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Abstract: Tumor-infiltrating lymphocytes (TILs), identified on HE-stained histopathological images
in the cancer area, are indicators of the adaptive immune response against cancers and play a major
role in personalized cancer immunotherapy. Recent works indicate that the spatial organization of
TILs may be prognostic of disease-specific survival and recurrence. However, there are a limited
number of methods that were proposed and tested in analyses of the spatial structure of TILs. In
this work, we evaluated 14 different spatial measures, including the one developed for other omics
data, on 10,532 TIL maps from 23 cancer types in terms of reproducibility, uniqueness, and impact
on patient survival. For each spatial measure, 16 different scenarios for the definition of prognostic
factor were tested. We found no difference in survival prediction when TIL maps were stored as
binary images or continuous TIL probability scores. When spatial measures were discretized into a
low and high category, a higher correlation with survival was observed. Three measures with the
highest cancer prognosis capability were spatial autocorrelation, GLCM M1, and closeness centrality.
Most of the tested measures could be further tuned to increase prediction performance.

Keywords: TILs; spatial measures; histopathological images; survival; cancer prognosis

1. Introduction

Nowadays, we observe the rapid worldwide growth of mortality due to cancer, mostly
because of the aging population, and the burden of cancer will probably intensify much
more. Early and accurate prediction is the key to recovery and many efforts have been taken
to improve this process, but appropriate and efficient cancer treatment could also lead to a
significant increase in cancer patient survival. While there are many types of treatments
for different cancers, including surgery with chemotherapy and/or radiation therapy,
targeted therapy, or hormone therapy, immunotherapy that stimulates or suppresses the
immune system to help the body fight cancer has recently received much more attention.
Unfortunately, the immune responses following the same treatments may be specific to
each individual patient [1], which increases the importance of precision medicine in this
field. Increasing evidence indicates that interactions between tumor cells, tumor stroma,
and the tumor immune microenvironment could also evolve during the disease and could
impact the response to therapies [2]. Especially important are lymphocyte cells that have
a huge role in the immune-system response to many inflammatory diseases, including
cancer.

Whole-slide images (WSIs) of cancer tissues contain a significant portion of diagnostic
and prognostic data, which can be efficiently extracted by computational methods in a quan-
titative way to support fast and accurate clinical decisions. Important tissue structure and
different immune-system cells are usually quantified by a pathologist’s visual inspection of
hematoxylin and eosin (HE)-stained slides. Manual investigation of large HE images is slow
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and could be imprecise without any software assistance [3]. Computational profiling could
eliminate known problems of interrater reliability. Tumor-infiltrating lymphocytes (TILs),
identified in the close vicinity of the tumor and between the tumor cells on HE images, are
indicators of the adaptive immune response against tumors and play a key role in cancer
immunotherapy [4]. Increased TIL concentration can predict response to chemotherapy
and is associated with a survival benefit in breast cancer [5], non-small-cell lung cancer [6],
melanoma [7], or esophageal adenocarcinoma [8]. In breast cancer treatment, assessment of
TILs should be included in clinical guidelines very soon [5,9].

Recently, it has been noticed that there exists an association between the spatial context
of TILs and the impact on cancer patient survival [10,11]. Positions of lymphocytes detected
on HE images can be used to construct maps of TILs. Then, the maps could be evaluated
to measure the spatial heterogeneity of TILs. Unfortunately, in the literature, there are a
limited number of methods to analyze the spatial structure of TILs that were already tested.
In this work, we collected and evaluated 14 different measures of spatial heterogeneity
(termed spatial measures), including the one previously applied to TIL-map analysis,
and also methods developed for the analysis of imaging mass spectrometry or spatial
transcriptomics data. We tested these measures on TIL maps from 23 cancer types created
elsewhere [12] with the ultimate goal to find the most robust and efficient indices that could
be used for cancer prognosis.

2. Materials and Methods
2.1. Data

The analysis was carried out on the spatial maps of lymphocytic infiltrates generated
from the images of hematoxylin and eosin-stained tissue slides from The Cancer Genome
Atlas (TCGA) in a previous study [12]. The TIL maps were obtained by the use of convo-
lutional neural networks on images divided into small patches (50 × 50) and trained for
tumor-infiltrating lymphocyte detection [12]. In the original paper [12], the information
about TIL was stored using two TIL map scales: (i) binary (if there are TILs on the patch
or not); (ii) probability (values from 0.5 to 1; closer to 1 means a higher chance of TILs;
values smaller than 0.5 means that there are no TILs on the patch). These TIL maps were
made publicly available by the authors. In total, 7776 TIL maps generated for 7426 patients
representing 23 different cancer types were analyzed in this study (Table 1).

