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on soil biodiversity that differs between biological
kingdoms and geographic locations
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SUMMARY

Larger easily visible animals and plants are negatively affected by agrochemicals
used for intensive food production, but we do not understand the general spatial
and temporal effects of agrochemicals on the multitudes of bacteria, fungi, and
small invertebrate animals that underpin ecosystem productivity. We sequenced
the 16S, ITS2, and COI DNA barcode regions from 648 New Zealand vineyard soil
samples managed under either conventional or low-agrochemical-input conserva-
tion approaches across two regions and three seasons in 1 year and discovered at
least 170,000 phylotypes (taxa) with >97% genetic identity. Management
approach correlated with a significant 2%–10% difference in the abundances of
phylotypes that differed over regions and seasons. Although the data show
that agrochemicals do not have a large effect on soil biodiversity on average,
the important finding is that the magnitude of impact differs between taxa types
and locations, and some taxa most affected also influence the quality of agricul-
tural produce.

INTRODUCTION

It is well documented that the pesticides used in conventional intensive agriculture decrease the biodiversity of

animals andplants that areeasily visible to thenakedeye (Altieri, 1999; Bengtssonet al., 2005; Billeteret al., 2008;

Clough et al., 2005; Gabriel et al., 2010; Gonthier et al., 2014; McLaughlin and Mineau, 1995; Puig-Montserrat

et al., 2017; Rundlöf and Smith, 2006), but these taxa represent only a tiny fraction of global biodiversity. Soils

harbor one-quarter of the world’s biodiversity, and approximately 40% of the globe’s land area is dedicated

to agriculture. However, the effects of agrochemicals on the vast array of bacteria, fungi, and invertebrate ani-

mals, which underpin productivity in ecosystems, particularly via soils, is poorly characterized (Guerra et al.,

2020; Harkes et al., 2019; Hartmannet al., 2015;Morrison-Whittle et al., 2017).Greater biodiversity positively cor-

relates with increased ecosystem stability, function, resilience, nutrient recycling, soil detoxification, and pest

control, as well as a decreased requirement for fertilizer and pesticide input in agroecosystems (Awasthi

et al., 2014; Blanchet et al., 2016; Cardinale et al., 2012; Harrison et al., 2014; McCann, 2000; McGrady-Steed

et al., 1997;Médiène et al., 2011;Naeemet al., 1995; Paoletti, 2001; Tilman et al., 2014). There is correspondingly

increasinggrower andconsumer interest in ‘‘conservation’’ agricultural approaches,which consider longer-term

productivity and the wider ecological impacts of agriculture: conservation agriculture approaches decrease

agrochemical inputs in an attempt to increase biodiversity (Bommarco et al., 2013; de Ponti et al., 2012; Döring

et al., 2019;Matsonet al., 1997; Tilman et al., 2001). However,most studies todate haveonly evaluated the effect

of different agricultural approaches on larger plants and animals (Bengtsson et al., 2005), but the effect of con-

servation agriculture on the massively more abundant and important complex micro- and mesofauna commu-

nities across time and space is poorly described.

The analysis of bacterial and fungal biodiversity by the amplification and sequencing of millions of 16S and

ITS DNA barcodes directly extracted from samples is now commonplace and circumvents problems asso-

ciated with the fact that >95% of species are missed by culture-based methods (Taylor et al., 2014). The few

studies that have used DNA biodiversity estimates to evaluate the effects of agricultural management had

limited sampling across locations or time points but have suggested significant biodiversity differences by

management approach, but the sizes of effects are relatively small. Hartmann et al. (2015) showed that

long-term organic agricultural management at one site had a significant small (�10%) effect on soil bacte-

rial and fungal communities and conservation management had a significant small (10%) effect on soil
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fungal biodiversity across multiple New Zealand vineyards in one region at one time point (Morrison-

Whittle et al., 2017). Harkes et al. (2019) reported significant small (�4%) differences between conventional

and organic managements from two farms at two time points using bacterial 16S and eukaryote 18S DNA

barcodes, and Bonanomi et al. (2016) showed a similar effect in long-term polytunnel systems at one site

with the same barcodes (but did not report effect sizes). We are aware of no estimates of the effect of agri-

cultural management on biodiversity using the standard animal COI DNA barcode.

Evidence to evaluate the effects of different agricultural management approaches on broader components

of biodiversity, particularly in soils, is lacking, and research that quantifies the impact of commercially rele-

vant agricultural management systems across both time and space will provide evidence to inform policy in

this regard (Godfray et al., 2010; Zimmerer and de Haan, 2017). Here we study commercial agricultural sites

that operate under either conventional or conservation approaches. We deliberately chose to evaluate a

range of commercial sites, rather than experimental plots, to quantify biodiversity differences in authentic

agricultural scenarios. We gathered 648 soil samples from 24 New Zealand vineyards located 350 km apart

in Marlborough and Hawke’s Bay (HB) across spring, summer, and autumn. We tested whether there were

multi-kingdom biodiversity differences between management regimes by analyzing bacterial 16S, fungal

ITS2, and eukaryote COI DNA barcodes and then went on to estimate the nature and magnitude of any

differences and put these into context.

