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Cryo-electron microscopy (cryoEM) has become a well established technique to

elucidate the 3D structures of biological macromolecules. Projection images

from thousands of macromolecules that are assumed to be structurally identical

are combined into a single 3D map representing the Coulomb potential of the

macromolecule under study. This article discusses possible caveats along the

image-processing path and how to avoid them to obtain a reliable 3D structure.

Some of these problems are very well known in the community. These may be

referred to as sample-related (such as specimen denaturation at interfaces or

non-uniform projection geometry leading to underrepresented projection

directions). The rest are related to the algorithms used. While some have been

discussed in depth in the literature, such as the use of an incorrect initial volume,

others have received much less attention. However, they are fundamental in any

data-analysis approach. Chiefly among them, instabilities in estimating many of

the key parameters that are required for a correct 3D reconstruction that occur

all along the processing workflow are referred to, which may significantly affect

the reliability of the whole process. In the field, the term overfitting has been

coined to refer to some particular kinds of artifacts. It is argued that overfitting is

a statistical bias in key parameter-estimation steps in the 3D reconstruction

process, including intrinsic algorithmic bias. It is also shown that common tools

(Fourier shell correlation) and strategies (gold standard) that are normally used

to detect or prevent overfitting do not fully protect against it. Alternatively, it is

proposed that detecting the bias that leads to overfitting is much easier when

addressed at the level of parameter estimation, rather than detecting it once the

particle images have been combined into a 3D map. Comparing the results from

multiple algorithms (or at least, independent executions of the same algorithm)

can detect parameter bias. These multiple executions could then be averaged to

give a lower variance estimate of the underlying parameters.

1. Introduction

Single-particle analysis by cryoEM has become a popular

technique to elucidate the 3D structure of biological macro-

molecules. Thousands of projection images from allegedly the

same macromolecule are combined into a single density map

that is compatible with the acquired measurements. The

signal-to-noise ratio of each of the experimental images ranges

from 0.1 to 0.01. This reconstruction process requires the

estimation of hundreds of thousands of parameters [the
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alignment parameters for each experimental image (Sorzano,

Marabini et al., 2014) and whether or not they belong to the

structural class being reconstructed]. There are six parameters

per image (three Euler angles, two in-plane shifts and one

parameter for the class the particle belongs to). Additionally,

from a mathematical perspective, the reconstructed volume

itself is another set of parameters that must be determined

(Scheres, 2012a). The existence of many iterative reconstruc-

tion algorithms attests to this (Sorzano, Vargas et al., 2017),

although, to a large extent, once the alignment parameters

have been fixed there is very little freedom to choose the

reconstructed volume. A different perspective is given by

Sharon et al. (2020) and all of the previous work by the same

group leading to this publication, in which the map is directly

reconstructed from the experimental projections without the

need to estimate the alignment parameters. This latter family

of algorithms is still under development.

For a review of the single-particle analysis technique the

reader is referred to Lyumkis (2019), and for a description

of the image-processing pipeline the reader is referred to

Sorzano, Jiménez-Moreno et al. (2021).

In this article, we focus on the structural bias; that is, the

difference between our estimated structure, V̂VðrÞ, and the true

underlying structure, V(r). Obviously, we will never have

access to the underlying true structure in a single experiment,

if only because the measurement noise will cause some

random fluctuation around it. We will model our observation

as

V̂VðrÞ ¼ VðrÞ þ�VðrÞ þ "ðrÞ; ð1Þ

where r 2 R3 is a spatial location in real space, �V(r) is the

structural bias and "(r) is a random fluctuation with zero

mean. The random noise, ", normally decreases with the

number of measurements [for instance, in Unser et al. (2005)

we explicitly measured how the 3D reconstruction process

attenuated white noise], suggesting that it does not pose a

major problem in the current era of the automatic acquisition

of thousands of micrographs. The problem is with the bias,

�V, that systematically distorts our structure, preventing us

from visualizing the true structure. This bias may be related to

missing information, violations of the assumptions of the 3D

reconstruction process, incorrect priors about the underlying

structure, local minima in the search of the parameters of each

image, incorrect use of the programs, software bugs or even

the 3D reconstruction workflow itself.

