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Abstract: Lesion growth following acutely injured brain tissue after stroke, subarachnoid hemorr- 
hage and traumatic brain injury is an important issue and a new target area for promising therapeu-
tic interventions. Spreading depolarization or peri-lesion depolarization waves were demonstrated 
as one of the significant contributors of continued lesion growth. In this short review, we discuss 
the pathophysiology for SD forming events and try to list findings detected in neurological disor-
ders like migraine, stroke, subarachnoid hemorrhage and traumatic brain injury in both human as 
well as experimental studies. Pharmacological and non-pharmacological treatment strategies are 
highlighted and future directions and research limitations are discussed. 
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1. INTRODUCTION 

 Spreading Depolarization (SD) is a phenomenon that 
occurs in brain tissue and is recognized as an important cont- 
ributor in the pathophysiology of several neurological dis-
eases. It is a propagating depolarization wave of neurons and 
glial cells in the cerebral gray matter, followed by transient 
suppression of electrical activity. It was first described by the 
Brazilian neurophysiologist Aristides Leão [1]. Now it is 
recognized as a universal way of cortical lesion development 
in several neurological disorders [2, 3]. 
 First evidence for SD as a relevant pathological mecha-
nism for neurological diseases was a report about the symp-
toms of migraine aura. An excitation-depolarization wave 
that propagated across the human primary visual cortex was  
described and attention drawn to the similarity of wave front 
move velocity with depolarization waves observed in animal 
experiments [4-6]. 
 Its importance for human brain physiology and patho-
physiology has emerged in the last decade [2, 3] and aim of 
this review is to give a brief idea about the relation of SD 
waves and neurological diseases. Mainly, the mechanisms 
for SD generation and its probable role in migraine, stroke, 
subarachnoid hemorrhage, and traumatic brain injury will be 
discussed. 
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1.1. Mechanisms of Spreading Depolarization and Its 
Importance as a Pathological Mechanism in Human 
Neurological Conditions 

 For many years, the difficulty and inadequacy of detec-
ting SD in routine scalp EEG recordings led scientists to 
think that SD was just an artifact, which occurs in the rodent 
brains and during experimental conditions. Hence, its sig-
nificance and translation to human pathological conditions 
were obscure and there were opponent arguments about its 
presence and implication for neurological diseases especially 
for migraine. Unfortunately, the routine scalp EEG was not 
sensitive enough due to the high impedance of dura and skull 
to record SD waves from a relatively narrow cortical area. 
With the development of new imaging technologies, first 
clues about its presence and the role in disease pathophysiol-
ogy, especially for migraine aura, have emerged. A wave of 
reduced blood flow propagation across the brain during an 
attack of a patient with migraine aura has been elegantly 
demonstrated by Hadjikhani et al. via blood flow changes 
detected with BOLD magnetic resonance imaging and travel 
velocity of blood flow changes over cortex was similar to the 
SD waves observed in experimental animals [7]. Later on, 
studies of several clinical and preclinical groups clearly 
demonstrated that SD waves can occur in several pathologi-
cal conditions in humans like migraine, stroke, subarachnoid 
hemorrhage, trauma, etc [2, 3, 8-12]. These researchers re-
corded SD waves through cranial windows or with direct 
electro-corticographic (ECoG) recordings and laser speckle 
imaging. Additionally, ECoG recordings of operative pa-
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tients with acute brain injury obtained during intensive care 
suggest that SD waves play a role in the deterioration of 
cognitive functions and promote lesion progression [13]. 

 SD waves can occur in both physiological and pathologi-
cal conditions. They usually start from a point on the cortex 
and travel through with a velocity of 2 to 5 mm/min and the 
length of travel depends on the severity or amplitude of de-
polarization waves as well as origin [1]. In healthy brain 
tissue, as the SD propagates, both the spontaneous and the 
evoked synaptic activity is silenced for 5-15 minutes, then it 
spontaneously returns to normal; whereas in pathological 
conditions (such as head trauma, hypoxia-ischemia, hypo-
glycemia) depolarization waves start spontaneously and the 
recovery period is prolonged [14]. 