RESULTS

Analysis of commercial spray diaries (detailed in Table S1) revealed 25% more application events with

3-fold significantly greater input of agrochemical products per hectare in conventional than conservation

vineyards across the time period sampled (Mann-Whitney U test, Z = 6.41, n = 574, p = 1.4 3 10�10): this

substantiates the agricultural management classifications of these sites. One million seven hundred thou-

sand DNA sequence reads were obtained from soils after forward-reverse pairing and quality filtering

(561,409 16S; 443,082 ITS2; 724,661 COI). All sequences were clustered into phylotypes of 97% or greater

genetic identity, which is a standard level that approximately separates prokaryote species and eukaryote

genera (Alberdi et al., 2017; Guerra et al., 2020; Hebert et al., 2003; Konstantinidis and Tiedje, 2005). Twelve

COI phylotypes comprising 133,575 reads matched >97% to the Homo genus and were removed from all

further analyses leaving 172,370 phylotypes and over 1.5 3 106 reads (116,788 16S; 2,557 ITS2; 53,025 COI

phylotypes), which to a first approximation estimates the total biodiversity in these ecosystems (Table S2).

It is desirable to attempt to taxonomically classify phylotypes by matching their DNA sequences to those in

reference databases. Eighty-five percent of 16S phylotypes were probabilistically assigned to the bacterial

kingdom, and 96% of the ITS2 phylotypes were assigned to the fungal kingdom. Actinobacteria was the

most abundant bacterial phylum (29%), followed by Proteobacteria (26%), and ascomycetes dominated

fungi (79%): a complete breakdown of phylotype abundances at taxonomic levels for 16S and ITS2 barco-

des is in Table S2. The identification of COI phylotypes is significantly more challenging as COI databases

are far less complete. Comparisons across three different COI databases (see methods) that show 99.99%

of phylotypes were assigned to eukaryotes, but only half of these matched to deposits classified at

kingdom level with >95% confidence. Approximately half the COI phylotypes matched to deposits as-

signed to fungi, 3% to animals (metazoans), and �0.3% to oomycetes which are fungus-like organisms.

Although most eukaryote COI phylotypes we recovered are not yet in databases, this does not prevent

their analyses, just their taxonomic assignment.

Eukaryotes contain both ITS and COI regions, but no animals were recovered in the ITS2 data due to the

targeting of PCR primers. The 16S barcode thus estimates bacterial biodiversity, the ITS2 estimates fungal

biodiversity, and the COI barcode estimates eukaryotic biodiversity generally. We analyzed each barcode

separately, and for completeness also combined and analyzed all barcodes. However, combined barcodes

will bemore heavily influenced by the greater number of 16S phylotypes, and it is possible that some fungal

phylotypes overlap between the ITS2 and COI barcodes; we therefore primarily focused on each barcode

individually. Rank abundance curves show typical patterns of few common and many rarer phylotypes (Fig-

ure 1): bacteria are the richest and most evenly distributed, followed by general eukaryotes and then fungi.

The effect of management on multi-kingdom biodiversity

The analysis of differential abundances, presences, and counts of phylotypes between management regimes

comprises the core of being able to understand whether management approach correlated with differences
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in biodiversity (Morrison-Whittle et al., 2017). The analyses methods we used were insensitive to differences in

data normality, variance, and sample sizes. However, we conservatively sub-sampled (rarefied) to 2,000 DNA

sequences per sample for the 16S and ITS2 and 1,000 sequences for the COI barcode to ensure equal sample

sizes within each barcode; samples with fewer DNA sequences were removed from analyses. Following rarefac-

tion there were 275,000 DNA sequences and 79,047 phylotypes (Table S3). We tested the null hypothesis that

therewas noeffect ofmanagement andwent on to evaluate the significance and size of any differences in biodi-

versity between management approaches when this was rejected. The results for all analyses, including all test

statistics, are in Tables S4, S5, S6, and S7, and we only report effect sizes (the proportion of total biodiversity

variance explained by a factor) in the text when significant at p < 0.05 for brevity.

