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Current practice of building QSARmodels usually involves computing a set of descriptors

for the training set compounds, applying a descriptor selection algorithm and finally using

a statistical fitting method to build the model. In this study, we explored the prospects of

building good quality interpretable QSARs for big and diverse datasets, without using any

pre-calculated descriptors. We have used different forms of Long Short-Term Memory

(LSTM) neural networks to achieve this, trained directly using either traditional SMILES

codes or a new linear molecular notation developed as part of this work. Three endpoints

were modeled: Ames mutagenicity, inhibition of P. falciparum Dd2 and inhibition of

Hepatitis C Virus, with training sets ranging from 7,866 to 31,919 compounds. To

boost the interpretability of the prediction results, attention-based machine learning

mechanism, jointly with a bidirectional LSTM was used to detect structural alerts for

the mutagenicity data set. Traditional fragment descriptor-based models were used

for comparison. As per the results of the external and cross-validation experiments,

overall prediction accuracies of the LSTM models were close to the fragment-based

models. However, LSTM models were superior in predicting test chemicals that are

dissimilar to the training set compounds, a coveted quality of QSAR models in real

world applications. In summary, it is possible to build QSAR models using LSTMs

without using pre-computed traditional descriptors, and models are far from being “black

box.” We wish that this study will be helpful in bringing large, descriptor-less QSARs to

mainstream use.

Keywords: QSAR (quantitative structure-activity relationships), machine learning, mutagenicity, big data, LSTM

(long short term memory networks), RNN (recurrent neural network), malaria, hepatitis (C) virus

INTRODUCTION

Quantitative structure-activity relationship (QSAR) based approaches have proven to be very
valuable in predicting physicochemical properties, biological activity, toxicity, chemical reactivity,
and metabolism of chemical compounds (Hansch and Fujita, 1964; Hansch and Leo, 1979; Zhu
et al., 2005; Cherkasov et al., 2014; Neves et al., 2018). QSAR approaches are increasingly being
accepted within regulatory decision-making process as an alternative to animal tests for toxicity
screening of chemicals [(M7(R1), 2018)].

From the beginning, QSAR is largely a process of relating a set of predictor variables (X) to
the response variable (Y) (Hansch and Fujita, 1964; Hansch and Leo, 1979). A vast amount of
research efforts has been spent on the methods for linking X and Y, and on the predictors or
molecular descriptors themselves. Physicochemical, graph theoretical, or mathematical descriptors
have helped the QSAR field to thrive (Karelson et al., 1996). However, descriptors are also becoming
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a liability (Ghasemi et al., 2018) becausemany of them are hard to
explain in terms of how they are related to the target activity, they
are indirect representations of chemical structures, introduce
human bias, and a significant software framework is needed to
compute the descriptors themselves. It is getting increasingly
difficult to find descriptors to build QSARs from diverse and
large datasets of bio-assays. Fragment-based descriptors solve
some of these problems, as fragments are direct representations
of chemical structures and easier to generate (Sutherland et al.,
2008; Salum and Andricopulo, 2010). However, selecting a few
relevant fragments from a large pool is a tough challenge, and
to make the situation worse, current fragment representations
produce large and sparse X matrices (Chakravarti, 2018).

With these issues in mind, our objective was to explore the
possibility of completely eliminating molecular descriptors for
building QSARs, primarily for large and diverse datasets. In this
study, we have used the deep learning abilities of long short-term
memory networks (LSTMs), to learn directly from SMILES code
of molecular structures. The methodology was applied to both
toxicity and pharmacological end points, using big training sets
ranging from 7,866 to 31,919 compounds. Use of deep learning
techniques in various areas of cheminformatics is increasing
rapidly in recent years (Goh et al., 2017). Recently Fooshee et al.
(2018) reported deep learning of chemical reactions by training
LSTMs directly using SMILES strings. Efforts of descriptor-less
QSARs have also been published (Alessandro et al., 2013; Coley
et al., 2017), however, they were based on smaller data sets,
required significant structure preprocessing software framework
and limited in scope. Toropov et al. (2008, 2009, 2013) used
so called “optimal descriptors” computed directly from SMILES
and InChI codes to model octanol-water partition coefficients
of Platinum complexes and vitamins and water solubility. Cao
et al. (2012) used fragments of SMILES code as descriptors to
create SVM based models for predicting various toxic properties.
However, descriptors are still involved in both of these studies,
and the training sets are small, <100 and 1,000 for Toropov et al.
and Cao et al., respectively.

LSTM networks are a type of recurrent neural network
(RNN) architecture used for modeling sequence data (Hochreiter
and Schmidhuber, 1997; Greff et al., 2015). Jastrzebski et al.
(2016) directly used SMILES via convolutional and recurrent
neural networks for building predictive models. Although this
work is conceptually quite similar, the publication lacks sufficient
details and the datasets are fairly small (mean size 3,000). They
reported identifying biologically relevant substructures using
data from convolutional filters but did not try the same from the
recurrent neural networks. A different type of approach reported
by Winter et al. (2019) and Gómez-Bombarelli et al. (2018),
who used conversion between molecular linear representations
to learn continuous latent vector forms of molecules and
consequently used them for QSAR or designing molecules. For
the present work, LSTMs are particularly advantageous because
they can work with training data that have input of different
lengths in different examples, can take advantage of same features
present at different positions in the input sequence data and
therefore, learn better. This is in contrast with a traditional
QSAR, in which the X descriptor matrix have to be of fixed

number of columns and column position of every descriptor
should remain fixed.

We have also developed a new linear molecular representation
for use with LSTMs. When processed with an attention-based
bidirectional LSTM, this linear notation proved to be suitable
for detecting structural alerts, i.e., parts of the molecules that
are related to the biological activity. Originally proposed by
Bahdanau et al. (2014), attention-based modeling has gained
considerable popularity in the field of deep learning (Luong
et al., 2015).When implemented in LSTMs, attentionmechanism
selectively focuses on certain parts of the input sequence instead
of giving equal importance to the whole sequence.

MATERIALS AND METHODS

Data
Three large datasets with significant number of actives were
chosen to cover both toxic and pharmacological effects of
compounds. The activity outcomes are binary, i.e., active
and inactive.

Ames Mutagenicity
A database of 23,442 compounds with known Ames test
outcome was assembled from various public and proprietary
sources. Public sources include Chemical Carcinogenesis
Research Information System (CCRIS)1, National Toxicology
Program (NTP) study data (Tennant, 1991; National Toxicology
program), GENE-TOX TOXNET database2, Registry of Toxic
Effects of Chemical Substances (RTECS3; Sweet et al., 1999)
and European Food Safety Agency (EFSA)4 database. A set
of ∼12,000 proprietary chemicals provided by the Division of
Genetics and Mutagenesis, National Institute of Health Sciences,
Japan as part of their Ames/QSAR International Challenge
Project (DGM/NIHS, Honma et al., 2019) were also included.
Ames test results of these compounds include reverse mutation
assay on five sets of bacterial strains recommended by OECD
guideline 471 (OECD guideline for testing of chemicals, 1997),
with and without S9 metabolic activation, i.e., S. typhimurium
TA1535, TA1537 or TA97 or TA97a, TA98, TA100, and E. coli
WP2 uvrA, or E. coli WP2 uvrA (pKM101), or S. typhimurium
TA102 or E. coli WP2 or WP2/PKMN1. A compound was
categorized as overall Ames negative if it was tested negative
against all five strain sets, but positive if it was tested positive
in any one of the sets. For Japan NIHS compounds, only
class A (strong positives) and class C (clear negatives) were
included, class B (weak positives) chemicals were excluded.