Table 1. Data description. TIL maps represent original images with TIL information, while regions
of interest (ROIs) are tissue regions separated during the data-preprocessing step. One or more TIL
maps were available per patient.

Cancer Acronym Patients TIL Maps ROIs

Adrenocortical carcinoma acc 92 323 391
Bladder urothelial carcinoma blca 179 179 223

Breast invasive carcinoma brca 1067 1068 1312
Cervical squamous cell carcinoma and

endocervical adenocarcinoma cesc 268 268 526

Colon adenocarcinoma coad 452 453 630
Esophageal carcinoma esca 156 156 223

Head and neck squamous cell
carcinoma hnsc 450 450 698

Kidney renal clear cell carcinoma kirc 513 514 626
Liver hepatocellular carcinoma lihc 365 365 490

Lung adenocarcinoma luad 479 480 662
Lung squamous cell carcinoma lusc 484 484 655

Mesothelioma meso 87 175 347
Ovarian serous cystadenocarcinoma ov 106 106 180
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Table 1. Cont.

Cancer Acronym Patients TIL Maps ROIs

Pancreatic adenocarcinoma paad 183 189 253
Prostate adenocarcinoma prad 403 403 548
Rectum adenocarcinoma read 165 165 251

Sarcoma sarc 255 255 316
Skin cutaneous melanoma skcm 434 448 611
Stomach adenocarcinoma stad 434 434 454

Testicular germ cell tumors tgct 149 154 190
Thymoma thym 121 121 152

Uterine corpus endometrial carcinoma ucec 504 506 699
Uveal melanoma uvm 80 80 95

2.2. Data Preprocessing

The preprocessing of raw TIL maps was performed in 3 steps: (i) Detection and
removal of dark lines (artifacts); (ii) separation of non-touching dark TILs areas into regions
of interest (ROIs); (iii) removal of background artifacts. In addition, images with fewer than
10,000 pixels (e.g., 100 × 100) were removed prior to analysis since normally WSIs, which
are analyzed in this study, are much bigger.

In the first step of data preprocessing (artifact lines removal), the total number of
pixels that were marked as TILs on a TIL map (pixel value > 0) was calculated separately
for each row and column of the image. Then, using a second-derivative method, the
number of TIL-marked pixels was compared between adjacent rows and columns. The
line representing artifact was detected and removed if the percentage of TIL-marked pixels
in particular row/column was higher than 20% of image width/height in comparison to
adjacent rows/columns (Supplementary Figure S1A,B).

To define the regions of interest (ROIs; Figure 1 and Supplementary Figure S1C), TIL
map was first binarized into regions with and without TILs and only regions with TILs
were selected. Unimportant regions with an area smaller than 10% of the total area of the
tissue were marked as background artifacts and removed. Before saving, all ROIs were
cropped (removing white background around tissue) to maximize the TIL region area on
the image (Supplementary Figure S1C).
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2.3. Methods for Spatial Structure Analysis (Spatial Measures)

Fourteen different measures of spatial heterogeneity of TILs calculated on medical
HE images were tested. Some methods were already used in the analysis of TIL maps, but
others were developed for different types of molecular data.

2.3.1. Methods Developed for Analysis of Spatial Molecular Data

The first group of methods is implemented in Squidpy software, and in general
allows for the identification of spatial patterns in tissue [13]. Squidpy is a Python-based
framework developed for spatially resolved omics data analysis. The following steps
needed to be carried out to allow an analysis of TIL maps. First, each TIL map was read
into the AnnData object that stores annotated data matrices in a form of coordinates of the
tissue pixels and two feature columns: probability and binary decision of being a TIL. The
column indicating the binary assignment was also used as a cluster indicator dividing the
data into TILs and other tissue. In Squidpy, spatial information is encoded using spatial
graphs, and description and quantification of spatial patterns are performed using several
metrics including Ripley’s F, G and L, spatial autocorrelation, and centrality scores (degree
centrality, closeness centrality, average clustering). Ripley’s statistics were taken for the
search radius equal to 50. The rest of the statistics were calculated for each cluster, but we
maintained the values only for the TILs cluster.