Abundances of phylotypes differ by management and location

There was a consistent significant difference in the abundances of all barcodes (and their combination) be-

tween management approaches (Figure 2; Table S4). This difference was relatively weaker for 16S and ITS2

(p = 0.022 and 0.013, R2 = 0.019 and 0.051), but relatively stronger for differential COI phylotype abun-

dances (p = 0.005, R2 = 0.018). There were no significant interactions between management and region

for individual barcodes (p = 0.09 to 0.43), but there was a significant difference in phylotype abundances

between management approaches for both 16S and ITS2 in HB (p = 0.011 and 0.020, R2 = 0.045 and

0.105) but not Marlborough (p = 0.760 and 0.185). There were also differential effects of management be-

tween seasons for fungal ITS2 and eukaryote COI phylotypes: both differed bymanagement in summer (p =

0.002, R2 = 0.202 and p = 0.028, R2 = 0.055 respectively), but there were no differences in bacterial 16S phy-

lotype abundances by season (Table S4).

Phylotype abundances also significantly differed between regions irrespective of management approach

(p = 0.001; Table S4; Figure 2). There were also significant differences between phylotype abundances

across seasons for 16S and ITS (p = 0.001 and 0.002, mean R2 = 0.08), but not for COI barcodes

(p = 0.296). Where differential phylotype abundances between management approaches were significant,

this had approximately the same effect size as differences by region and season (5.6% for management

versus 4.8% and 8.1% for region and season).
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Figure 1. Abundance curves of >97% phylotypes for 16S, ITS, and COI barcodes from 24 New Zealand vineyard

soils across spring, summer, and autumn in Marlborough and Hawke’s Bay

Combined barcode phylotype abundance distribution (all), and by each barcode separately, up to the 1,640th rank, which

was the least abundant phylotype. Shannon diversity (inlay) differs between barcodes by Kruskal-Wallis tests (H = 168.87,

p = 12.23 3 10�36), and Dunn’s post-hoc tests reveal all distributions differ from one another (p < 0.0007). See also

Figure S1.
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The presences of phylotypes differ by management and location

There were significant differences between management approaches for the differential presences of 16S

and COI phylotypes (p = 0.018, 0.001, Figure 3), and this explained just under 2% of the total variance in

phylotype presences across all samples (R2 = 0.018; Table S5). However, there were no differences in the

presences of fungal ITS2 phylotypes between management approaches (p = 0.121), and no interactions

with season and/or region (p > 0.3). There was not a marked significant interaction between management

and region or season for the 16S barcode (p > 0.068), whereas there was a significant difference in 16S phy-

lotype presences by management approach in HB (p = 0.005, R2 = 0.04) but not Marlborough (p = 0.646),

and a weak effect of management in autumn (p = 0.048, R2 = 0.054). There were no interactions between

management and region or season for the presences of COI eukaryote phylotypes (p > 0.187): the signif-

icance and effect size of differences by management were approximately the same across both regions for

COI (p = 0.038 and 0.017; R2 = 0.034 and 0.033).

Phylotype presences of all barcodes differed significantly between regions irrespective of management

approach (p < 0.002 and R2 > 0.02; Figure 3; Table S5). The differential presences of bacterial and fungal

phylotypes also differed by season (p < 0.004. R2 < 0.057), but the COI phylotypes did not (p = 0.11). Where

there were significant differences in phylotype presences between management approaches, this ex-

plained 2.9% of the total variance in differential phylotype presences across all barcodes, which is almost

identical to the size of differences by region (2.8%).

The numbers of phylotypes mainly differ by location

There was no difference in the number (counts) of phylotypes present bymanagement for any barcode indi-

vidually or when combined (p range 0.1–0.86; Figure 4; Table S6). Although there were weakly significant

interactions between management, region, and time for 16S and COI barcodes (p = 0.021 and 0.010

respectively), these did not translate to an effect of management approach in any region or time point

Figure 2. Differences in phylotype abundances

Fixed-scale nonmetric multidimensional scaling (NMDS) plots from Jaccard distance matrices representing the difference in abundances of >97%

phylotypes by management and region separately from 16S, ITS2, and COI barcodes from the soils of 24 New Zealand vineyards across spring, summer, and

autumn in Marlborough and Hawke’s Bay. The statistical output from PermANOVA analyses (p values and R2) is shown. See also Figure S2.
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separately (p range = 0.09–1). We also analyzed Shannon phylotype diversity indices, which account for the

distribution of phylotype counts, and recovered no effect of management (p range 0.11–0.92; Figure S1).

Although the above-mentioned analyses are meaningful, they do not evaluate differences in the presences

or abundances of specific phylotypes between management approaches as the previous analyses did.

Bacterial phylotypes counts differed most greatly by season in Marlborough (p = 0.003, E2 = 0.32), but not

HB (p = 0.76), where they increased by an average of 297 per sample from budburst to harvest (p = 0.008;

Figure 4). Fungal ITS2 and eukaryote COI counts significantly differed by region (p = 0.027 and 0.0001; E2 =

0.116 and 0.23, respectively) and Marlborough had an average of �30% more phylotypes per sample

(Figure 4).