1CCRIS (Chemical Carcinogenesis Research Information System). Available

online at: https://toxnet.nlm.nih.gov/newtoxnet/ccris.htm (accessed April 28,

2019).
2GENE-TOX TOXNET Database. Available online at: https://toxnet.nlm.nih.gov/

cgi-bin/sis/htmlgen?GENETOX (accessed April 28, 2019).
3RTECS (Registry of Toxic Effects of Chemical Substances), Available online

at: http://accelrys.com/products/collaborative-science/databases/bioactivity-

databases/rtecs.html (accessed April 28, 2019).
4EFSA (European Food Safety Agency). Database Specific for the Pesticide Active

Substance and Their Metabolites, Comprising the Main Genotoxicity Endpoints.

Available online at: https://data.europa.eu/euodp/data/dataset/database-pesticide-

genotoxicity-endpoints (accessed April 28, 2019).
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TABLE 1 | Composition of the training and external test sets.

Training data External test data

Data set Active Inactive Total Active Inactive Total

Ames mutagenicity 6,527 10,478 17,005 732 1,210 1,942

Inhibition of Hepatitis C Virus (HCV) 8,971 22,948 31,919 964 2,583 3,547

Inhibition of P. falciparum Dd2 3,948 3,918 7,866 968 998 1,966

Upon completion of all the preprocessing steps (described
below), the dataset contained 7,260 mutagenic and 11,687
non-mutagenic (total 18,947) chemicals.

Inhibitors of Hepatitis C Virus (HCV)
This dataset is from PubChem confirmatory bioassay AID
6518205. The aim of this bioassay was to identify novel HCV
inhibitors, using a highly sensitive and specific high throughput
assay platform which is based on an HCV infectious cell culture
system. The original dataset contains 343,600 compounds: 11,664
active, 271,341 inactive, and 60,595 substances with unspecified
activity. Only a part of the inactive chemicals was selected
randomly to prevent over-representation. After preprocessing,
35,466 chemicals remain (9,935 active and 25,531 inactive).

Inhibition of P. falciparum Dd2
This dataset is from PubChem primary screening bioassay
AID 23026. This assay determines inhibition of P. falciparum
Dd2 growth by measuring levels of P. falciparum lactate
dehydrogenase as surrogate of parasite growth. The original
dataset contains 13,533 compounds: 7,957 active, 5,489 inactive,
and 87 with unspecified activity. After preprocessing, 11,917
chemicals remain. In order to prevent over-representation of
active compounds, 4,916 active compounds were randomly
selected, and the rest 4,916 inactive compounds were added
to them.

Data Pre-processing
The datasets used in this study were subjected to some
common data preprocessing steps, i.e., aromaticity perception,
stereochemistry removal, neutralizing charges on certain atoms
and removal of alkali metal salt parts. Only the biggest
component of a mixture was retained; in case of duplicates, only
one chemical with the highest activity was retained. Chemicals
with more than 100-character SMILES code were removed for
ease of processing by the LSTM networks since the training data
is padded to same length before training, therefore, a few training
examples with long SMILES can negatively impact training times.
Also, excluding a few big molecules is not an issue when the
datasets are already quite large.

The mutagenicity dataset was subjected to some special
curation steps. Heavy metals and other known toxic metal salt
parts (Pt, Hg, Cd etc.) were retained and joined with their organic

5AID 651820. PubChem BioAssay Record. Available online at: https://pubchem.

ncbi.nlm.nih.gov/bioassay/651820 (accessed April 28, 2019).
6AID 2302. PubChem BioAssay Record. Available online at: https://pubchem.ncbi.

nlm.nih.gov/bioassay/2302 (accessed April 28, 2019).

counterparts. A mixture or an organic salt was removed if all of
its components were present as single compound entries in the
data. Remaining mixtures were examined manually and retained
only if the mixture’s activity was determined to be from a single
component. In case of duplicates, only one compound from the
set was retained after combining their mutagenicity outcomes.

In order to build and test the QSAR models, the datasets were
divided into training and external test sets as shown in Table 1.
The test sets were created by randomly taking out 10–20%
compounds from the dataset.

Computer Hardware
Microsoft Windows 10 64-bit OS based desktop computer, 64
GB RAM, 18-core i9-7980XE 2.60 GHz CPU with one NVIDIA
GeForce GTX 1080 Ti GPU was used.

Software
Python version 3.6.6 (Python Software Foundation), Keras
(Chollet, 2015), Google TensorFlow (Abadi et al., 2015) and R
version 3.5.1 (R Core Team, 2014) was used for implementing
various machine learning algorithms including LSTMs. An in-
house software library was used for various cheminformatics
operations, e.g., handling of chemical structures, molecular
fragmentations, and building the fragment-based models.

Linear Representation of Chemicals
Two types of sequential representation of molecular structures
were used for chemical structure input to LSTM neural networks:

Simplified Molecular-Input Line-Entry System

(SMILES)
We have primarily used canonical SMILES codes in this study
(Weininger et al., 1989). However, despite being immensely
useful and popular, conventional SMILES contain characters,
e.g., ring opening and closing numbers and parenthesis for
branches, that are difficult to map back to specific atoms in the
chemical structure, a step needed for detecting structural alerts.
Also, an atom is represented simply by its elemental symbol in
SMILES and the LSTMs will have to keep track of other atoms to
learn its characteristics, e.g., hybridization, number of attached
hydrogens, ring membership etc. Although LSTMs are very good
in recognizing such relationships in the input sequences, there
is no particular advantage in making them work harder to learn
such basic information in the molecular structures.

Frontiers in Artificial Intelligence | www.frontiersin.org 3 September 2019 | Volume 2 | Article 17

https://pubchem.ncbi.nlm.nih.gov/bioassay/651820
https://pubchem.ncbi.nlm.nih.gov/bioassay/651820
https://pubchem.ncbi.nlm.nih.gov/bioassay/2302
https://pubchem.ncbi.nlm.nih.gov/bioassay/2302
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Chakravarti and Alla Descriptor Free QSAR Using LSTM

TABLE 2 | Examples of molecular linear notation by circular traverse (MLNCT) coding.