 Spreading depolarizations of neurons and glial cells on 
the cortical surface are preceded by propagated field oscilla-
tions that create a brief moment of hyperexcitability that 
covers distances up to 1 mm [15]. There is a complete si-
lence of electrical activity after these oscillations and this 
electrical silence turns back to normal in 5 to 10 minutes [1]. 
The silencing of the neurons is accompanied by perturba-
tions in ionic homeostasis and increased release of excitatory 
amino acids from neurons [16]. 

 Events leading to initiation of SD waves are not clearly 
understood yet, but increased extracellular levels of K+ [17] 
and excitatory amino acids especially glutamate are proposed 
as triggers for SD occurrence [18]. Moreover, depolarization 
of neurons removes the voltage-sensitive Mg2+ block of the 
N-methyl-D-aspartate (NMDA) receptors, and makes the 
receptor more sensitive to fluctuations of interstitial gluta-
mate levels [19]. Interactions between glutamate and NMDA 
receptors trigger further K+ and glutamate release hence in-
crease the excitability of brain tissue and make the neuronal 
depolarization pass through to neighboring regions [17]. 

 During the passage of spreading depolarization waves, 
extracellular K+ levels increase, whereas Ca+2, Cl- and Na+ 
levels significantly decrease [14, 20]. At the same time, pH 
declines from 7.3 to 6.9 and extracellular space shrinks due 
to increased water uptake into neurons [21]. This event leads 
to reversible neuronal swelling while the volume of astro-
cytes remains stable as they express significant amounts of 
volume sensitive channels that allow rapid efflux of taurine, 
aspartate and glutamate [22-25]. There is also a massive  
efflux of glutamate and aspartate from the neurons during 
the depolarization wave [26, 27]. Recently, neuronal  
swelling was found to be associated with a novel chloride 
channel SLC26A11 mutation leading to Na+ and Cl- influx, 
but it was independent of Ca+2 influx leading to cytotoxic 
neuronal edema [28]. 

 SD is also associated with an increased synthesis of ma-
trix metalloproteinase-9 (MMP-9) [29] Fig. (2). Increased 
MMP-9 activity causes opening of the blood-brain barrier 
and results with vasogenic edema formation [30]. Other  
pro-inflammatory cytokine pathways are also found to be 
upregulated [31]. There are also signs of immediate early 
gene expression in response to SD [32]. 

1.2. Effects on Blood Flow and Energy Metabolism:  
Accompanying Conditions 

 Inside the depolarized tissue, cerebral blood flow briefly 
decreases just before the onset of depolarization [33]. As the 
ionic changes are restored, cerebral blood flow (CBF) in-
creases by approximately 100% to 200% in anesthetized 
animals [34], which lasts for 1 to 2 minutes. This period is 
called hyperemic phase of SD. It is followed by a persistent 
blood flow reduction of 20% to 30% of baseline value that 
lasts 1 to 2 hours, termed as oligemic phase. However, this 
pattern of brief hyperperfusion followed by hypoperfusion is 
mainly observed in healthy and energetically stable brain 
tissue. Recovery from SD and normalization of membrane 
potentials and extracellular as well as intracellular ionic he-
mostasis requires optimum amount of energy. Hence, during 
pathological conditions accompanied by energy deprivation 
like stroke and trauma, SD is observed to trigger a cortical 
spreading ischemia [35, 36], and in stroke patients the cere-
brovascular changes triggered by SD vary greatly in the pe-
numbra depending on the distance to the infarct core [37]. 
The regional CBF changes might also create a mismatch 
between oxygen demand and supply for the already energeti-
cally compromised tissue, which may lead to tissue hypoxia 
[23, 38]. Recovery of the ionic homeostasis after SD is an 
energy demanding process and metabolic rate rises signifi-
cantly during this process [39]. For this reason, continuity of 
normal blood flow supply is critical to guarantee the brain’s 
needs of glucose and oxygen during this high-energy requir-
ing period. 

