevant studies. Recently, existing systematic approaches have used the gene expression data and found high 
correlation between tumor prognostic and the epithelial-to-mesenchymal transition (EMT) genes [18-21]. The weak 
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signal in gene expression of cytokines make it challenging to predict CRC metastasis using cytokines independently. 
Generally, the pro-tumorigenic and anti-tumorigenic effects of cytokines are influenced by crosstalk with interacted 
genes in the complex cytokine milieu [7]. To help understand the role of cytokines, we addressed the problem by 
integrating external data. Specifically, the mouse model provides insights of gene functions through accessing to 
conserved processes such as metabolism, which is not available in human. Mouse Genome Informatics (MGI) [22], a 
recent widely-used mouse phenomics database, provides mouse phenotypic descriptions and ontology after systematic 
gene knockouts. In the past, these gene-phenotype associations in mice have been used for discovering new disease 
genes [23] and new drug effects [24]. In our previous study, we also leveraged both disease genetics and mouse 
phenotypes in MGI for drug repositioning [25-27]. In this study, combining mouse model phenotypic data and patient-
level genomic data can facilitate detection of predictive gene panel and identify the power of cytokines.  

In our study, we leveraged patient level data from TCGA and mouse phenotype level data from MGI to understand 
how cytokines mediated in colorectal cancer metastasis. We explored the combinational role of inflammatory cytokine 
genes through supervised machine learning. We integrated cytokines with the genes involving cancer metastasis and 
immune response in mice and built prediction models. The improved predictive power of the combination, compared 
with metastatic-related immune genes from MGI independently, shows a potential power of inflammatory cytokines 
in predicting CRC metastasis. In addition, our classification model outperformed the model of existing metastatic-
related EMT genes. To further investigate the significance of cytokines in predicting CRC metastasis, network 
visualization and pathway analysis were also applied to top significant features in classification model.  

Data and methods 
Our experiments comprised of two steps: (1) combining cytokines and the mouse phenotype-gene association data to 
build classification models to predict colorectal cancer metastasis status; (2) understanding cytokines through 
visualizing top features of the final prediction model in interaction network and analyzing pathways of top features.      

 
Figure 1. The overall workflow of our study 
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A. Extract public available colorectal cancer data (TCGA project) 

The Cancer Genome Atlas (TCGA) provides high-throughput genome analysis for cancers. We exploited gene 
expression level data, as well as clinical meta-data from TCGA. Gene expression profiles generated using RNA-Seq 
of colorectal cancer were used, downloaded from TCGA [28] on the version of November 16th 2015. RNA-Seq 
expression dataset contains 328 patient samples on platform IlluminaHiSeq. Among them, with the knowledge of 
clinical features, we obtained 190 metastatic patients and 39 non-metastatic patients. 

B. Build metastasis prediction model based on mouse phenotype data and cytokines  

We collected available cytokine genes from The Immunology Database and Analysis Portal (ImmPort) from Cytokine 
Registry File on the version of November 2015. ImmPort [29] is an archival repository for clinical and molecular data 
with approximately 100 datasets now publicly available. Immune-related genes were downloaded from resource of 
Cytokine Registry, which is a master list of cytokines and receptors. For our purpose, we extracted all cytokine genes 
(without receptors, 145 in total). 

To strengthen the predictive power of a gene panel related to cytokine that can classify colorectal cancer metastasis 
status, we integrated data from external data source Mouse Genome Informatics (MGI) [30] (obtained on Apr. 13th, 
2016). MGI is a database that provides genetic, genomic and biological data from laboratory mouse. We used 
phenotype level data to find the genes with phenotype of metastasis-related in mouse model after being mutated. From 
literatures, in the physical phase of metastasis, process of angiogenesis provides a blood supply that support the 
metabolic needs [4, 6]. As a result, under the mammalian ontology, we considered the genes under categories: altered 
metastatic potential and abnormal angiogenesis, most related to metastasis in mouse model. We also downloaded 
mouse gene to human gene mapping file from MGI. After mapping, we obtained 122 altered metastatic potential genes 
and 244 abnormal angiogenesis genes. 

In order to get immune response genes of all angiogenesis and metastasis genes from MGI, we used GO-term 
enrichment analysis on the Genome Ontology website [31]. GO-term enrichment analysis showed that “immune 
system process”, associated with 122 genes, and “immune response”, associated with 45 genes. In total, 146 genes, 
which is the union of “immune system process” and “immune response”, have the mouse phenotype of metastasis and 
are related to immune response. Furthermore, we combined cytokines with their interacted metastatic-related immune 
MGI genes as the candidate gene panel.  