Alternative data normalization

We also normalized the entirety of the data with cumulative sum scaling, which is more sensitive to differ-

ential sample depths, and analyzed asmentioned earlier (Table S7). This showed the same general patterns

as analyses with equal sample depths by rarefaction: no differences in phylotype counts by management

and weak to medium significant differences (p ranges 0.03 to 0.001) in presences and abundances of phy-

lotypes between management approaches, with these differences being more apparent in HB than Marl-

borough for 16S and ITS2, and an average size difference bymanagement that was approximately the same

as differences by region.

Specific phylotype differences by management

Given the significant differential abundances of phylotypes, an indicator analysis was employed to estimate

the probability that specific phylotypes had differential proportions between sites managed in different

ways. One hundred and forty-six 16S phylotypes significantly differed in abundance by management

approach (Padj values range from 0.001 to 0.05): 112 were overrepresented in conventional and 34 in con-

servation vineyards (Table S8). Thermoleophilia and Rubrobacteria classes were overrepresented in

conventionally managed vineyards (p = 0.021), and Bacilli (class) and phylotypes assigned to no lower taxo-

nomic level than Firmicutes (phylum; corrected p = 0.033–0.05) were relatively more abundant in conserva-

tion vineyards. Seventeen fungal phylotypes had significantly differential abundances between
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Figure 3. Differences in phylotype presences

Fixed-scale NMDS plots from binary Jaccard distance matrices representing the difference in presences of >97%

phylotypes by management and region separately for 16S, ITS2, and COI barcodes from the soils of 24 New Zealand

vineyards across spring, summer, and autumn in Marlborough and Hawke’s Bay. The statistical output from PermANOVA

analyses (p values and R2) is shown where the differences are significant (at p < 0.05). The grayed-out plot indicates no

significant difference (at p > 0.05). See also Figure S3.
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management approaches: eleven from Bionectria, Malassezia, Saccharomyces, and Mortierella genera

(corrected p = 0.009–0.037, Table S8) were more abundant in conservation vineyards and six Ascomycete

(phylum) phylotypes from Trichocladium and unidentified genera are indicative of conventional vineyards.

Thirty-four COI phylotypes had statistically greater abundances in conventional and fourteen in conserva-

tion vineyards. As there are issues with reliably taxonomically identifying COI phylotypes, we are not able to

describe these differences taxonomically (Table S9). However, we attempted to match indicator COI phy-

lotypes to three dedicated COI databases, and we also used nucleotide BLAST searches across the whole

of DNA deposits in GenBank (Table S10 and see methods). One of the 14 COI phylotypes overrepresented

in conservation vineyards was assigned to Mus musculus (mice) with a 99.4% identity, and another nine to

Mus or Mammalia with 90%–96% identities, meaning these are highly likely from mammals, probably Mur-

idae (rodents). Two other COI phylotypes that were relatively more abundant in conservation sites have

�97% matches to Ascomycete fungi, but any finer robust taxonomic classification is not possible. The

last COI conservation-indicative phylotype has not yet been described as the best matches in GenBank

are �94% to both Hemiptera (insect, tree bugs) and Ascomycetes (fungi). All 34 conventional indicative

COI phylotypes have poor matches (83%–95%) to various Ascomycete species, and it seems these fungal

species are yet to be added to databases. We detected DNA sequences in the raw non-rarefied data as-

signed to Botryosphaeria spp., Eutypa lata, and Phaeomoniella spp., fungal pathogens that are implicated

in canker and esca-like vine trunk diseases, but there was no significant difference in the abundances of

these disease agents between management approaches (corrected p > 0.072). No fungal phylotypes

matching to Erysiphe, Plasmopara, or the Botrytis genera, which contain species that cause grape powdery

and downy mildew and bunch rot, were recovered, but recall that these are soil samples.

DISCUSSION

Overall there was a detectable difference in soil-derived DNA estimates of multi-kingdom biodiversity that

correlated with the way these sites had been agriculturally managed (Table 1), but the sizes of biodiversity

differences were generally small (<10%). However, the effect of different agricultural approaches on biodi-

versity across these sites differed between bacterial, fungal, and eukaryote phylotypes and was contingent

on location (and season to a lesser extent). The abundances and types of eukaryote COI phylotypes

showed the strongest and most consistent differences between management approaches irrespective of
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Figure 4. Differences in phylotype counts

Mean G SEM number of >97% phylotypes in soils from all barcodes combined (All) and for each barcode separately, by

management (left panel) and by the factor with the greatest effect on phylotype richness (right panel). Kruskal-Wallis tests

reveal no significant effect of management on any barcode individually or when combined (p > 0.1), but region and

season variously affected phylotype richness. Significant differences revealed by Kruskal-Wallis and Dunn’s post-hoc tests

(Table S6) are indicated with joined lines above bars with the p values shown. The significant pairwise differences between

all three seasons is shown for Marlborough only for the 16S barcode (there was no effect of season on 16S phylotype

richness in Hawke’s Bay; p = 0.76).
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region, but with a suggestion of a greater difference in summer. However, there were only differences in

fungal and bacterial biodiversity between agricultural management approaches in HB, but not in Marlbor-

ough (Table 1), with a signal for greater differences in fungal phylotype abundances by management in

summer.