 Main energy consuming enzyme during SD is Na+/K+-
ATPase. This pump restores extracellular K+ levels using 
ATP [40]. During an SD wave, extracellular K+ levels rises 
up to 60-100 mmol/L and Na+/K+-ATPase tries to drop it to 
around 3 mmol/L. Re-establishment of ionic hemostasis en-
ables neurons to repolarize. The rise in cytosolic Ca+2 during 
SD depolarizes neuronal mitochondria and increases the 
oxygen use through the Ca+2 uniporter that is located in the 
inner mitochondrial membrane [24]. A recent study in mice 
demonstrated that the disruption of mitochondria in ischemic 
and traumatic injuries is reversible and can be a possible 
therapeutic target [41]. Additionally, presynaptic NMDAR 
activation creates a positive feedback loop of glutamate in-
duced glutamate release via both Ca+2 influx from extracellu-
lar space and mitochondria by mitochondrial Na+ / Ca+2 ex-
changer [42]. Takano et al. observed that even when there 
are no significant changes in cerebral perfusion, or at the 
hyperemic phase, local tissue hypoxia occurred during SD 
due to the increased metabolic rate and energy demand [23]. 
This prolonged mismatch between oxygen demand and sup-
ply has been suggested to contribute to the pathogenesis of 
some other neurodegenerative diseases [43]. Takano et al. 
also pointed out that there are transient morphological 
changes in dendritic structures accompanying SD such as 
spine loss, that are comparable to the ones observed during 
anoxic depolarization [23]. A recent in vivo experiment also 
showed that there is dendritic beading during SD and this 
beading was strictly dependent on the presence of chloride 
ions, and the blockage of all chloride coupled transporters  
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significantly reduced dendritic beading but did not have any 
effect on the SD waves [44]. SD also activates glycolytic 
pathways leading to an increase in brain lactate levels and 
reduction in brain glycogen. On the other hand, the concen-
tration of energy-rich phosphate compounds remains the 
same in normal brains [45, 46]. There are also reports sug-
gesting that depolarizations are associated with progressive 
reduction in brain tissue glucose via monitoring of extracel-
lular brain glucose concentration with microdialysis in pa-
tients with traumatic brain injury [46, 47]. Whether this state 
of energy depletion delays the recovery of cortical function 
or not, depends on the persistence of oxygen and glucose 
supply. Acute CBF responses during SD waves are also 
found to be varying between species [48]. 

 All of these listed evidences for SD induced blood flow, 
metabolic and enzymatic changes point out the importance 
of spreading depolarization in nervous tissue and SDs may 
have a significant role in several neurological diseases as a 
main mechanism or as secondary conditions leading to det-
rimental effects in tissue. Some examples of aforementioned 
neurological conditions are discussed below in regard to 
pathophysiological effects of spreading depolarizations. 

1.2.1. Migraine 

 Migraine is a common neurological disorder and an im-
portant health care problem. It is characterized by recurrent 
attacks of headache variable in intensity, frequency and dura-
tion and has two major subtypes, with or without aura. Its 
prevalence is around 10 percent per year (changes between 3 
and 11.2 according to region; [49]). The migraine aura is a 
transient neurological disturbance that occurs 10-20 minutes 
before the migraine headache. In humans, visual auras are 
the most commonly observed ones and mostly present with 

scintillating scotomas or visual field defects. But auras with 
different clinical presentations are also recorded suggesting 
that various brain regions might be involved in other kinds of 
migraine auras like tingling sensations, talking difficulties, 
etc [9, 50]. It is demonstrated that migraine aura induced 
blood flow changes and speed of spread is very similar to SD 
waves [7]. Visual auras originate from Broadmann area 17 at 
occipital cortex, a region with the highest neuronal density. 
It is speculated that high density of neurons compared to 
astrocytes makes this region a poor K+ ion buffering area,  
hence an increased susceptibility to SD [51]. Intrinsic brain 
activity triggering SD waves that occur in cortex can lead to 
headache generation. It is proven that SD generated in the 
cortex led to activation of both brain stem trigeminal nuclei 
as well as trigeminal nerve endings around dural vessels and 
hence pain generation [11, 52]. Later on, Karatas et al. dem-
onstrated the pathway from SD to pain generation (Fig. 1). 
Wave front of SD, as an intrinsic brain activity, opens neu-
ronal Pannexin1 (Panx1) mega-channels [53] and this in-
duces activation of inflammasome complex and caspase-1 
and release of pro-inflammatory mediators such as high-
mobility group box 1 (HMGB1) from neurons and IL-1β 
from glia limitans. Those proinflammatory cytokines in turn 
stimulate trigeminal nerve endings around pial vessels lead-
ing to headache generation. Moreover, neuronal HMGB1 
release was found to be positively correlated with the num-
ber of the SDs, and multiple SD waves induced a robust 
HMGB1 release [54]. This robust HMGB1 release subse-
quently causes microglial activation by acting on the TLR2/4 
receptors. The significance of microglial activation is con-
troversial. It may contribute to neuroprotection by getting 
involved in synaptic repair on dendritic spines of the cortical 
neurons [54], or it might be causing detrimental effects on 
the tissue [55]. The major component of these activated mi-

 

Fig. (1). Cascade of events leading to trigeminal activation and headache generation after SD. Reproduced from Karatas et al. 2009, Science; 
with permission. 
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croglias was immunoreactive for Catepsin D, which sug-
gested enhanced lysosomal activity and active phagocytosis 
[56]. 