Existing systematic approaches have found high correlation between tumor progression and the epithelial-to-
mesenchymal transition (EMT) genes. Accordingly, we obtained a total of 310 EMT genes from the study [19], which 
is a positive control in our evaluation. We compared our candidate gene panel with EMT genes in classifying 
metastasis. 

We constructed the combination set of cytokines and metastatic-related immune genes from MGI and the model based 
on this set is our final prediction model. The other gene sets are evaluated for comparison. For all these five gene sets 
in Table 1, we used them as independent evaluation feature sets and performed classification using 10-fold cross-
validation, respectively (we performed cross-validation due to the small sample size). The fold-change values of gene 
expression level data in TCGA were counted as input of classification.  Since the RNA-Seq data for metastasis is 
unbalanced, we balanced the data using function ROSE in R. We performed the 10-fold cross-validation classifier for 
evaluation sets using SVM with polynomial kernel in WEKA [32]. For each set of genes, we randomly selected genes 
in the same size from more than 20000 genes, using the fold-change value in TCGA as input as well. We repeated the 
randomization process for 100 times and obtained statistical p-values using T-test.  

Table 1. The number of genes in feature sets. Cytokines are from Immport Cytokine Registry list. Metastatic-related immune 
genes are from MGI. EMT genes are from a state-of-art related study [19].     

Feature set Cytokines Metastatic-related 
genes in MGI 

Metastatic-related 
immune genes in 
MGI 

Cytokines and their 
interacted 
metastatic-related 
immune genes in 
MGI and  

EMT 

Number of 
features  

119 261 146 201 301 
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Figure 2. The workflow of classification analysis. The combination of cytokines and metastatic-related immune genes from MGI 

(input 2) is constructing the final prediction model. The other four models are evaluated as comparisons. 

C. Understand cytokine functions in colorectal cancer metastasis  

a. Network visualization  

Network analysis provide a powerful tool to understand disease genetic mechanism [33-38]. To further discover the 
mechanism of cytokine genes in CRC metastasis, we explored the relationship between top 50 features selected by 
our final classification model and colorectal cancer driver genes through gene interaction network. We ranked the 
features by weight in our model, extracted the top 50 gene features, and mapped them into the protein interaction 
network. Then the full protein interaction data was downloaded from STRING [39] with an association score for each 
protein pair. In order to map the ENSP protein id to gene symbol, we obtained the full gene interaction network 
through mapping ENSP Id-Entrez Id file downloaded from STRING and Entrez Id-gene symbol file from customized 
download HUGO Gene Nomenclature (HGNC) [40]. Specifically, gene-gene interactions with low weight (score less 
than 500) were pruned to ensure a strong interaction sub-network. Furthermore, 13 colorectal cancer driver genes were 
curated from The National Cancer Institute (Gene Associated with a High Susceptibility of Colorectal Cancer, Table 
2). As a result, a sub-network based on top features of the prediction model and colorectal cancer driver genes was 
constructed. 

b. Network analysis and pathway analysis  

Since the sub-network based on STRING is undirected, we integrated the information of regulation between genes to 
better understand the mechanism. First, we used personalized random walk to find genes that are directly interacted 
with top features. As a result, top features and their interacted genes were output after two steps of random walk on 
the whole gene interaction network. Second, we analyzed the regulation between top features and their interacted 
genes in network through Ingenuity Pathway Analysis. Ingenuity Pathway Analysis (IPA, http://www.ingenuity.com) 
is a web-based software that provides analytic tools such as ‘Canonical Pathway Analysis’ and ‘Upstream Regulator 
Analysis’, build on comprehensive ‘omics experiments. The set of top features and interacted genes was uploaded as 
input of IPA. The upstream regulator analysis reported the up-regulators and the genes it regulates among the input 
gene set. At last, we obtained a sub-network of top features of the combined model and cancer driver genes with the 
direction of regulation based on upstream analysis.  

To analyze the pathway of top features selected from the combined model of cytokines and metastatic-related immune 
genes from MGI, we used the tool of ‘Canonical Pathway Analysis’ in IPA. The set of top features are input of IPA. 
The enrichment score and statistical significance p-value of involved pathways were calculated in Canonical Pathway 
Analysis. In order to have a better visualization of relevant pathways, we plotted top 20 pathways ranked by p-value.  
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Figure 3. The workflow of network visualization and pathway analysis. 