2.3.2. Clustering-Based Methods

In [10], several spatial measures based on affinity propagation (AP) clustering were
introduced. Affinity propagation identifies a subset of representative examples called
exemplars to detect patterns in data [14]. It does not require the number of clusters to
be defined before beginning the calculations, which can be a huge benefit and a huge
downfall at the same time; for large chunks of data, where data-point accumulation is
dense, the algorithm requires a lot of time to finish its calculations. Clustering results were
then utilized to estimate spatial heterogeneity using the following measures: Ball–Hall
index, Banfeld–Raftery index, C-index, and determinant ratio from clusterCrit R package.
Ball–Hall index is a method for data analysis and pattern classification. It is defined as the
mean of the dispersion across all the clusters which is equivalent to the squared distances
of the points of the cluster considering its center. Banfield–Raftery index is defined as
the weighted sum of logarithms of the traces of the variance–covariance matrix across all
the clusters. A detailed description of all other metrics could be found in clusterCrit R
package vignette.

2.3.3. Other Methods

Two other methods that originate from the analysis of imaging mass spectrometry
data were tested: a grey level-occurrence matrix-based method and spatial chaos.

A grey level-occurrence matrix (GLCM) is a second-order statistical texture-analysis
method for texture-feature extraction [15]. The method was implemented in EXIMS soft-
ware [16]. They assumed that structured images should have a pattern that contains a
large number of pairs of pixels with co-occurring low intensity values and co-occurring
high intensity values (the contrast between those two sets of intensity values shows a clear
structure) [16]. The method starts by reducing the number of intensity levels to 8 and then
the standard procedure of GLCM is carried out. After that, the weights can be introduced.
The weights are different for each element of the GLCM matrix and are used to obtain two
measures, M1 and M2, which stand for areas (regions) with low and high intensities.

Spatial chaos (SC) is a method for measuring the spatial structure of ion-intensity
maps [17]. It was introduced as solution to problems that occur while analyzing the
MALDI-IMS data sets, i.e., detecting unknown molecules and testing for the presence of
known molecules. The goal of the method is to rank the level of structure on the image.
The high SC is defined as a lack of spatial pattern in the pixel intensities [17]. For each
spectral feature the ion-intensity map is created and a two-step edge-detection filter for
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noisy images is applied to detect signal-intensity edges. Next, a one-nearest-neighbor
graph on edge pixels is built. The measure of chaos is calculated on mean length of the
graph edges. For images consisting of spatially connected structures (images displaying
spatially structured intensity patterns) the value of SC is low; for images with spatially
chaotic pixel intensities the value is high.

2.4. Survival Analysis

To score the quality of the chosen spatial measures in terms of accurate estimation of
overall survival (OS) or progression-free interval (PFI), Cox regression was calculated both
for continuous and discretized (low/high) data. To dichotomize continuous predictors in
survival analysis, a minimum p-value approach was used [18]. The method was developed
to select a cut-point with a maximum χ2 statistic when the outcomes are binary, but was
extended to also analyze the survival outcomes [19]. Briefly, for each spatial measure, a set
of 30 threshold values was estimated between 10 and 90 percentiles of spatial measures
scaled to 0–1 values. Feature values lower than the threshold were changed to 0 and values
higher than the threshold were changed to 1. For each threshold, the Cox regression model
was created, and the resulting p-value was stored. We set the penalized parameter of the
CoxPHFitter class to 0.1, which attaches a penalty term to the regression in order to improve
the stability of the estimates. Since there were 16 different scenarios of survival analysis for
14 spatial measures in 23 cancer types, we were not able to find the one optimal value of
the penalized parameter. The selected value was a good compromise for all cases. The final
division was obtained with the threshold for which the lowest p-value was received. In
each Cox regression model, patient age was added as a covariate. Two types of Cox models
were then examined: (i) original, including spatial measure and age covariate; (ii) adjusted,
extended with percentage of TILs as an additional covariate. All 16 possible scenarios of
survival analysis are listed in Supplementary Figure S2. The Kaplan–Meier graphs were
created on discretized data for OS as well as for PFI to present the quality of the predictors
and their influence on the survival. Infinity or NA values of the spatial measures were
dropped prior to analysis.

2.5. Statistical Analysis

A robust version of the coefficient of variation (CV) was used in this study. Strictly,
CV was calculated by dividing median absolute deviation by sample median. Finally,
the absolute value of obtained CV was used. The correlation between variables was
estimated using both Pearson and Spearman sample correlation estimators. All two-group
comparisons were performed using a non-parametric Mann–Whitney U test. For all tests,
the statistical significance level was set to 0.05. Two-sided tests were performed in all cases.