Although a significant effect of management approach on biodiversity was revealed overall, this was not

always manifest at each individual point. This may be because the overall effect is manifest due to smaller

cumulative spatiotemporal differences by management and/or may be a signal for a differential effect of

agrochemicals on biodiversity across time and space. In line with this differential effect idea, the observa-

tions of differences in bacterial and fungal communities between HB and Marlborough (which are 350 km

apart) irrespective of management approach shown here agrees with previous data from these and other

New Zealand and global regions showing such patterns (Bokulich et al., 2014; Morrison-Whittle and God-

dard, 2015; Taylor et al., 2014). This suggests that region-specific bacterial and fungal communities are

differentially affected by agrochemicals. Our findings are in line with previous work evaluating fewer

taxa/barcodes, regions, and time points (Hartmann et al., 2015; Morrison-Whittle et al., 2017; Harkes

et al., 2019), including inferences of a greater effect of agrochemicals on metazoa (Bonanomi et al.,

2016) , and extend these to show that agricultural management approach affects different bacterial, fungal,

and animal taxa in different regions at different times of the year in different ways. This finding echoes pat-

terns seen for the effects of pesticides on specific larger animal and plant taxa (Bengtsson et al., 2005;

Gabriel et al., 2010). Although we havemeasuredmultiple time points in one year, the extent to which these

patterns hold across multiple years with changing climates is of interest. Here we report the first year of a 5-

year study, and subsequent analyses will reveal how any effect of management changes across greater time

periods.

To put the size of the effects of agricultural management approach on biodiversity into context, this ex-

plained 2%–10% of the variance in abundances of the�170,000 trans-kingdomphylotypes identified across

these sites, and this is on the same order of magnitude as has been estimated in other agricultural soils at

fewer places and time points (Hartmann et al., 2015; Morrison-Whittle et al., 2017; Harkes et al., 2019). This

may not seem large on first inspection, but the biodiversity variance inmost ecosystems is large, particularly

for microbial diversity, and it is therefore noteworthy that differences by management approach were de-

tected at all. Furthermore, the magnitude of differences in biodiversity between management approaches

is approximately the same as the size of differences in biodiversity across hundreds of kilometers and sea-

sons within a year in a temperate climate. Thus, choice of agricultural management approach can subtly but

significantly alter soil biodiversity to the same extent as that imposed by different regions and seasons in

many countries.

Soils not only have huge levels of biodiversity but also serve as a repository for DNA from many organisms

in an ecosystem (Drummond et al., 2015; Taberlet et al., 2012), and this DNA may have derived from whole

or parts-of and live and recently dead organisms. The biodiversity metrics used here do not account for the

ecological function of phylotypes or communities, meaning we cannot comment on how the subtle

changes in biodiversity translate into changes in ecological function. The inference of increased rodent

Table 1. The differential effects of conservation and conventional agricultural management on numbers, types, and

abundances of 16S, ITS2, and COI >97%phylotypes from 24NewZealand vineyard soils across spring, summer, and

autumn in Marlborough and Hawke’s Bay (HB)

Number Type Abundance

16S 0.100 HB only - 0.005

R2 = 0.04

HB only - 0.011

R2 = 0.045

ITS2 0.301 0.121 HB only - 0.020

R2 = 0.105

COI 0.867 0.001

R2 = 0.018

0.005

R2 = 0.019

p values are shown and derive from Kruskal-Wallis (number of phylotypes), and PERMANOVA (types and abundance) ana-

lyses and HB-specific effects are indicated where they are present and indicate that there was no effect of management

on that component of biodiversity in Marlborough. The effect size (R2) is included where there was a significant effect of man-

agement (at p < 0.05, in bold).
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abundance in conservation vineyards may be a result of more subtle changes in abundances or levels of

toxicity accumulation in organisms on which they feed (Fremlin et al., 2020), or changes in structural hab-

itats due to differential ground plants. Saccharomyces (single-celled fungi) phylotypes had greater preva-

lence in conservation vineyards. Although rare in the environment generally, Saccharomyces are found in

soils and also are keystone species in fruit nutrient turnover and the fermentation of food and beverages

(Goddard, 2008; Knight and Goddard, 2015). Populations of Saccharomyces are regionally genetically

differentiated in New Zealand, including the regions sampled here (Knight and Goddard, 2015), and glob-

ally (Peter et al., 2018; Almeida et al., 2014). Work also shows these regionally distinct yeast populations

impart small but significantly different sensorial differences via secondary metabolites during fermenta-

tion, which in turn contribute to a wine’s distinctness, quality, and value (Knight et al., 2015). This suggests

that the way agroecosystems are managedmay also alter components of biodiversity that contribute to the

nature/quality of agricultural produce. Overall, this study provides evidence that different commercially

authentic agroecosystem management approaches that manipulate the levels of agrochemical inputs

have a measurable but subtle effect on biodiversity, but the nature of this effect differs between organisms

and across time and space. The next challenge is to understand what drives the differential effects of ag-

rochemicals on different aspects of soil biodiversity across time and space.