Results  
A. A combined model of cytokine genes and mouse phenotypes is predictive of metastasis status in CRC 

patient 

We evaluated the prediction performance of models based on five gene sets in Table 1. The results suggested that the 
model combining cytokines and metastatic-related immune genes achieved the highest predictive power among all. 
From Table 2, the model based on cytokines alone achieved an accuracy of 68.55%, which is significantly higher than 
that of randomly selecting genes in the same size (66.54%, p-value<e-9, the randomly selecting genes can lead to 
higher than 50% accuracy since the random model can also have statistical significance in predicting CRC metastasis). 
We then evaluated the prediction power of mouse genes involving cancer metastasis. First, we tested all genes 
associated with mammalian phenotype of altered metastatic and abnormal angiogenesis in Mouse Phenotype 
Informatics. The accuracy in cross-validation is 69.43%, which confirmed the significance of mouse model metastatic 
genes in human. Second, we extracted all the genes belonging to immune response from the set of metastatic-related 
genes, which led to an accuracy of 70.42%. The size of the extracted gene set is a half smaller, but the predictive 
power is even higher than the original metastatic-related genes. The result suggests that immune response genes is 
representative in predicting metastasis.  

Finally, we constructed a gene panel that combines cytokines and metastatic-related immune genes from MGI. The 
model based on combined features achieved a classification accuracy of 75.54%, which is significantly higher than 
that based on cytokines (p-value<0.01) or metastatic-related immune genes in MGI (p-value<0.05) alone. This model 
also significantly outperformed the model based on randomly selecting genes (p-value<e-24). Our experiments have 
shown an increased power of predicting CRC metastasis when taking inflammatory cytokines.  

Table 2. The measurements of evaluation set of cytokines, metastatic-related genes in MGI, metastatic-related immune genes in 
MGI and the combination of cytokines and metastatic-related immune genes in MGI. Correctly classified accuracy, precision and 

recall are reported. The p-value is the statistical significance compared with 100 times random selected genes in the same size.  

Feature set Accuracy Precision Recall P-value (compared with 
random select genes) 

Cytokine genes  68.55% 0.686 0.686 e-9 
Metastatic-related genes in 
MGI 69.43% 0.697 0.694 0.045 

Metastatic-related immune 
genes in MGI 70.42% 0.708 0.707 e-5 

Cytokines and metastatic-
related immune genes in 
MGI  

75.54% 0.757 0.755 e-24 

To better evaluate the performance of our final prediction model, we also examined the classification model based on 
gene set of epithelial-to-mesenchymal transition (EMT) [19], an existing gene panel that is systematically 
demonstrated highly-correlated with colorectal cancer tumor progression. The classification accuracy of EMT genes 
is 71.75% and performed significantly better than random selecting genes (68.02%, p-value<e-5). Table 3 shows that 
the combined model achieved a significantly higher performance in classifying patients with metastasis compared 
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with model of EMT genes (p-value<0.05). The result further demonstrated the significance of the combined features 
in our model. In summary, the result shows that cytokines play a significant role in predicting CRC tumor progression.  

Table 3. The measurements of classification on model of existing metastatic-related EMT genes and our combined model. 
Correctly classified accuracy, precision and recall are reported. The p-value is the statistical significance compared with 100 
times random selected genes in the same size. 

Feature set Accuracy Precision Recall 
P-value (compared 
with random select 

genes) 
EMT genes 71.61% 0.716 0.716 e-5 
Cytokines and metastatic-
related immune genes in 
MGI  

75.54% 0.757 0.755 e-24 

B. Cytokines gene panel offers insights into metastasis mechanisms  

From the results above, we observed that the combined model has a higher potential to predict colorectal cancer 
metastasis. To understand the function of cytokines in this combined model, we visualized the interactions between 
the top genes of the model and colorectal cancel driver genes through network. In Figure 4, we assigned different 
color to three kinds of genes. Cytokine genes are represented in blue. Immune genes from MGI are colored in green. 
Red elements are colorectal cancer driver genes.  