 Genetic factors are also known to increase susceptibility 
to SD occurrence. Familial hemiplegic migraine is a genetic 
form of migraine, which includes defects in neuronal sodium 
(SCN1A, FHM3), calcium channels (CACNA1A, FHM1) or 
in the glial Na+-K+ pump (ATP1A2, FHM2) [57, 58]. Trans-
genic mice models like the mutation of pore-forming subunit 
of neuronal Ca(V)2.1 channels present sensitivity to SD, has 
a reduced threshold for SD generation and increased propa-
gation velocity [59]. These genetic factors may increase the 
brain tissue’s sensitivity to external stimulation and hence 
generation of SD waves. It has also been shown that in these 
genetically susceptible brains, SDs also propagate to subcor-
tical regions such as basal ganglia, diencephalon and hippo-
campus, which might explain the prolonged hemiplegia, 
coma and seizure phenotypes in patients experiencing mi-
graine with aura [60]. Animal experiments also pointed out 
that potassium and glutamate clearance was also impaired in 
cortical astrocytes during neuronal activity in FHM2 knockin 
mice [61]. 

 Studies in transgenic mouse models with human mono-
genic-migraine-syndrome gene mutations pointed out that 
SD waves increased the sensitivity to focal ischemia and the 
suppression of SD waves in this model improved stroke out-
come [62]. A recent study revealed a positive correlation 
between migraine and risk of perioperative ischemic stroke 
[63] and a recent meta-analysis has concluded that migraine 
with aura, can be also considered an overall risk factor for 
cardiovascular diseases [64]. 

 Recently, Schain et al. demonstrated that SD waves  
close to the paravascular space can impair glymphatic flow 
in mice [65]. This might also be a novel therapeutic target in 
the future. 

1.2.2. Ischemic Stroke 

 Stroke is one of the leading causes of mortality and mor-
bidity worldwide. In addition to developing secondary pre-
ventive strategies, decreasing tissue damage after occlusion 
of cerebral vessels is also an important therapeutic approach. 
SD waves can also be called as peri-infarct or peri-lesion 
depolarization waves (PID) occur in ischemic brain tissue 
and may cause metabolic derangements leading to secondary 
tissue damage around the ischemic area. SD waves may lead 
to enlargement of energetically compromised peri-lesion 
tissue at early hours via supply-demand mismatch [38], and 
at late hours with the effect of continuing SDs through 
blood-brain barrier disruption that occurs due to increased 
matrix metalloproteinase (MMP) activity [29] (Fig. 2). Sub-
sequent edema formation and neuronal death might happen if 
the tissue is already energetically compromised. 

 Presence of SD waves has been described in the penum-
bra in a primate model of stroke induced by occlusion of the 
middle cerebral artery (MCAO) [66]. Similar events were 
noted after MCAO in humans [67, 68] and in rat, cat and 
mouse experimental ischemia models [69]. These PIDs ap-
peared spontaneously in the ischemic ‘penumbra’, adjacent 
to the acute ischemic tissue that was not irreversibly dama- 