Compound Canonical SMILES MLNCT representation*

Alanine CC(N)C(O)=O C3H3 C3H N3H2*C21 OH*O1

Tyrosine NC(Cc1ccc(O)cc1)C(O)=O N3H2 C3H C3H2*C21 c*OH*O1 cH*cH cH*cH c OH

Valsartan [H][n]1nnc(n1)c2ccccc2c3ccc(CN(C(C(C)C)C(O)

=O)C(=O)CCCC)cc3

nH n*n n*c c cH*c cH*cH*c cH*cH*cH cH*cH c C3H2 N3 C3H*C21 C3H*C21*C3H2*O1

C3H3*C3H3*OH*O1*C3H2 C3H2 C3H3

*N3–sp3 nitrogen; C3 - sp3 carbon; C2–sp2 carbon; C1–sp carbon; [c.]–aromatic carbon at a ring joint; [C3∧ ]–sp3 carbon in a three- or four-membered ring; C21–sp2 carbon with one

double bond; O1–Oxygen with one double bond; n–aromatic nitrogen; H2–two hydrogens.

FIGURE 1 | Processing a SMILES code using a unidirectional LSTM network. Activations from the LSTM unit at a particular step is denoted by ax . a0 is the initial

activation and is an array of zeroes. The output is the predicted probability which can be converted to an active/inactive format using a decision threshold.

Molecular Linear Notation by Circular Traverse

(MLNCT)
MLNCT is a new linear representation developed to solve the
alert detection issues of conventional SMILES. The MLNCT
algorithm starts from any heavy atom in the molecular structure
and successively travels outwards by one bond in each iteration
and records the connected atoms in each step. In the resulting
notation, every such step is separated by a space, and atoms
are separated by an asterisk within a particular step. Atoms are
coded as strings with multiple characters comprised of atom
symbol, hybridization, number of hydrogens, number of double
or triple bonds, charge, ringmembership etc. Every component in
a MLNCT code corresponds to one atom in the source molecule
and can be traced back if needed. Examples of MLNCT codes
of a few substances are shown in Table 2. Recently, O’Boyle and
Dalke (2018) developed a new type of SMILES notation which is
reportedly more suitable for deep learning of chemical structures,
however, this representation was mainly developed to address the
problems of invalid SMILES generated by deep neural networks
for de novo design of molecules and contain parenthesis and ring
numbers that are problematic for our purposes.

Model Building
Four types of models were built for every data set:

1. Long short-term memory (LSTM) models with canonical
SMILES (LSTM_SMILES).

2. LSTMmodels with MLNCT codes (LSTM_MLNCT).

3. Simple fully connected neural networkmodels withmolecular
fragment descriptors (FRAG_NN).

4. Logistic regression models with molecular fragment
descriptors (FRAG_LOGIST).

Model Building Using LSTMs
LSTM networks essentially contain a computing cell which
performs a loop of computation with as many steps as the length
of the input SMILES or MLNCT for mapping the molecule
to the output activity. As illustrated in Figure 1, the cell takes
one character of SMILES or an atom string of MLNCT code at
every step, and passes the computed activation value to the next
and therefore allows information to persist as the whole input
sequence is processed, i.e., in producing the output at a certain
step, it can use the information from inputs at earlier steps.
After the completion of all the steps, the LSTM cell produces
a probability value as the output, ranging between 0 and 1.
This value can be converted to an active/inactive class using a
decision threshold.

Pre-processing of LSTM input sequences
The LSTM network does not accept the molecular linear
representations as it is, rather it takes a sequence of fixed-sized
vectors generated from SMILES or MLNCT. Each character in
SMILES or an atom string in MLNCT is converted to a “one-
hot-vector” in which only one element is 1 and rest are all 0 s,
as shown in Figure 1. The length of each one-hot vector is equal
to the number of unique components in the training sequences
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and also referred to as the vocabulary size. Following are relevant
details for the two types of sequences used in this study:

1. SMILES: Each character of the SMILES code is converted to
a one-hot vector. Vocabulary size is 53, 34, and 30 for Ames,
Hepatitis C Virus and P. falciparum datasets, respectively.

2. MLNCT: Each atom string and spaces are converted to one-
hot vectors. Any atom type that appears <4 times in the
training set is converted to a special type called <unk>. The
vocabulary size is 106, 72, and 53 for Ames, Hepatitis C Virus
and P. falciparum datasets, respectively.

During prediction, linear representations of the query chemicals
are processed in the same manner. If any previously unseen atom
type is encountered in the MLNCT, it is converted to <unk>. In
case of a SMILES, the query molecule is labeled as out-of-domain
if an unseen character is encountered.

Training LSTMmodels
A validation split of 0.1 was used during training, leading to the
hold-out of 10% the training examples (i.e., the validation set)
that were used for assessment of the model while it is being
trained. The validation set prediction results were utilized in
tuning the hyperparameters, whereas the test set is used only once
after the model is built.

Tuning the values of various hyperparameters is essential
for successful training of LSTM networks and to determine
the structure of the network. The main hyperparameters are
learning rate, number of LSTM hidden neurons, batch size,
number of training epochs, and dropout rates. A combination

of systematic search and experimentation was used to determine
the appropriate value of the hyperparameters. Learning rate
was varied from 0.05 to 0.0001 in small intervals (e.g., 0.05,
0.01, 0.005 etc.), number of hidden neurons was varied as
64, 128, 256, 512 etc. and the batch size was varied as 28,
64, 128, 256, 512, and 1,024. Number of training epochs was
determined by observing when the prediction accuracy did not
improve anymore during training. Dropout rate, which is part
of a regularization technique for preventing overfitting, was
determined by gradually increasing its value from zero (i.e., 0, 0.1,
0.2, 0.3 etc.) and stopping as soon as the prediction accuracy of
the training set and the validation set becomes roughly the same.
If the validation accuracy is lower than that of the training set, it
usually is a sign of overfitting.

Model Building Using Molecular Fragment

Descriptors
Fragment descriptor-based models were built as representatives
of the conventional descriptor based QSARs. The model building
process consists of the following steps:

1. Convert the SMILES of the training chemicals to molecular
connectivity tables.

2. Generate extended-connectivity fragment fingerprint (ECFP)
style (Rogers and Hahn, 2010) atom centered fragments (from
1 to 5 bonds) from every atom of each training set chemical.

3. Create a fragment count matrix (X) for the unique fragments
discovered in step 2. The rows of this matrix correspond
to the training compounds and the columns correspond to
the fragments. The elements of this matrix are the counts of

FIGURE 2 | Identification of the mutagenicity structural alert for a query compound using the attention values on the MLNCT code processed through an

attention-based bidirectional LSTM model.
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individual fragments in training compounds. X is essentially
a sparse matrix in which majority of the elements are zeroes.
Also, create a column matrix Y, containing the activity labels
of the training chemicals.

4. Eliminate X matrix columns that occur in <5 training
compounds to prevent selection of fragments that may cause
overfitting. Also, perform descriptor selection to eliminate
X-matrix columns that are not relevant to the activity in
question. We have used the L1 regularization/Lasso regression
(Friedman et al., 2008) for this purpose. This usually results in
elimination of majority of the columns of the Xmatrix and the
resulting matrix is called X_small.