Limitations of the study

The main question addressed by this study is the overarching effect of agrochemical inputs on bacterial,

fungal, and general eukaryote biodiversity. The main limitations are noted in the discussion but are listed

here again for completeness. The first possible limitation of the study is the extent to which these obser-

vations translate to other agricultural systems in other locations, although these findings are in line with

those of other studies in other systems at other places and times. Another potential limitation is the use

of soil-derived DNA to estimate biodiversity: some DNA may have derived from dead organisms and

eDNA from larger animals may be relatively under-represented. The final potential limitation is that this

study evaluates biodiversity but not community function.

Resources availability

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact: Matthew Goddard (mgoddard@lincoln.ac.uk).

Materials availability

This study did not generate new reagents.

Data and code availability

Raw sequence data are available at GenBank: PRJNA635690, and the published article contains tables

derived from the raw sequence data.
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All methods can be found in the accompanying transparent methods supplemental file.
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Döring, J., Collins, C., Frisch, M., and Kauer, R.
(2019). Organic and biodynamic viticulture affect
biodiversity and properties of vine and wine: a
systematic quantitative review. Am. J. Enol. Vitic.
70, 221–242.

Drummond, A.J., Newcomb, R.D., Buckley, T.R.,
Xie, D., Dopheide, A., Potter, B.C.M., Heled, J.,
Ross, H., Tooman, L., Grosser, S., et al. (2015).
Evaluating a multigene environmental DNA
approach for biodiversity assessment.
GigaScience 4, s13742-015-0086-1.

Fremlin, K.M., Elliot, J.E., Green, D.J., Drouillard,
K.G., Harner, T., Eng, A., and Gobas, A.P.C.
(2020). Trophic magnification of legacy persistent
organic pollutants in an urban terrestrial food
web. Sci. Total Environ. 714, 136746.

Gabriel, D., Sait, S., Hodgson, J., Schmutz, U.,
Kunin, W., and Benton, T. (2010). Scale matters:
the impact of organic farming on biodiversity at
different spatial scales. Ecol. Lett. 13, 858–869.

Goddard, M.R. (2008). Quantifying the
complexities of Saccharomyces cerevisiae’s
ecosystem engineering via fermentation. Ecology
89, 2077–2082.

Godfray, H.C.J., Beddington, J., Crute, I.R.,
Haddad, L., Muir, J.F., Pretty, J., Robinson, S.,
Thomas, S.M., and Toulmin, C. (2010). Food
security: the challenge of feeding 9 billion
people. Science 327, 812–818.

Gonthier, D., Ennis, K., Farinas, S., Hsieh, H.,
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Supplemental Figures. 

 
Figure S1: Shannon indices by management and barcode, with P values from analyses with 
Kruskal-Wallis tests, related to Figure 1.  
 
 

 
Figure S2: Fixed-scale NMDS abundance based Jaccard distance plots for >97% phylotypes 
from 24 New Zealand vineyard soils with PermANOVA P and R2 values where the effects are 
significant (at P<0.05), related to Figure 2. 
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Figure S3: Fixed-scale NMDS binary based Jaccard distance plots for >97% phylotypes from 
24 New Zealand vineyard soils with PermANOVA P and R2 values where the effects are 
significant (at P<0.05), related to Figure 3. 
 
 
Transparent Methods 
Sites and Sampling 
Soil was sampled from 24 commercial Vitis vinifera vineyards across two major wine-producing 
regions of New Zealand approximately 350km apart: Hawke’s Bay (HB; 39° S, 177° E) and 
Marlborough (Mb; 41.5° S, 174° E). Thirteen vineyards were classified as conservation (HB=7, 
Mb=6) and 11 as conventional (HB=5, Mb=6). Three grape varieties were planted across these 
vineyards: 12 Sauvignon blanc (6 in each region), 6 Merlot (HB only) and 6 Pinot Noir (Mb only). 
All vineyards are audited and accredited under the Sustainable Winegrowing NZ programme 
or are BioGro NZ certified, which ensures growers undertake international sustainability ‘best 
practice’ for minimal impact on the environment. Conservation agriculturally managed 
vineyards attempted to minimise synthetic chemical inputs and gave preference to other means 
of weed (e.g. under-vine cultivation and mowing) and pest control, or vine nutritional 
deficiencies. Soil was collected at three time-points: spring (budburst: late October 2015, recall 
NZ is in the Southern hemisphere), summer (véraison: mid-February 2016) and autumn 
(harvest: late April 2016). Samples were collected from a random angle and distance in a 16m-
radius from each of nine predefined dispersed loci within each vineyard and comprised 20 cm-
deep soil cores. Four hundred grams (200g from the under-vine area, and 200g in the inter-row 
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area) were combined at each locus. A total of 216 samples per time point were collected, 
comprising 648 samples across the entire study. All tools were sterilised with Trigene® (1:20) 
and 70% ethanol and rinsed with sterile water prior to collection. Samples were placed directly 
into sterile containers and kept at 4°C immediately after collection and whilst under transport to 
the laboratory. 
 