ged yet, but was functionally and metabolically compro-
mised [70, 71]. Later, it was confirmed that there is directly 
proportional relationship between the number of PIDs and 
infarct size [72]. These experimental studies demonstrated 
that the infarcted tissue enlargement is correlated with the 
PID frequency [73-75]. Recently, it is demonstrated that PID 
waves occur due to supply-demand mismatch around 
ischemic penumbral area [38]. Although experimental stud-
ies informed us about the mechanisms and pathophysiology 
of PIDs, studies performed by COSBID research group in-
volving multimodal monitoring of patients at neurocritical 
care units demonstrated that SDs or PIDs occur in humans 
after stroke, hemorrhage or trauma and are correlated with 
lesion enlargement [2, 3, 38, 76-78]. 
 There is difference between blood flow responses to de-
polarization waves after SDs and PIDs in ischemic tissue 
compared to uninjured, metabolically non-demised tissue 
and this phenomenon is called “pathological inverse coup- 
ling”. In the uninjured brain which has enough energy, huge 
metabolic and blood flow changes can be restored. SD  
induces a wave of spreading hyperaemia (physiological 
neurovascular coupling) that supplies the tissue with the nec-
essary energy to restore ionic equilibrium [77, 79-82] How-
ever in the ischemic or injured tissue, depolarization waves 
induce a microvascular constriction that leads to a transient 
hypoperfusion instead of hyperemia [35, 83]. Furthermore, 
around the ishemic core area where there has normal or 
minimally decreased blood flow, changes in glutamate levels 
and glucose are detected. Pinczolits et al. measured minor 
glutamate elevations and slight glucose decrease at 5 mm 
from the infarct [84], which is consistent with other mi-
crodialysis measurements of perilesional SDs [85] which 
may add to progression of lesion enlargement. 

 Another recent study pointed out that neocortical stroke 
in rats causes BBB impairment in the ipsilateral hippocampal 
area, and this BBB opening is associated with SDs and sub-
sequent epileptiform activity [86], similar to the one reported 
in SAH patients [87]. Lapilover et al. also showed that both 
in vivo and in vitro exposure of albumin lowered the thresh-
old for SDs [86]. 
 Another important tissue is the age. Although stroke 
symptoms may occur at any age, the mean age of stroke is 
71 years in the United States [88]. Elder stroke patients also 
have higher mortality and comorbidity rates and cardiovas-
cular dysfunctions [89-96]. It has been found that age is an 
accelerating factor in the conversion of ischemic tissue into 
infarction [90, 91]. There are several studies implying that 
occurrence of prolonged SDs and different number of SD 
waves is detected according to the age. In animal studies, 
aged rats had fewer SDs than young ones, but these waves 
were prolonged and effective in larger areas [94]. Menyhart 
et al. suggested that SDs increase the acidic load in the al-
ready acidic ischemic penumbra thereby extending tissue 
acidosis and causing delayed call death, even more in elderly 
patients [97]. 

1.2.3. Subarachnoid Hemorrhage (SAH) 

 Even though the clinical management of aneurysmal su-
barachnoid hemorrhage significantly improved over the last 
decade, delayed cerebral ischemia (DCI) is the most com-
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mon cause of morbidity and mortality in patients with SAH. 
Delayed cerebral ischemia (DCI) is a clinical syndrome that 
consists of delayed ischemic neurological deficits (DINDs) 
and/or ischemic lesions and it occurs unpredictably in ∼30% 
of patients, 3-14 days after primary hemorrhage [98]. The 
occurrence of DINDs is correlated with the amount of the 
primary bleeding. Due to the fact that DINDs and hemolysis 
of the blood clot appear concurrently, it has been suggested 
that erythrocyte products such as hemoglobin (Hb) and po-
tassium ions may take part in its pathology [68, 99]. Sakow-
itz et al. demonstrated that clusters of SD waves can occur 
after SAH and compared to single SDs, clusters are more 
difficult for the tissue to manage or to re-establish metabolic 
changes occurred after SAH [68]. 

 In the normal brain tissue, the reaction between nitric 
oxide (NO) and oxyhemoglobin (oxyferrous Hb) creates 
methemoglobin (ferric Hb) [100]; whereas in the SAH since 
there is excess amount of blood, the reaction between NO 
and deoxyhemoglobin (ferrous Hb) forms NO-hemoglobin 

[101-104]. The decline of NO levels in patients with DINDs 
[105] also proves that NO is an important factor for normal 
blood flow supply to brain tissue leading to vasodilation. 
Hence, depletion of NO may lead tissue to hypoxia and 
ischemia [106, 107]. 