5. The final models were built by fitting Y and X_small using
either logistic regression (FRAG_LOGIST) or a simple fully
connected neural network (FRAG_NN). If logistic regression
is used, the magnitude of the coefficients of this model
indicates the relative importance of the fragment toward the
activity. Positive coefficients are referred to as Alerts and
negative coefficients are called as Deactivating Features.

Alert Identification Using Attention-Based
LSTMs
As mentioned before, bidirectional attention-based LSTM
networks were used for alert detection. It searches through the
input SMILES or MLNCT sequence to compute importance of
various parts of the sequence toward the activity. A small neural
network with one hidden-layer is placed between the encoder and
the decoder to accomplish the attention task. If an MLNCT is
used as input, the obtained attention values for every component
of the MLNCT string was recorded and mapped back into the
individual atoms of the query chemical. This process is shown
in Figure 2 for an example query chemical, where atoms with
the highest attention values accurately correspond to the nitroso
group, a known mutagenic functionality.

Performance Metrics
In order to assess and compare the performance of the models,
mainly the area under the curve (AUC) from the receiver
operating characteristic (ROC) curves were used. We also used
some standard metrics:

Sensitivity (SENS)= TP/(TP+ FN)
Specificity (SPEC)= TN/(TN+ FP)
Accuracy (ACC)= (TP+ TN)/(TP+ TN+ FP+ FN)
Balanced accuracy (BAL_ACC)= (Sensitivity+ Specificity)/2
Positive prediction value (PPV)= TP/(TP+ FP)
Negative prediction value (NPV)= TN/(TN+ FN)
Coverage (COVG) = Number of query compounds within
applicability domain/total number of query compounds.

Here, TP, FP, TN, and FN are the counts of true positive, false
positive, true negative and false negative compounds respectively.
The COVG is only needed when applicability domain conditions
are implemented.

The values of various metrics were recorded at specific
decision thresholds which were determined for every model
from the results of the 10-fold cross validations exercise and the
thresholds corresponding to the best BAL_ACC were used.

Model Validation
Following validation protocols were used for evaluating
the models:

1. Leave 10% out 10-times cross validation: Ten percent
chemicals were removed from the training set; the model was
rebuilt with the rest 90% and the excluded chemicals were used
as a test set. The process was repeated 10 times.

2. Y-Randomization: In this exercise, the activity labels of the
training set were shuffled, model was rebuilt, and the external

TABLE 5 | Ames mutagenicity models’ 10% out 10-times cross validation

prediction metrics.

Metric LSTM_SMILES LSTM_MLNCT FRAG_NN FRAG_LOGIST

Threshold 0.38 0.40 0.38 0.38

SENS 0.841 ± 0.025 0.830 ± 0.023 0.825 ± 0.020 0.833 ± 0.021

SPEC 0.892 ± 0.018 0.887 ± 0.023 0.906 ± 0.013 0.896 ± 0.014

ACC 0.873 ± 0.009 0.865 ± 0.008 0.875 ± 0.013 0.872 ± 0.014

BAL_ACC 0.867 ± 0.010 0.859 ± 0.007 0.866 ± 0.014 0.865 ± 0.015

PPV 0.829 ± 0.028 0.825 ± 0.030 0.845 ± 0.024 0.832 ± 0.023

NPV 0.901 ± 0.017 0.892 ± 0.012 0.893 ± 0.014 0.896 ± 0.014

AUC 0.935 ± 0.009 0.931 ± 0.005 0.936 ± 0.010 0.934 ± 0.010

TABLE 3 | Hyperparameter values for LSTM training using canonical SMILES as input.

Data set LSTM neurons Dropout rate Number of training epochs Size of validation set Learning rate Batch size

Ames mutagenicity 256 0.3 100 0.1 0.005 128

Inhibition of Hepatitis C Virus (HCV) 256 0.6 9,000 0.1 0.0001 256

Inhibition of P. falciparum Dd2 256 0.6 10,000 0.1 0.0001 256

TABLE 4 | Hyperparameter values for LSTM training using MLNCT codes as input.

Data set LSTM neurons Dropout rate Number of training epochs Size of validation set Learning rate Batch size

Ames Mutagenicity 256 0.3 170 0.1 0.001 256

Inhibition of Hepatitis C Virus (HCV) 128 0.2 300 0.1 0.0005 128

Inhibition of P. falciparum Dd2 512 0.7 2,700 0.1 0.0005 256
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test set was predicted. This test is performed to determine the
models’ susceptibility for chance correlations.

3. External test: The compounds that were kept out and never
used as part of any training were predicted to check the
external predictive ability of the model.

4. Model performance across training set chemical space: In this
exercise, the models’ ability to predict test compounds with
varying degrees of similarity with the training set compounds
was evaluated. This test was done for the external sets and for
the hold-out sets of the cross-validation exercise. Following
are the required steps:

i. Predict the test set using the model in question and record
the computed probability for every test compound.

ii. Pairwise similarity (using 2 to 8-atom linear fragments
hashed to 1,024-bit fingerprints or 166-bit MACCS keys via
Tanimoto coefficient) was calculated between each test set
compound and all the training compounds.

iii. Five most similar training compounds were identified, and
their similarity were averaged and assigned to the test
chemical as its similarity to the training set.

iv. The test set compounds were sorted in ascending order of
their similarity to the training set.

v. The test set is scanned starting from the compound with
lowest similarity. At every nth (n= 20, 50, 100) compound,
its similarity is recorded, and balanced accuracy is
computed for the set of compounds scanned so far. This
gives the performance of the model for chemicals that have
equal or less similarity to the training set.

Domain of Applicability
We used a combination of two criteria to determine if a query
chemical’s prediction falls outside the domain of applicability of
a model: 1. if the calculated probability is ±0.05 of the decision
threshold of the model and, 2. if the query chemical has a
functionality that is not present in the training set chemicals.
The first condition excludes predictions for which the model
has weak differentiability and the second one excludes query
chemicals that have structural features for which the model was
not trained. The second condition was implemented by creating

a dictionary of 3-atom fragments from the training chemicals,
and the query chemical is checked during prediction to see if it
contains any fragment that is not present in the dictionary. It
is classified as out-of-domain, if it contains 3 or more of such
“unknown” fragments.

RESULTS AND DISCUSSION

We found that hyperparameter tuning is the most time-
consuming part of the LSTM training. Systematic search and
some trial and error was needed to find the value of individual
hyperparameters that works in combination with others. Also,
we found that the required number of epochs is independent
of the size of the training set, for example, the P. falciparum
dataset with 7,866 training compounds needed 10,000 epochs,
whereas the Ames dataset with 17,005 training compounds
needed only 100 epochs when trained with SMILES codes.
Moreover, LSTM models required substantially fewer epochs
in training with MLNCT codes as compared to training with
SMILES. For example, the Hepatitis C model required 9,000

FIGURE 3 | ROC plots for the Ames mutagenicity external test set predictions.