3. Results
3.1. Definition of Region-of-Interest (ROI)

The TIL maps downloaded from the publicly available repository contained a signif-
icant amount of very small regions that were probably an artifact of background noise
left after thresholding (Figure 1 and Supplementary Figure S1). In addition, additional
line artifacts were present. We introduced a few data preprocessing steps to remove these
small regions and other artifacts and define ROIs on which spatial measures could be
calculated. In the analyzed images we found two different situations: (i) different tissue
fragments were present on the same slide (Figure 1A); (ii) two adjacent slices of the same
tissue fragment were put on the same slide (Figure 1B). After data preprocessing, from a
single TIL map, one to three regions were created, increasing the total number of analyzed
images by 35% to 10,532 (Table 1). However, the total size of the images was reduced by
cropping the background area around the tissue.
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3.2. Different Representation of TIL Maps

In the original paper [12], TIL maps were stored in two scales: (i) binary, including
only information of whether TILs are present or not; (ii) probabilities from deep-learning
models, with values ranging from 0.5 to 1 (patches with values lower than 0.5 were not
counted as TILs). For seven metrics, excluding spatial measures calculated with Squidpy
software, we obtained separate values for these two formats. In some cases, it was not
possible to calculate the exact value of some spatial measures since NA or infinity values
were estimated (Supplementary Figure S3). This problem was mostly observed for TIL
maps with probabilities, where for two cancer types (meso and paad) no values could be
estimated for three measures: GLCM M1, GLCM M2 and determinant ratio.

We first compared the values of spatial measure between two TIL map scales, binary
and probabilities, by calculating the Spearman correlation coefficient (Figure 2). The
highest correlation (close to 1 for each cancer type) was found for the Banfeld–Raftery
index; however, in some individual cases, the values calculated on binary TIL maps were
much lower than the one calculated on TIL maps with probabilities. GLCM M2 and spatial
chaos showed the lowest correlation. For the spatial chaos measure, there is a group of TIL
maps for which the same value was calculated on both TIL map scales (Figure 2B; diagonal
line), but in some cases we observed much lower spatial chaos values calculated on TIL
maps with probabilities.
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Figure 2. Comparison of spatial measures between two formats of TIL maps. (A) Spearman correla-
tion of each spatial-measure value within each cancer type between binary and probability TIL maps.
Black rectangles represent cases where NA values were present for all images within cancer type for
at least one TIL map scale. (B) Scatter plots visualizing results for individual TIL maps within each
spatial measure.
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3.3. Reproducibility of Spatial Measures across ROIs and Variation across Patients

Since there was more than one ROI for some groups of TIL maps, we were able to
establish the reproducibility of each spatial measure across ROIs by calculating the robust
coefficient of variation (CV) separately for binary TIL maps and the one with probabilities
(Figure 3A,B). The highest average CV was observed for the determinant ratio for both TIL
map scales, where in some cases, huge differences between ROIs of the same patient were
observed (CV > 10). The lowest CV was observed for Ripley G; however, in most situations,
CV was equal to 0, meaning the same value for all ROIs. Other methods showed similar
levels of reproducibility. In the subsequent analysis, the spatial measures for the ROIs that
belonged to the same patient were averaged. We did not weight the measures by the ROI
size during averaging, since we assumed that they should be independent of the ROI size.
If the spatial colocalization is the same on the bigger and smaller tissue fragment, a good
spatial measure should give the same value.
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Figure 3. Variation of spatial measures across ROIs and patients estimated by robust coefficient of
variation (CV). Boxplots shows reproducibility of measures calculated on different ROIs from the
same patient for binary TIL maps (A) and probabilities (B). Heatmaps represent CV across patients for
binary TIL maps (C) and probabilities (D). Black rectangles show situations where spatial measures
could not be calculated or median across patients within the same cancer type was equal to 0.
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To test if spatial measures are different enough between patients, to represent different
survival rates after treatment, we calculated the CV across patients (Figure 3C,D). Ripley’s F
and G indices gave the same values for each patient within each cancer type. In addition, the
average clustering measure was similar between patients. The highest variability within each
cancer type was observed for the GLCM M2, Banfield–Raftery, and determinant ratios. For
uvm cancer and TIL maps with probabilities, the CV of spatial chaos measure could not be
estimated, because the median value across patients was equal to 0.