Soil processing 
Upon arrival at the laboratory, the nine samples from each vineyard were thoroughly mixed in 
equal parts and frozen at -80°C for at least 2 months. Samples were allowed to thaw at room 
temperature, then oven-dried at 65°C until reaching constant weight after approximately 3 days, 
then homogenised by sifting through a sterile 2mm-sieve, and stored again at -80°C. 
 
DNA extraction and barcode amplification 
DNA was extracted from 250mg of soil in triplicate with Zymo Research Soil Microbe DNA KitTM 
following the manufacturer’s instructions, but with two additions: in Step 1 samples were 
incubated for 10min at 55°C prior to bead beating; at Step 10 samples were incubated for 5 
minutes at 55°C before centrifugation. The triplicate DNA extractions from each sample were 
pooled. The bacterial V3-V4 16S ribosomal domain was amplified using the primers Bakt_341F: 
5’-CCTACGGGNGGCWGCAG-3 and Bakt_805R: 5’-GACTACHVGGGTATCTAATCC-3’ 
(Herlemann et al., 2011). Fungal Internal Transcribed Spacer 2 (ITS2) regions were amplified 
using the primers ITS3: 5’-GCATCGATGAAGAACGCAGC-3’ and ITS4: 5’-
TCCTCCGCTTATTGATATGC-3’ (White et al., 1990). The eukaryote Cytochrome Oxidase 
subunit I gene (COI) was amplified with primers mlCOIintF: 5’-
GGWACWGGWTGAACWGTWTAYCCYCC-3' (Folmer et al., 1994) and jgHCO2198R: 5’-
TAIACYTCIGGRTGICCRAARAAYCA-3' (Geller et al., 2013). All primers included Illumina 
adapter sequences and amplicons were generated with KAPA HiFi HotStart ReadyMix DNA 
polymerase (Roche), cleaned using AMPure XP (Agencourt) and quality-checked using Qubit® 
dsDNA HS Assay kit and Agilent 2100 Bioanalyzer system. Negative controls were included in 
all PCR batches and none showed contamination. Amplicons were pooled in equimolar 
concentrations for library construction, and all 216 amplicons (24 vineyards x 3 time-points x 3 
barcodes) sequenced in one run on an Illumina MiSeqTM with 2x300bp chemistry at the 
University of Auckland.  
 
Bioinformatics 
Reads were differentiated into kingdoms with fastq-multx (Aronesty, 2011) using primer 
sequences as identifiers; all unassigned sequences were removed. Data from each barcode 
were analysed independently. After forward/reverse pairing and low-quality filtering (phred 
score set to Q20), chimeras were removed and analysed with QIIME (Caporaso et al., 2010). 
USEARCH (Edgar, 2010) was employed to determine phylotypes that clustered with at least 
97% identity: this cut-off approximates differences between phylotypes generally (Alberdi et al., 
2017; Guerra et al., 2020; Hebert et al., 2003; Konstantinidis et al., 2005). All phylotypes 
comprising a single read (singletons) were removed. The accurate taxonomic assignment of 
any phylotype is contingent on that type having been described, and the corresponding barcode 
DNA sequence obtained and deposited in a database. Such databases are most 
comprehensive for 16S (bacteria), somewhat comprehensive for ITS2 (fungi), but are far less 
comprehensive for COI (general eukaryotes) barcodes. In the absence of exact matches, one 
can attempt to probabilistically assign phylotypes to various taxonomic levels based the extent 
to which it matches known taxa, which is again contingent upon DNA database completeness. 
The taxonomic identities of 16S and ITS2 phylotypes were determined by taking the 
representative sequence for each and comparing to the appropriate reference database: SILVA 
v123 (Pruesse et al., 2007) for 16S; UNITE v7.1 (Kõljalg et al., 2013) for ITS2. The RDP 
Classifier 2.2 (Wang et al., 2007) was used to identify 16S sequences, and BLAST (Altschul et 
al., 1990) for ITS2. The reference databases for COI barcode sequences are far less 
comprehensive than those for 16S and ITS. This means the taxonomic assignment of COI 
phylotypes representative sequences is still extremely unreliable. While several good attempts 
have been made to curate COI databases, we found these to only be able to consistently 
taxonomically identify ~50% of COI phylotypes we recovered after cross comparisons of 
taxonomic identifications from BOLD (Ratnasingham et al., 2007), Midori (Leray et al., 2018) 
and terrimporter (Porter and Hajibabaei, 2018); we note Midori only considers metazoan taxa; 
Table S9 shows this cross comparison. We used BOLD and Midori RPD taxonomic assignment 
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followed by manual BLAST searches to identify and remove 12 phylotypes that matched >97% 
to human COI deposits in Genbank. This is conservative as the average genetic variance in 
the global human population is ~0.1%, which equates to less than 1bp difference across the 
~330bp COI barcode amplified, whereas the >97% threshold we employed translates to a 10bp 
difference across the COI barcode sequence. Only 3 phylotypes matched 100% to Homo 
sapiens deposits in Genbank. We analysed 53,037 non-human >97% COI phylotypes as an 
estimate of the biodiversity of eukaryotes generally. We appreciate there will have been primer 
bias, and while the COI barcode primers we employed were designed to principally target 
metazoan invertebrate arthropods, annelids, nematodes and other worms, and any vertebrate 
DNA present, they may well have also amplified a range of fungi, amoeba and oomycetes as 
well. We focused on taxonomically identifying those COI phylotypes that prove to significantly 
differ between vineyards and used the same BOLD, Midori and terrimporter (adapted for use 
in QIIME by customising the gb2qiime.py script from https://bitbucket.org/beroe/mbari-public) 
and manual BLAST searches to estimate the taxonomic identity of these COI phylotypes (Table 
S10).  
 