TABLE 6 | Ames mutagenicity models’ training and test set prediction metrics.

Metric LSTM_SMILES LSTM_MLNCT FRAG_NN FRAG_LOGIST

Train Test Train Test Train Test Train Test

Threshold 0.38 0.38 0.40 0.40 0.38 0.38 0.38 0.38

SENS 0.904 0.842 0.878 0.854 0.919 0.829 0.911 0.829

SPEC 0.942 0.916 0.904 0.881 0.943 0.920 0.956 0.926

ACC 0.927 0.888 0.894 0.871 0.934 0.886 0.939 0.890

BAL_ACC 0.923 0.879 0.891 0.867 0.931 0.875 0.934 0.878

PPV 0.906 0.859 0.850 0.813 0.909 0.862 0.929 0.872

NPV 0.941 0.905 0.922 0.909 0.949 0.899 0.945 0.900

AUC 0.972 0.938 0.957 0.936 0.982 0.942 0.986 0.941

AUC (y-rndmized) – 0.501 – 0.501 – 0.533 – 0.500
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FIGURE 4 | Performance of the mutagenicity models for groups within 1,942 external set compounds with varying similarity with the 17,005 training set chemicals.

Each step in the horizontal axis is composed of 50 test compounds. The confidence interval bands around the lines were obtained using a bootstrap resampling

process.

FIGURE 5 | Predicted probability distribution plots for the actives and inactive compounds in the Ames mutagenicity external test set.
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epochs when trained with SMILES, whereas only 300 epochs
were needed for training with MLNCT codes. Therefore, it
is reasonable to assume that it is easier for the LSTMs to
learn from MLNCT codes than SMILES, possibly due to
detailed atom typing. The final hyperparameter values are shown
in Tables 3, 4.

For the fragment-based models, variable selection is the most
time-consuming step of model building. Some hyperparameters
needed to be tuned for the fragment-based neural networks,
however, no such optimization was required for the logistic
regression models. Training of the neural networks using the
fragment descriptors were computationally inexpensive and fast
enough to allow rapid hyperparameter tuning. We found a
simple network with two hidden layers that works well for all
three datasets, with 15 and 7 sigmoid activation neurons and
dropout rates of 0.5 and 0.3 for the first and second hidden layer,
respectively. The output layer is composed of a single sigmoid
neuron. Validation split was set at 0.1; learning rate of 0.001 and
30 epochs were used for the training.

The results of various validation experiments are discussed
below. It should be noted that the LSTM models’ and fragment-
based neural networks’ effective training set sizes are always
10% smaller due to the use of validation split during training,
which does not happen with the fragment-based logistic
regression models.

Ames Mutagenicity
Results of the leave 10% out 10-times cross validations for all the
four mutagenicity models are given in Table 5. We found the
optimal value of the decision threshold to be between 0.38 and
0.4. This happens to be close to the ratio of active/inactive in the
dataset, which is 0.38.

Also, the prediction metrics and the ROC plots for the
1,942 external test chemicals are shown in Table 6 and Figure 3,
respectively. All the models gave excellent and almost equal
performance. The balanced accuracies of training set predictions
are about 3–6% better than that of the test set. Comparing to

TABLE 8 | Hepatitis C Virus (HCV) models’ 10% out 10-times cross validation

prediction metrics.

Metric LSTM_SMILES LSTM_MLNCT FRAG_NN FRAG_LOGIST

Threshold 0.22 0.24 0.22 0.28

SENS 0.797 ± 0.028 0.746 ± 0.051 0.760 ± 0.014 0.760 ± 0.017

SPEC 0.752 ± 0.033 0.767 ± 0.041 0.811 ± 0.011 0.815 ± 0.007

ACC 0.765 ± 0.018 0.761 ± 0.016 0.796 ± 0.006 0.799 ± 0.007

BAL_ACC 0.774 ± 0.009 0.757 ± 0.008 0.785 ± 0.005 0.788 ± 0.009

PPV 0.560 ± 0.025 0.556 ± 0.038 0.615 ± 0.016 0.620 ± 0.014

NPV 0.904 ± 0.011 0.887 ± 0.018 0.895 ± 0.007 0.895 ± 0.006

AUC 0.851 ± 0.008 0.831 ± 0.007 0.864 ± 0.005 0.865 ± 0.006

TABLE 7 | Prediction performance of the mutagenicity models for different chemical classes.

Chemical class Active/inactive LSTM_SMILES LSTM_MLNCT FRAG_NN FRAG_LOGIST

SENS SPEC SENS SPEC SENS SPEC SENS SPEC

Nitro-aromatics 149/30 94 67 98 40 97 70 95 63

Polycyclic aromatics 142/21 98 71 99 67 99 76 99 81

Primary aromatic amines 80/55 93 85 94 76 94 76 94 80

Aliphatic halides 58/36 84 72 79 75 76 69 78 69

Naphthalene analogs 36/43 83 84 89 72 86 86 94 93

Azo-compounds 54/22 87 86 94 77 96 77 94 77

Esters of S(VI)- and P(V)-based acids 26/36 77 86 65 81 77 86 77 86

Three-membered rings, reactive 48/11 88 82 98 64 92 73 96 73

Nitroso compounds 57/0 100 – 98 – 100 – 100 –

Heteroatom-bonded heteroatoms 28/16 100 94 96 69 96 75 96 81

Aromatic acetamides and formamides 27/15 93 87 96 87 96 87 93 80

Aldehydes 13/26 69 85 92 77 85 92 69 96

Haloalkenes 17/21 82 90 82 81 82 76 76 86

Tetrahalogenated aromatics 5/24 40 96 20 96 60 96 40 96

Elementorganics 20/6 90 83 80 67 50 100 50 100

Aromatic N-methyl amines 20/1 90 100 90 100 85 0 85 100

Acyl halides 3/17 67 59 67 65 67 71 67 71

Quinones 14/6 93 67 93 67 100 83 100 83

Poly-carboxyls, phosphates, sulfones 1/18 100 100 100 100 100 89 100 94

Beta-lactams 2/14 100 93 50 93 100 93 100 100

Nitrogen and sulfur mustards 15/0 100 – 100 – 100 – 100 –

Carbamates 7/6 57 83 71 100 86 83 86 83

Purine nucleotide analogs 4/9 75 89 50 89 75 67 75 67

alpha, beta-Unsaturated lactones 7/5 86 80 86 100 100 100 100 100

Fluorenes 9/1 100 100 100 100 100 100 100 100
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the current state of the art for predicting Ames mutagenicity,
these results can be placed at the very high end of performance
scale (Benigni and Bossa, 2019; Honma et al., 2019). AUC
of the y-randomization exercise is also shown in Table 6,
it is evident that the results are close to random for all
the models. Details of the y-randomization is provided in
the Supplementary Information.