 The first evidence of SD waves that occur in SAH was 
the experiments using intracortical K+ and Ca+2 sensitive 
microelectrodes on cats [108, 109], but these studies gave 
limited information because the experiments were conducted 
in the initial hours after hemorrhage. To observe the delayed 
conditions and what happens during and after the subarach-
noid hemolysis, rat models were used, and the phenomenon 
of spreading ischemia was only discovered then [35]. In a 
recent article, spreading depolarization waves were not de-
tected in experimental SAH model until 72 hours and SD 
waves were recorded after DINDs occurred and it was ar-
gued that depolarization waves occur in SAH only after tis-
sue ischemia occurs [110]. A recently published retrospec-
tive study pointed out that higher CSF pH and lower CSF 

 

Fig. (2). Increased MMP-9 activity after SD induction as early as 3 hours after insult was detected with in-situ gel zymography. Contralateral 
hemisphere denoted as nCSD. Blood brain barrier opening and leakage demonstrated with Evans blue leakage also correlates with MMP-9  
activity (bottom graph). Reproduced from Gursoy-Ozdemir et al. 2004, JCI; with permission. 
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PCO2 might contribute to the development of DCI, possibly 
due to ineffective CSF drainage resulting from the inefficient 
removal of blood clot [111, 112]. Sakowitz et al. also de-
monstated that SDs can propagate in nonischemic brain tis-
sue and metabolic changes related to SD waves might be the 
sign of secondary damage in healthy brain tissue [113] and 
this may add to the enlargement of the affected tissue after 
SAH and may be an important target for the correct mana-
gement of the SAH patients at neurointensive care units. 

1.2.4. Traumatic Brain Injury (TBI) 

 The pathophysiology of TBI in humans is extremely 
complex due to the heterogeneity of the lesions. Primary 
injury may include mixtures of parenchymal contusion, in-
tracerebral hemorrhage, SAH, extraparenchymal hematoma, 
and diffuse axonal injury [114], and is frequently compli-
cated with secondary insults such as hypotension, hypoxia, 
fever and brain edema that leads to high intracranial pres-
sure. These factors increase the possibility of a breakdown in 
ionic homeostasis that may increase susceptibility to occur-
rence of SDs in TBI. A recent study demonstrated that sen-
sory cortical areas are more susceptible to SD occurrences in 
both mice and human brains and it was argued that this dif-
ference may be related to the complexity of cortical areas as 
well as differences in potassium buffering capacity [115]. 

 In clinical studies of patients with TBI that underwent 
neurosurgery, by using different monitoring techniques, 50% 
to 60% of the patients showed depolarization waves [116], 
although they were rare compared to ischemic stroke [77, 
117-119]. In these patients, it was observed that the patterns 
of depolarization waves differed extensively. They could be 
rare, single waves in some patients or they could be progres-
sive clusters of waves that repeat frequently. Also, Vespa et 
al. using cerebral microdialysis found that low glucose levels 
(<0.2 mmol/L) and increased lactate-pyruvate ratio (LPR) 
were common in severe TBI and low glucose levels were 
linked to poor outcome [120]. Similarly, Hinzman et al. 
showed abnormal glutamate and LPR levels (>10  µmol/L 
and >40  µmol/L, respectively) are correlated with increased 
SD occurrence rate in TBI patients [121]. This elevated LPR 
levels in TBI patients are also shown to be predictive of 
frontal lobe tissue atrophy at 6 months [122]. PIDs were also 
found to be associated with the secondary insults after TBI 
such as hyperthermia, hypotension and increased intracranial 
pressure (ICP) [119]. 

 In animal models of cerebral contusion, it was observed 
that only a single depolarization wave was triggered by the 
primary insult. They have recorded only a few or even no 
spreading depolarization waves in subsequent hours after 
primary insult [123, 124]. Results from animal models of 
TBI should be assessed with caution because they rarely 
replicate the complexity of primary and secondary injuries in 
TBI patients. 

1.3. Previously Tested Therapeutic Approaches 

 As SD clusters are proven to play a significant role in the 
pathogenesis of aforementioned neurological diseases, pre-
vention of recurring SD waves in acutely injured brain tissue 
has been an intriguing and challenging subject. Studies made 