Figure 4 shows that significant cytokine genes including IL6, TGFB2, IFNG and CSF2, directly interact with 
metastatic-related immune genes and CRC driver genes. Specifically, one of the well-known colorectal cancer driver 
gene TP53 is mediated through the IL6, which is a classical player in proliferation, migration and angiogenesis [12, 
13, 41, 42]. For another classical mediator in colorectal cancer TGFB2, it is regulated by cancer driver gene SMAD4 
and also an up-stream regulator of SERPINE1, which is a potential epigenetic biomarker of colorectal cancer tumor 
progression [14, 15, 43, 44]. IL11, a new player in the colorectal cancer cytokine milieu, is regulated by IL6. IL11 
have a strong correlation with STAT3 signaling and can be targeted therapeutically [45-48]. Granulocyte-macrophage 
colony stimulating factor (GM-CSF, gene symbol as CSF2 in Figure 4), which is used as an adjuvant to potentiate 
antitumor immunity in colorectal cancer [49, 50], is also mediated through IL6.  

As for immune genes, IFNG, TGFB2, CSF2 and TP53 are up-regulators of FOS. In addition, ICAM1 is regulated by 
TP53, CSF2, IL13, IL2 and IL6. In all, the figure systematically shows the mechanism and regulation between 
cytokines, immune genes and cancer driver genes.   

	
Figure 4. Sub-network of top 50 significant features and colorectal cancer driver genes. The arrow represents the direction of 
regulation. For example, SMAD4 is upstream regulator of TGFB2. The edge (without any arrow pointed) indicates the 
connection of a pair of genes in interaction network. Cytokine genes in blue; metastatic-related immune genes from mouse 
phenotype in green; colorectal cancer driver genes in red. 
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Figure 5. Ingenuity canonical pathway enrichment analysis of top significant features after classification. Top 20 canonical 
pathways ranked by -log(p-value).  

Additionally, we analyzed the pathway of top 50 features selected from the combined model through IPA. Top 20 
canonical pathways are reported. Intriguingly, for example, TGF-β signaling pathway, ranked in top 20, plays a central 
role in predisposition and progression in colorectal cancer [51]. Most importantly, within top 20, colorectal cancer 
metastasis signaling pathway confirmed the combined model is closely correlated with metastasis of colorectal tumor 
from the aspect of mechanism. 

Discussion 
In our study, we explored the systematical mechanism and significance of inflammatory cytokine genes through the 
aspect of network visualization after classification on metastasis and non-metastasis. We still have space to improve 
our work in the following parts. First, we can integrate more kinds of data in the basis of classification except for the 
genes extracted from MGI. We used mouse genes with phenotype of angiogenesis and metastasis and mapped to 
human genes in this study. Besides, Cancer stem cells (CSCs) are thought to drive uncontrolled tumor growth and 
traits such as motility, invasiveness, and self-renewal, which are central to malignancy, may in fact be the reflection 
of the actions of the elusive CSC. These genes can all be integrated to our classification. 

In addition, we currently considered all genes as independent in our classification model, while they are not in reality. 
Here, we investigated the role of cytokines in metastasis mechanism as a first step. In our future work, we will integrate 
the associations between genes and cover the discovery of genomic features of colorectal cancer metastasis to specific 
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organ. Through this way, more specific features will be observed and we can build a more comprehensive prediction 
model for colorectal cancer metastasis.  

Furthermore, the selection of pivotal genes from classification can be used for drug repositioning for colorectal cancer 
in the future work. Based on the pipeline of computational method in discovering drugs using Library of Integrated 
Cellular Signatures (LINCS) data we explored in previous study [52], potential novel drugs for inhibition of growth 
of colorectal cancer metastasis can be found. 

Conclusions 
We have leveraged TCGA genomic data and mouse phenotypes in MGI to build a prediction model for colorectal 
cancer metastasis. We demonstrated the significance of inflammatory cytokine genes in classifying colorectal cancer 
metastasis by obtaining a better accuracy comparing with models based on other genetic features, including previously 
found metastasis-related gene panels. In addition, network and pathway analysis shows that significant cytokine genes 
in our prediction model are highly associated with cancer metastasis mechanisms. The results confirmed the critical 
role of cytokines mediated in CRC metastasis.   
 

Abbreviations 
CRC, colorectal cancer; MGI, mouse genome informatics; TCGA, the cancer genome atlas; EMT, epithelial-to-
mesenchymal transition; CSC, cancer stem cells; LINCS, library of integrated cellular signatures.  
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