Figure 4 shows mutagenicity prediction performance for the
external test set across the chemical space defined by the
training data. Fragment-based hashed fingerprints were used
to compute similarity. Every step in the x-axis consists of 50
test chemicals. It is quite clear that the LSTM models give
considerably better results than the fragment-based models for
test chemicals with low similarity with the training set. For
example, as shown by the very left-end of the plotted lines,
test chemicals that have 0.271 or less similarity, LSTM_SMILES
model is ∼15% better than the FRAG_LOGIST model. On the
other hand, performance of the fragment-based models takes
a sharp dip at the left end of the plot. The LSTM models
maintain their advantage over the fragment-based models up
to a similarity of 0.5. Performance gap between the two
types of the models decreases for higher similarity values
and the four models show almost equal overall performance
(BAL_ACC ∼ 0.87) as we approach the far right side of
the plot. Similar trends were observed when the ten hold-
out sets from the 10% out cross validations were subjected
to similarity-based performance evaluation. For this, results
were averaged from the ten sets and the plots are provided in
the Supplementary Information. Improved performance of the
LSTMs for low similarity compounds indicate that the LSTMs
have better abstraction abilities whereas the fragment descriptor-
based models fail to predict compounds that have new features
as described by their fragment composition. Analyses using
MACCS keys are provided in the Supplementary Information

and also show better performance by the LSTM models for
compounds with low similarity, but the difference is not as
pronounced as that of the fragment-based fingerprints. A possible
reason could be due to the diverse nature of themutagenicity data
and presence of many non-drug like compounds (e.g., reagents,
impurities etc.), which are not well-represented by the predefined
set of MACCS keys. These are important findings because QSAR

models often fail in practice when used on novel and structurally
different test compounds.

To get an alternate view of the mutagenicity models’ ability
to separate active and inactive compounds, we have plotted
the distribution of predicted probabilities of the external set
compounds in 20 equally spaced bins between 0 and 1. The plots
for the four models are shown in Figure 5. It can be seen that
all the models are quite good in separating mutagenic and non-
mutagenic chemicals, as active and inactive chemicals are mostly
gathered at the right and left side of the plot, respectively, and
very few chemicals are present in the middle area.

The prediction metrics and the ROC plots give a good
idea about the overall model performance for the whole test
set; however, they don’t show prediction accuracy for different
chemical classes present in the test set. For mutagenicity, such
chemical classes are fortunately known, mainly due to the work
by Benigni (2004), Benigni and Bossa (2006) and others (Plošnik
et al., 2016). In this regard, we have divided the external test
set of the Ames dataset into 53 different classes and calculated
the prediction sensitivity and specificity within each class. Only
the results of the classes that have 10 or more test chemicals are

FIGURE 6 | ROC plots for the Hepatitis C Virus external test set predictions.

TABLE 9 | Hepatitis C Virus (HCV) data set’s training and external test set prediction metrics.

Metric LSTM_SMILES LSTM_MLNCT FRAG_NN FRAG_LOGIST

Train Test Train Test Train Test Train Test

Decision threshold 0.22 0.22 0.24 0.24 0.22 0.22 0.28 0.28

SENS 0.850 0.811 0.841 0.813 0.904 0.758 0.887 0.742

SPEC 0.776 0.728 0.773 0.724 0.881 0.821 0.870 0.818

ACC 0.797 0.751 0.792 0.749 0.888 0.804 0.875 0.798

BAL_ACC 0.813 0.770 0.807 0.769 0.893 0.790 0.879 0.780

PPV 0.597 0.527 0.591 0.524 0.749 0.613 0.728 0.604

NPV 0.930 0.912 0.925 0.912 0.959 0.901 0.952 0.895

AUC 0.892 0.841 0.887 0.845 0.959 0.864 0.950 0.863

AUC (y-rndmized) – 0.500 – 0.500 – 0.455 – 0.483
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FIGURE 7 | Performance of the Hepatitis C Virus models for igroups within 3,547 external set compounds with different similarity with the 31,919 training set

chemicals. Each step in the horizontal axis is composed of 100 test compounds. The confidence interval bands around the lines were obtained using a bootstrap

resampling process.

TABLE 10 | Summary of the results of various validation exercise performed on the models of the P. falciparum dataset.

Metric LSTM_SMILES LSTM_MLNCT FRAG_NN FRAG_LOGIST

Threshold 0.46 0.42 0.40 0.46

Cross-Validation BAL_ACC 0.715 ± 0.014 0.710 ± 0.015 0.760 ± 0.015 0.759 ± 0.017

External Set BAL_ACC 0.707 0.715 0.752 0.741

shown in Table 7. All the models show good performance across
majority of the chemical classes. Such breakdown of performance
across different chemical classes is important because low
specificity of common toxicity alerts is a known problem (Alves
et al., 2016), mainly because they are found in many compounds,
both toxic and non-toxic. Primary aromatic amines are one
such example with high mutagenicity risk and widely used in
chemical synthesis. Mutagenicity prediction of these amines is
particularly difficult because the actual reactive species is formed
after metabolism (Kuhnke et al., 2019). All our models achieved
good sensitivity and specificity for the 135 amines in the external
test set with sensitivity between 93 and 95 and specificity between
76 and 85.

Inhibitors of Hepatitis C Virus (HCV)
The cross-validation results are given in Table 8. The decision
threshold ranges from 0.22 to 0.28 for different models, and
again close to the ratio of active/inactive in the dataset (0.28).
The prediction metrics and the ROC plots for the 3,547
external test chemicals are shown in Table 9 and Figure 6,

respectively. QSAR models for this dataset have been reported
by other researchers (Zakharov et al., 2014), who used a large
number of descriptors to build the model, and the highest
balanced accuracy reported by them is 0.78 which is very
similar to what we are reporting in this work. Like the other
two datasets, the training set accuracies are about 4–10%
more than the test set accuracies, the MLNCT-based model
showed smallest gap, whereas the fragment-based model has the
highest gap which may be an indication of overfitting. Similar
to the mutagenicity dataset, AUCs from the y-randomizations
is shown in Table 9, and the results are close to random.
Details of y-randomizations and plots of the external test
set’s probability distribution of predictions are given in the
Supplementary Information.

The models are almost equal to each other in terms of
overall predictions. However, similar to the mutagenicity dataset,
LSTMmodels give better results than the fragment-based models
for test chemicals with low similarity with the training set
as shown in the Figure 7. Particularly, the prediction of the
LSTM_SMILES is ∼15% better than the FRAG_LOGIST for test
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FIGURE 8 | Performance of the P. falciparum models for groups within 1,966 external set compounds with different similarity with the 7,866 training set chemicals.

Each step in the horizontal axis is composed of 50 test compounds. The confidence interval bands around the lines were obtained using a bootstrap resampling

process.

chemicals with similarity of 0.348 or less. Results of the 10
hold-out sets from the cross-validation experiments also showed
better performance by the LSTM models for low similarity test
compounds. Averaged results from the 10 sets are provided
in the Supplementary Information. Predefined MACCS keys
did not show (provided in the Supplementary Information)
significantly better performance by the LSTM models for
compounds with low similarity.