in gyrencephalic swine brain have shown that NMDAR an-
tagonist ketamine decreases speed, duration, spread of SDs 
in low-dose infusion (2 mg/kg/h), and inhibits induction and 
expansion of SDs in high-dose infusion (4 mg/kg/h) [125]. 
Similar results were obtained in rats [126], swine [127] and 
human patients [128, 129]. There are studies suggesting that 
low dose of ketamine (2 mg/kg/h) in swine brain was not 
effective at preventing the hemodynamic response in the 
oligemic phase, but reduced the initial hyperemic response to 
SDs [127]. Sedatives that are frequently used in intensive 
care units such as isoflurane, sevoflurane and propofol have 
been studied as potential therapeutic agents. Takagaki et al. 
has shown that isoflurane is more effective than propofol in 
preventing SDs and suggested isoflurane to be preferred as 
the sedative agent in acute ischemic stroke and trauma pa-
tients [130]. Animal experiments also show that isoflurane 
reduces the frequency of SDs during focal cerebral ischemia 
in rats and therefore have neuroprotective effects [131]. An-
other study of isoflurane shows that it prevents acquired epi-
lepsy in rat models of temporal lobe epilepsy [132]. Experi-
ments on pentobarbital have conflicting results [131, 133]. 
Chronic administration of migraine prophylactic drugs such 
as topiramate, valproate, amitriptyline, and methysergide has 
also shown to suppress SDs in a dose dependent manner, but 
chronic D-propranolol treatment was found to be ineffective 
at suppressing SDs [134]. Tonabersat is another promising 
SD inhibitor drug with potential uses in migraine prevention. 
It has been shown to reduce the median frequency of aura 
attacks by 71%, but has no effect on non-aura attacks [135]. 
Pregabalin, a GABA analogue, has also been shown to be 
effective at suppressing the initiation, wave speed and  
subcortical propagation of SDs in vitro [136]. Although  
there are many different experimental therapeutic agents 
(Fig. 3), there is no consensus on a particular agent in humans 
to be used. 

1.4. Non-pharmacological Management Options of SDs at 
Intensive Care Units 

 In addition to pharmacologic agents, there are several 
clinically relevant applications that might inhibit the occur-
rence of SD waves and stabilize the perilesional tissue [13]. 
Normobaric hyperoxia [137], temperature control [138] and 
glucose management [139-141] have been shown to decrease 
the rates of SD waves and they must be considered as impor-
tant management points for the patients followed in intensive 
care units. 

 SD stimulates fast glucose consumption leading to glu-
cose depletion within minutes [39, 46, 142-147] and hypo-
glycemia prolongs the recovery period from SD, suggesting 
that glucose is essential in restoring the transmembrane ionic 
gradients after SD [39, 144, 148]. It has been shown that 
peri-infarct SDs can be suppressed in hyperglycemic patients 
[140, 149, 150]. Hoffmann et al. demonstrated hyperglyce-
mia in rats elevated electrical thresholds for triggering SD, 
and reduced frequency of KCl-induced SD [139]. 

 SDs are shown to increase brain temperature in intra- 
cerebral hemorrhage and TBI patients [119, 138, 151]. Hart-
ings et al. also discussed that high core temperatures were 
associated with higher risk of depolarization, suggesting 
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temperature control as a potential preventative measure for 
secondary insults [119]. 

 Several studies have also shown that personalized man-
agement of cerebral perfusion pressure (CPP) is beneficial to 
patients with TBI [152, 153], and low CPP values are known 
to increase depolarization risk [154, 155] and reduce the 
neurovascular responses to depolarization [119, 156, 157]. 

 Altogether, if the factors listed above may be followed 
and/or managed closely at intensive care units, morbidity 
and mortality of patients with stroke, SAH and traumatic 
brain injury may decrease significantly and may help to limit 
secondary tissue damage. 

1.5. Future Directions and Research Limitations 
 In the last 15 years, monitorization of SDs in patients 
after stroke and brain trauma at intensive care units has been 
established in multiple centers under the framework of Co-
Operative Studies on Brain Injury Depolarizations 
(COSBID). More than 500 patients have been monitored in 
multiple centers in various countries, and multiple trials are 
currently in process, such as DISCHARGE-1, Invasive and 
Non-Invasive Monitoring of Spreading Depolarization by 
Electrocorticography in Trauma and Stroke (INSPECT), 