Data analysis 
As for any ecological sampling effort, samples with greater DNA sequence sample depth will 
tend to recover more phylotypes, and this was the case with our data: there was a significant 
positive correlation between 16S read depth and numbers of phylotypes recovered (Pearson r 
= 0.92, P<0.0001). Given a few samples had very low sequences (<1,000) and the large 
variance in DNA read number between samples of the same barcode of ~2 orders of magnitude 
(Table S2), then equal sample efforts across samples by equal sub-sampling (rarefaction) was 
important to ensure the hypothesis was fairly tested. 16S and ITS2 data were rarefied to 2,000 
reads, and COI data to 1,000 reads per sample, and samples with fewer than these reads were 
discarded. The final rarefied phylotype table and number of samples that were included for 
rarefied analyses are shown in Table S3. The process of rarefying excludes rarer phylotypes 
and samples with low sequence numbers and so we also normalised phylotype read tables 
using a Cumulative Sum Scaling method. Different normalisation techniques have been 
developed in order to address clustering patterns and variability in phylotype abundance data 
such as those derived from meta-barcode sequences. The nature of our data, hypotheses and 
preference for a conservative approach best align with rarefying (Weiss et al., 2017). 
 
Community distributions. Count distributions were visualised using relative abundance versus 
abundance rank (Whittaker plots), and statistically analysed with Kruskal-Wallis analysis of 
variance, and Dunn’s post-hoc test of Shannon Diversity indices. 
 
Biodiversity metrics. Each biodiversity metric (numbers, types and abundances of phylotypes) 
was analysed with the following levels: management: 2 levels (conservation and conventional); 
region: 2 levels (Hawke’s Bay and Marlborough); and time: 3 levels (spring, summer, autumn). 
Kruskal-Wallis tests were used to analyse differences in phylotype numbers as the data were 
not normally distributed; P values were calculated by comparing each value of H to the 

appropriate 2
[a-1] distribution, where a = number of groups, and epsilon-squared estimates of 

effect size were calculated with E2 = H/((n2-1)/(n+1)), where n = number of observations 

(Tomczak and Tomczak, 2014). We also analysed Shannon Diversity indices and post-hoc 
Dunn’s tests (Dunn 1964). Non-parametric permutational multi-way multivariate ANOVA 
(PERMANOVA) (Anderson, 2017), which does not require data to be normally distributed, were 
conducted to analyse types and abundances of phylotype on binary (presence/absence) and 
abundance based Jaccard dissimilarity matrices, with 100,000 permutations, and effect sizes 
indicated by R2 (note R2 are only available for main effects, but not interactions between them). 
Non-parametric tests and multifactorial analyses of variance were employed to evaluate the 
effect of management on specific pathogens on non-rarefied data. All factors were treated as 
fixed effect variables, and construction of dissimilarity matrices, statistical analyses and plots, 
including NDMS, were conducted in QIIME and R (R Core Team, 2020) with the packages 
‘phyloseq’ (McMurdie and Holmes, 2013), ‘vegan’ (Oksanen et al., 2020). Indicator phylotype 
were determined using the ‘indval’ function of the R package ‘labdsv’ (Roberts, 2019). 
 
Supplemental References (references that are already included in the main body of the 
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