Inhibitors of P. falciparum Dd2
This is the smallest dataset used in this study with 7,866 training
compounds. The summary of the cross validation and external set
prediction results are shown in Table 10. The decision thresholds
range from 0.40 to 0.46. Overall prediction results for the
fragment-based models are better than the LSTM models. A
possible reason for the lower overall accuracy of the LSTM
models could be the relatively smaller size of this dataset, and
possibly LSTM networks need large number of examples to
learn long-range relationships in the training sequences. The
LSTM models perform slightly better with test chemicals that
have low similarity with the training set (i.e., similarity of 0.314
or less) as shown in Figure 8. Results from the 10 hold-out
sets from the cross-validation experiments also showed slightly
better performance by the LSTM models for low similarity test
compounds, however. Averaged results from the 10 sets are
provided in the Supplementary Information. Detailed results
of all the validations for this data set are also provided in the
Supplementary Information.

FIGURE 9 | Comparison of prediction performance of LSTM models built

using canonical and randomized SMILES. Hepatitis C data test set was used.

Implementation of Model Applicability
Domains
We observed about 1–4% increase in the accuracy of the test
set predictions across all the models when domain applicability
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TABLE 11 | Comparison of mutagenicity alerts identified by the fragment-based and attention-based LSTM mutagenicity models.

CAS RN# Exptl. Ames

outcome

Predicted Ames

outcome

Structural alerts from

the fragment-based model

Structural alerts from the

attention-based LSTM model

113698-22-9 Positive Positive

698-63-5 Positive Positive

4559-64-2 Positive Positive

1162-65-8 Positive Positive

72505-65-8 Positive Positive

70786-64-0 Positive Positive

108283-48-3 Positive Positive

(Continued)
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TABLE 11 | Continued

CAS RN# Exptl. Ames

outcome

Predicted Ames

outcome

Structural alerts from

the fragment-based model

Structural alerts from the

attention-based LSTM model

65520-53-8 Positive Positive

202483-62-3 Negative Negative

For the fragment-based model, activating, and deactivating features are shown in orange and blue color, respectively.

conditions were imposed. At the same time, the coverage was
reduced by about 2–13%, i.e., about 98–87% test chemicals
were successfully predicted. It is reasonable to assume that high
coverage is due to the large sizes of the training sets and good
active-inactive separation in the predictions. The data for model
performances after employing domain applicability is provided
in the Supplementary Information.

Learning From Non-canonical SMILES
We also studied if LSTMs can be trained with SMILES code
that are generated from molecular graphs with non-canonical
atom ordering and to check if different SMILES representations
of a chemical produce wildly different predictions. We have
used the Hepatitis C data set to investigate, due to its larger
size. A technique was implemented which randomizes the
order of atoms in a molecular graph before generating the
SMILES code. First, such randomized SMILES were generated
for the 31,919 training chemicals, and a unidirectional LSTM
network was trained. Thereafter, 10 sets were produced
from the external test set which are only different in their
SMILES representation but contain exactly the same 3,547
test chemicals. These 10 test sets were predicted, and the
ROCs were compared with the ROC from the canonical
SMILES, the results are shown in Figure 9. It is apparent that
prediction results between the 10 test sets do not fluctuate
significantly. Also, the AUCs obtained from the non-canonical
SMILES are slightly lower than the canonical SMILES, however,
the difference is small. One advantage of such robustness
is that users of these QSAR models do not need to use
SMILES adhering to any particular standard format, potentially
increasing usability.

Comparison of Mutagenicity Alerts
Identified by the LSTM and
Fragment-Based Modeling
We compared the mutagenicity alerts identified by the attention-
based LSTM and the fragment-based models. As discussed
earlier, attention values recorded during the prediction were

used to detect parts of the input sequence that are important
for the computed outcome. A set of 9 compounds with
known Ames outcome were used as examples. A comparison
is shown in Table 11 between alerts from the FRAG_LOGIST
and LSTM_MLNCT models and Table 12 shows the attention
values when SMILES were used as inputs. As mentioned before,
MLNCT coding is suitable for alert identification, as every
component of an MLNCT string corresponds to an atom in the
molecule. In Table 11, any atom that has an attention value of
0.1 or more was considered as part of an alert. The alerts from
FRAG_LOGIST differentiate between activating and deactivating
features as shown in orange and blue color, respectively, whereas,
the LSTM_MLNCT alerts only convey if a particular atom is
important for the prediction outcome. It is quite clear that the
alerts obtained from these two very different types of modeling
methods largely agree with each other. The LSTM alerts are not
as explicit as the fragment alerts, but they are quite clear in terms
of which part of the query compound is key to its toxicity.

After using SMILES as input to the attention-based LSTM,
individual characters of the SMILES code were color coded based
on their attention-values (Table 12). Red and blue colors indicate
high and low attention values, respectively. Such color coding
of characters of SMILES code give a good idea about which
atoms are important for the prediction outcome but sometimes
non-atom characters, i.e., parenthesis or ring closing numbers,
also receive high attention values. This makes locating the alerts
from the SMILES string difficult in comparison to that of the
MLNCT codes.

CONCLUSIONS

We demonstrated a way to build and use QSAR models directly
from linear textual representations of chemical compounds,
without computing any molecular descriptors. This was achieved
via deep learning using LSTM networks. The proposed
methodology eliminates some of the difficulties associated with
traditional descriptor-based QSAR modeling, e.g., challenges
of computing good and relevant descriptors for the endpoint
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TABLE 12 | Attention values for characters of SMILES strings of test chemicals when processed through the attention-based LSTM model.

(Continued)
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TABLE 12 | Continued

Red and blue colors indicate high and low attention values respectively.

at hand, descriptor selection steps, difficulties associated with
interpretation of algorithmically selected descriptors for the
target. We have also showed that it is quite possible to detect
structural alerts in the query compounds tested by LSTM

models, which would be helpful in interpreting results from such
descriptor free QSARs.

When compared with a traditional fragment descriptor-based
method, the overall performance metrics of the LSTM models
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showed more or less similar accuracies for three selected end-
points, namely Ames mutagenicity, inhibition of P. falciparum
Dd2 and inhibition of Hepatitis C Virus with training sets of size
17,005, 7,866, 31,919 compounds, respectively. However, LSTM-
based models consistently performed better for test chemicals
that have low similarity with the training set chemicals.

The results are one step forward toward a time when a list of
SMILES codes of chemicals tested in an assay can be used directly
to build QSARs using freely available software that has nothing to
do with chemistry, potentially expanding the QSAR practitioner
base. In addition, descriptor-less QSARs seem to require less
domain knowledge, more scalable and can take advantage of the
ever-increasing computing power.

Limitations
Current limitations and weaknesses of the shown methodology
include absence of stereochemical information in the input
sequences and truncation of salt parts andmixtures, however, it is
technically possible to bypass this limitation. Also, we have used
only big training sets and therefore, attempts of QSAR modeling
with small training sets using these techniques may fail.