Finally, we calculated the correlation between spatial measures for all cancers and
TIL map scales (Supplementary Figure S4). We found that there is a strong positive
linear correlation between two cluster centrality scores—degree centrality and closeness
centrality—and also between two GLCM-based measures (Supplementary Figure S4, upper
triangle). Other associations were rather nonlinear (Supplementary Figure S4, lower
triangle). We also observed a strong positive correlation between Ball–Hall, Banfeld–
Raftery, and C-Index, and strong negative correlation between Banfeld–Raftery and the
determinant ratio.

3.4. Survival Prediction by Different Measures in Cancer Patients

Due to low reproducibility or low variation across patients within each cancer type,
the following measures were not used in survival analysis: Ripley F, Ripley G, average
clustering, and determinant ratio. Furthermore, the Banfeld–Raftery index was used only
for TIL maps with probabilities. On the remaining 10 measures, we ran the survival
analysis using original and TILs percent adjusted Cox model for two survival endpoints
(OS and PFI), using continuous spatial measure scale and discretized into low/high groups
(Supplementary Figure S2).

Overall results of survival analysis showed that different spatial measures work well
in different cancer types; however, there is no strong single candidate for the best measure
for prediction of cancer patient survival (Figure 4). Across cancers, the highest correlation
of spatial measures with survival was observed for tgct and thym for OS and cesc and
uvm for PFI (Figure 4A,B). We found no significant difference in survival prediction
performance when TIL maps were stored as binary images or continuous TIL probability
scores (Supplementary Figure S5A). What was expected was that when the percent of
TILs was added as a covariate in COX model, we obtained worse performance in survival
models (Supplementary Figure S5B). There was a better performance when OS was used as
a survival endpoint than PFI (Supplementary Figure S5C). Finally, when measures were
discretized into a low and high category, a higher performance of survival models was
observed (Supplementary Figure S5D).

Since no difference between TIL map scale was observed, difference between cancer
types were analyzed only for binary TIL maps (Figure 4C,D, Supplementary Figures S6
and S7). To find the best spatial measures, for each cancer, endpoint, and Cox model
type, we ranked the measures based on Harrell’s concordance index. The three measures
with the highest cancer prognosis capability resulting from averaged ranking were spatial
autocorrelation, GLCM M1, and closeness centrality. Furthermore, all three measures had
similar positions in ranking for different endpoints and Cox model types.

Finally, skcm cancer type was chosen for further analysis (Figure 5), but all results
of survival analysis were stored in Supplementary File S1. For this cancer type, lower
values of spatial chaos, Ripley L, spatial autocorrelation, and Banfeld–Raftery prognose
longer survival. On the other hand, higher values of percent of TILs, degree centrality, and
closeness centrality were associated with longer survival. Similar findings were obtained
for survival analysis on continuous and discretized spatial measures, and in most cases
were significant even after adjustment by percentage of TILs (Figure 5A,B).
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Figure 4. Result of survival analysis. Top: Distribution of Harrell’s concordance index from survival
analysis across different cancer types for overall survival (A) and progression-free interval (B). Bottom:
Heatmaps presenting hazard ratios per cancer type and spatial-measure scale (continuous or discretized)
for overall survival (C) and progression-free interval (D). Single star indicates p-value lower than 0.05,
and two stars lower than 0.01.
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Figure 5. Detailed survival analysis results for skcm cancer type. Forest plots compare hazard ratios with
confidence intervals between spatial measures for each Cox model type and measure scale separately for
binary TIL maps (A) and probabilities (B). Kaplan–Meier curves of selected discretized spatial measures
for adjusted model: spatial chaos (C) and Ripley’s L (D).
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4. Discussion

The obtained results show that patients with higher densities of TIL maps are among
those with the longer survival, which further underlines that the correlation between the
level of lymphocytes infiltration and the OS or PFI is true to a certain degree. The results
also reflect that the TIL percentage as a predictor can be used with a limited success, the
reason being that the TIL percentage might not be a sufficient factor as other information
such as TIL localization, and the structures it forms could also affect the cancer survival;
therefore, the percentage itself cannot be used as a robust and accurate predictor. What
is noteworthy is that the higher infiltration does not necessarily mean that any type of
structure was formed (e.g., lymphocytes that envelope the cancer cells). This further
underlines the fact that that the simple density does not account for other factors that
might be crucial to the correct prognosis. While for types such as brca, luad, and lusc,
the percentage densities were comparable, in another tumor types such as paad the TIL
densities were much lower; the dataset consisted mostly of tissues for which the percentage
was below 5%.