NEWTON trial (Nimodipine microparticles to Enhance re-
covery While reducing TOxicity after subarachNoid hemor-
rhage) and MHS trials [158]. Although the monitorization of 
the actual patients pointed out some pathological pathways, 
there have also been some limitations of human trials of 
SDs. As ECoG is an invasive technique that requires elec-
trode strips placed directly on top of the cortical surface, it 
can only be done in patients who are in need of neurosur-
gery, and as the level of consciousness alters in these pa-
tients, it is difficult to assess clinical symptoms of SD waves. 
More importantly, there is no clinical trial that demonstrates 
a benefit on the patient outcome. Secondly, initial lesions 
differ between patients and the location of the electrode and 
its distance to the lesion are also factors that might alter the 
results. The question that arises from these limitations is, 
how can SDs be identified in the absence of cortical strips. 
Marching pattern and transient nature of neurological defi-
cits might make a physician assume that there are SDs, but 
forming a noninvasive diagnostic method is still an intrigu-
ing research subject. There have been some attempts of ima- 
ging SDs noninvasively. Previously, voxel based morphome-
try in high-resolution, three dimensional magnetic-resonance 
imaging was found to be effective in measuring learning 
induced brain plasticity [159]. A recently published article 

 

Fig. (3). Proposed effects of possible therapeutic agents that may be used in either occurrence or progression of SD waves. Topiramate may 
inhibit AMPA and kainate receptors and voltage dependent sodium channels while potentiating GABAA receptors. Ketamine and isoflurane 
inhibit NMDA receptors. D-propanolol inhibits both voltage dependent sodium channels and β-adrenergic receptors. Valproate inhibits voltage 
dependent sodium and calcium channels and also inhibits GABA transaminase therefore increases GABA in the synaptic cleft. Pregabalin 
inhibits voltage dependent calcium channels. Tonabersat inhibits astrocytic gap junctions. Propofol potentiates GABAA receptors. 
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also suggested that structural MRI might also be used in 
monitoring functional changes like blood volume, blood 
flow and tissue oxygenation [160]. BOLD-fMRI has also 
been proposed as an alternative to gadolinium contrast agent-
based perfusion assessment in acute stroke as it can signifi-
cantly identify microvascular hypoperfusion in severely hy-
poperfused tissue in acute stroke [161]. 
 While SDs are present as aggravating factors in many 
pathological conditions such as migraine, ischemic stroke, 
trauma and subarachnoid hemorrhage, there is also evidence 
suggesting that they might have neuroprotective effects 
[162]. It has been discussed that these neuroprotective prop-
erties may be due to uncoupling protein-5 (UCP-5) trigger 
[162], which is known to have a long-term effect upon neu-
ron protection [163]. Also, brief acidosis in ischemic condi-
tions are considered neuroprotective, which is called “pH 
paradox” [164-170]. This brief acidosis period was also re-
ported to reduce stroke infarct size [164, 169]. Additionally, 
studies show that pre-conditioning cortex with SDs provides 
neuroprotection against subsequent ischemia which is char-
acterized by decrease in final cell death and infarct size [171-
175], and is thought to act likely by upregulation of cytoki-
nes and growth hormones [171, 176, 177], as well as down 
regulation of metabolism [178] and altered neurotransmis-
sion [179]. Also SDs potentially have a role in induction of 
neurogenesis and plasticity [180-182]. Therefore, it is still a 
topic of debate whether SDs should be considered com-
pletely pathological, or sometimes beneficial, and whether 
these two properties are mutually exclusive and if so how to 
distinguish them. 
 Another important issue is the translation of the know-
ledge gathered through experimental animals to humans. 
Humans, swine and cats have a highly folded and more 
complex cortex, termed as ‘gyrencephalic’ compared to 
small animals that are widely used in research, such as mice 
and rats (lissencephalic brains). They have much less cortical 
foldings. A recent study compared SDs in swine, rat and 
human brains and observed that in addition to the differences 
in the propagation patterns due to anatomical differences, 
both lissencephalic and gyrencephalic brains exhibit hetero-
geneous propagation of SD waves [183]. Furthermore, Santos 
et al. described these heterogeneous SD propagation patterns 
in gyrencephalic brains [184], and suggested using move-
ment-compensated intrinsic optical signal imaging (IOS) for 
the analysis of haemodynamic responses to SDs during sec-
ondary brain damage [185]. In the light of these findings, 
researchers must be cautious when translating research find-
ings and observations on lissencephalic brains to human. 

CONCLUSION 
 As an important contributor to the expansion of acutely 
injured brain tissue, SD waves point to new therapeutic tar-
gets and grant future studies. Especially prevention of recur-
ring SD waves may provide protection to metabolically de-
mised but functionally normal tissue around the lesion and 
may be a novel treatment option especially for stroke, SAH 
and traumatic brain injury. 
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