Future Goals
Our future research plans include developing better applicability
domain criteria for the descriptor-less models, inclusion of
stereo isomers, salts and mixtures in the training sets, building
models using small training sets, exploring alternatives for
the one-hot representation for the input sequences and
investigating necessary steps for regulatory acceptance of
such methods.
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Plošnik, A., Vračko, M., and Dolenc, M. S. (2016). Mutagenic and carcinogenic

structural alerts and their mechanisms of action. Arh. Hig. Rada Toksikol. 67,

169–182. doi: 10.1515/aiht-2016-67-2801

Python Software Foundation. Python Language Reference, version 3.5.1. Available

online at: http://www.python.org (accessed April 28, 2019)

R Core Team (2014). R: A Language and Environment for Statistical Computing.

Vienna: R Foundation for Statistical Computing. Available online at: http://www.

R-project.org/ (accessed April 28, 2019).

Rogers, D., and Hahn, M. (2010). Extended-connectivity fingerprints. J. Chem. Inf.

Model. 50, 742–754. doi: 10.1021/ci100050t

Salum, L. B., and Andricopulo, A. D. (2010). Fragment-based QSAR

strategies in drug design. Expert Opin. Drug Discov. 5, 405–412.

doi: 10.1517/17460441003782277

Sutherland, J. J., Higgs, R. E., Watson, I., and Vieth, M. (2008).

Chemical fragments as foundations for understanding target space

and activity prediction. J. Med. Chem. 51, 2689–2700. doi: 10.1021/

jm701399f

Sweet, D. V., Anderson, V. P., and Fang, J. (1999). An overview of the registry

of toxic effects of chemical substances (RTECS): critical information on

chemical hazards. Chem. Health Saf. 6, 12–16. doi: 10.1016/S1074-9098(99)

00058-1

Tennant, R. W. (1991). The genetic toxicity database of the national toxicology

program: evaluation of the relationships between genetic toxicity and

carcinogenicity. Environ. Health Perspect. 96, 47–51. doi: 10.1289/ehp.

919647

Toropov, A. A., Toropova, A. P., and Benfenati, E. (2009). QSPR

modeling of octanol water partition coefficient of platinum complexes

by InChI-based optimal descriptors. J. Math. Chem. 46, 1060–1073.

doi: 10.1007/s10910-008-9491-3

Toropov, A. A., Toropova, A. P., Benfenati, E., Gini, G., Leszczynska,

D., and Leszczynski, J. (2013). CORAL: QSPR model of

water solubility based on local and global SMILES attributes.

Chemosphere 90, 877–880. doi: 10.1016/j.chemosphere.2012.

07.035

Toropov, A. A., Toropova, A. P., and Raska, I Jr. (2008). QSPR

modeling of octanol/water partition coefficient for vitamins by optimal

descriptors calculated with SMILES. Eur. J. Med. Chem. 43, 714–740.

doi: 10.1016/j.ejmech.2007.05.007

Weininger, D., Weininger, A., and Weininger, J. L. (1989). SMILES. 2. Algorithm

for generation of unique SMILES notation. J. Chem. Inf. Model. 29, 97–101.

doi: 10.1021/ci00062a008

Winter, R., Montanari, F., Noé, F., and Clevert, D. (2019). Learning

continuous and data-driven molecular descriptors by translating equivalent

chemical representations. Chem. Sci. 10, 1692–1701. doi: 10.1039/C8SC0

4175J

Zakharov, A. V., Peach, M. L., Sitzmann, M., and Nicklaus, M. C. (2014). QSAR

modeling of imbalanced high-throughput screening data in PubChem. J. Chem.

Inf. Model. 54, 705–712. doi: 10.1021/ci400737s

Zhu, H., Sedykh, A., Chakravarti, S. K., and Klopman, G. (2005).

A new group contribution approach to the calculation of LogP.

Curr. Comput. Aided Drug Des. 1, 3–9. doi: 10.2174/15734090529

52323

Conflict of Interest Statement: SC and SA were employed by company

MultiCASE Inc.

Copyright © 2019 Chakravarti and Alla. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Artificial Intelligence | www.frontiersin.org 18 September 2019 | Volume 2 | Article 17

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1093/mutage/gey031
https://doi.org/10.1021/cr950202r
https://doi.org/10.1021/acs.jcim.8b00758
https://doi.org/10.18653/v1/D15-1166
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m7r1-assessment-and-control-dna-reactive-mutagenic-impurities-pharmaceuticals-limit-potential
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m7r1-assessment-and-control-dna-reactive-mutagenic-impurities-pharmaceuticals-limit-potential
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m7r1-assessment-and-control-dna-reactive-mutagenic-impurities-pharmaceuticals-limit-potential
https://ntp.niehs.nih.gov/results/dbsearch/download/index.html
https://ntp.niehs.nih.gov/results/dbsearch/download/index.html
https://doi.org/10.3389/fphar.2018.01275
https://doi.org/10.26434/chemrxiv.7097960.v1
http://www.oecd.org/chemicalsafety/risk-assessment/1948418.pdf
http://www.oecd.org/chemicalsafety/risk-assessment/1948418.pdf
https://doi.org/10.1515/aiht-2016-67-2801
http://www.python.org
http://www.R-project.org/
http://www.R-project.org/
https://doi.org/10.1021/ci100050t
https://doi.org/10.1517/17460441003782277
https://doi.org/10.1021/jm701399f
https://doi.org/10.1016/S1074-9098(99)00058-1
https://doi.org/10.1289/ehp.919647
https://doi.org/10.1007/s10910-008-9491-3
https://doi.org/10.1016/j.chemosphere.2012.07.035
https://doi.org/10.1016/j.ejmech.2007.05.007
https://doi.org/10.1021/ci00062a008
https://doi.org/10.1039/C8SC04175J
https://doi.org/10.1021/ci400737s
https://doi.org/10.2174/1573409052952323
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Descriptor Free QSAR Modeling Using Deep Learning With Long Short-Term Memory Neural Networks
	Introduction
	Materials and Methods
	Data
	Ames Mutagenicity
	Inhibitors of Hepatitis C Virus (HCV)
	Inhibition of P. falciparum Dd2
	Data Pre-processing

	Computer Hardware
	Software
	Linear Representation of Chemicals
	Simplified Molecular-Input Line-Entry System (SMILES)
	Molecular Linear Notation by Circular Traverse (MLNCT)

	Model Building
	Model Building Using LSTMs
	Pre-processing of LSTM input sequences
	Training LSTM models

	Model Building Using Molecular Fragment Descriptors

	Alert Identification Using Attention-Based LSTMs
	Performance Metrics
	Model Validation
	Domain of Applicability

	Results and Discussion
	Ames Mutagenicity
	Inhibitors of Hepatitis C Virus (HCV)
	Inhibitors of P. falciparum Dd2
	Implementation of Model Applicability Domains
	Learning From Non-canonical SMILES
	Comparison of Mutagenicity Alerts Identified by the LSTM and Fragment-Based Modeling

	Conclusions
	Limitations
	Future Goals

	Data Availability
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