Recent works have shown that spatial organization of TILS could be used as a prog-
nostic factor of disease-specific survival and recurrence [20]. In early-stage non-small-cell
lung cancer, they propose scores that capture density and spatial colocalization of TILs
and tumor cells that can predict likelihood of recurrence [21]. Another pan-cancer study
introduces the maps of TILs that are created with a convolutional neural network, used for
calculating associations of TIL local spatial structures with cancer type and survival [10].
In another work they examined the relationship between the global abundance and spa-
tial features of TIL infiltrates with clinical outcomes and showed that large aggregates of
peritumoral and intratumoral TILs were associated with the longer survival, whereas the
absence of intratumoral TILs was associated with increased risk of recurrence [22]. Another
measure was developed to characterize the spatial architecture patterns of TILs together
with surrounding cells for HPV-associated oropharyngeal squamous cell carcinoma and
was associated with DFS in low-risk patients [23]. ArcTIL was created for quantitative
characterization of the architecture of TILs and their interplay with cancer cells in three
different gynecological cancers [24]. Most of these measures were developed exclusively
for a given cancer; here, we review measures in terms of universal prediction models for
multiple cancers. In addition, the methods described above are much more complicated
and might include additional covariates or clinical features to be able to be calculated, while
we assumed that TIL maps should be enough.

In this work, we explored the clinical significance of 14 spatial measures of TIL maps
in multiple cancer types to help guide future treatment. Not all indices were significant
for all cancer types and the performance of survival models changed with each type of
tumor. Among the best prognostic factors, we found two measures from the Squidpy
package that were originally developed for analysis of spatial transcriptomics data, and
one measure originating from analysis of imaging mass spectrometry data (GLCM M1).
Thus, we proved that probably any spatial measure could be adapted for TIL-map analysis.
Interesting results were achieved for both measures based on GLCM matrices. In these
methods, there are multiple parameters (e.g., weight of pixels used during summarizing)
that could be easily tested and tuned to increase their efficiency in TIL-map analysis.

The study has some limitations. First, in the analysis we used TIL maps that were
provided by others [12]. In the original study, they showed high concordance of TIL
maps with expert annotations; however, they might not be perfect in some cases. The
spatial measures calculated on different TIL maps might bring slightly different survival
results; however, we assume that the average overall ranking should be similar. Another
limitation is that for some measures it is possible to obtain better results by tuning their
parameters; here, we used default values. The next limitation is that survival results
depend on the method used for dichotomization of each measure into low/high groups,
and the minimum p-value algorithm used here might not be optimal in all cases. Lastly, in
some WSIs, consecutive cuts of the same tissue were present, while in the others, different
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tissue fragments were stored. We expect that a higher reproducibility should be found
when consecutive cuts are analyzed as opposed to different fragments, but due to lack of
information on which ROIs are consecutive cuts, we could not check it.

We performed a comprehensive evaluation of 14 spatial measures, including different
representation of TIL maps, two Cox model types, two survival endpoints, and two scales
of spatial measures in 23 cancer types. We expect that the use of methodologies developed
in this study will guide future researchers and ultimately will lead to expanding the
knowledge on differences in TIL composition between different phenotypes. Sufficiently
precise TIL-based signatures of high metastasis risk or poor prognosis for cancer patients
will support the personalized treatment planning, minimizing the social and economic cost
of cancer, and maximizing the patients’ comfort of life in the future.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/jpm12071113/s1, Figure S1: Visualization of the data-
preprocessing steps on TCGA-QK-A8ZA-01Z-00-DX1 sample from hnsc cancer. (A) Raw TIL map.
(B) TIL map after removal of artifact lines. (C) Six regions of interest (ROIs) found after removal
of too small regions and image cropping; Figure S2: General scheme of the experiment presenting
different scenarios of analysis; Figure S3: Percent of missing values (NA) across all spatial measures
and cancers, calculated separately for binary TIL maps (A) and TIL maps with probabilities (B);
Figure S4: Pearson (upper triangle) and Spearman (lower triangle) correlation coefficients calculated
between different spatial measures in all scenarios of analysis; Figure S5; Distribution of Harrell’s
concordance index from survival analysis comparing TIL map scales (A), Cox model type (B), survival
endpoint (C), and spatial measure scale (D). Figure S6: Distribution of Harrell’s concordance index
from survival analysis across different cancer types; Figure S7: Heatmap presenting hazard ratios per
cancer type and spatial measure scale (continuous or discretized) for different scenarios of analysis.
Single star indicates p-value lower than 0.05, and two stars lower than 0.01; File S1: Detailed results
of survival analysis in all scenarios.
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