In this article, we have opted for an organization of the

work in which all the experiments have been moved to the

supporting information. In this way, the main manuscript

remains rather narrative and the user is not distracted from

the main messages. In Section 2 we set up the statistical

framework to analyze bias and variance during the estimation

of parameters and to study how they affect the final recon-

structed structure. In Sections 3 and 4 we discuss possible

experimental and algorithmic sources of bias. In Section 5 we

will analyze the currently used tools and recently proposed

tools to detect bias. Finally, in Section 6 we draw some

conclusions.

2. Bias and variance of parameter estimates

Volume overfitting is a feared feature of electron microscopy,

and rightly so because it results in incorrect macromolecular

structures (see Fig. 1 in Scheres & Chen, 2012). In the field, it

is believed to come from excessive weight on the data, and it is

thought to be tackled by providing a suitable weight on a

Bayesian prior (Scheres, 2012a). Bayesian approaches are

handy statistical tools if data are scarce. Interestingly, although

the notion of overfitting is generally understood in the struc-

tural biology community, to the best of our knowledge there is

not a formal, mathematical definition of it in the statistics

domain. Overfitting occurs, for example, when the fitted

function in a regression problem has too many parameters, so

that the function can afford to follow the noise rather than just

smoothly following the data trend. Overfitting would be the

opposite of the ‘principle of parsimony’ in which a model

should have the smallest number of parameters to represent

the data adequately. Even this principle is not formally

formulated. Instead, statisticians see overfitting as a trade-off

between variance and bias of the parameter estimators

(Burnham & Anderson, 1998, chapter 1). Let us assume that

we have x and y observations that are related by a functional

relationship plus observation noise,

y ¼ f ðxÞ þ ":

We will perform a regression with a function parametrized by

a set of parameters, �, such that our prediction of y is

ŷy ¼ f�ðxÞ:

Then, it can be proved that the mean-squared error (MSE) of

our prediction is given by (Section 7.3 of Hastie et al., 2001)

MSE�ðxÞ ¼ E�f½y� f�ðxÞ�
2
g

¼ ½y� E�ff�ðxÞg�
2
þ E�f½E�ff�ðxÞg � f�ðxÞ�

2
g þ �2

"

¼ Bias2
�ff�ðxÞg þ Var�ff�ðxÞg þ �

2
" :

The roles of y, f� and x are played by different elements in

each one of the problems addressed below, and this formu-

lation should be taken as a generic framework for under-

standing some of the important properties of parameter

estimation.

Probably the simplest model to illustrate this trade-off is

regression by k-nearest neighbors (kNN). In this technique,

the predicted value for a given x0 is the average of the y values

of the k nearest neighbors of x0 (for simplicity of notation, let

us illustrate the example for univariate predicted and

predictor variables, but the same idea could be extended to

multiple dimensions). For the kNN regression, the equation

above particularizes to (Section 7.3 of Hastie et al., 2001)

MSE�ðxÞ ¼ f ðx0Þ �
1

k

Pk
i¼1

f ðxðiÞÞ

� �2

þ
�2
"

k
þ �2

" :

In kNN regression, the complexity of the regression function

(its number of parameters) is inversely proportional to k. That

is, a very large k results in very few different predictions (in

the limit, eventually all predictions are equal and equal to the

input sample mean), with a consequent very low variance of
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the predictions [Var�{f�(x)}], but a huge bias with respect to

the true underlying value f(x0), while a small k results in many

more output possibilities and therefore better adaptation to

the local specificities around x0 (and consequently low bias),

but in a much larger variance of the predictions because the

second term is divided by a small k.

This example with kNN regression illustrates a much more

general principle: as the number of model parameters grows,

the bias of the estimated parameters decreases and the

variance increases (see Fig. 1). This is known as the bias–

variance trade-off (Section 7.3 of Hastie et al., 2001). Models

with a low number of parameters cannot explain part of the

experimental data. In contrast, models with a large number of

parameters do explain the data. Still, they have an unne-

cessarily large variance with respect to a more parsimonious

model that explains the data almost equally well. Model-

selection methods such as the Akaike’s or Bayesian infor-

mation criterion (AIC or BIC) try to achieve the minimum of

this trade-off between bias and variance (Burnham &

Anderson, 1998). To illustrate this idea, let us analyze the

formula of the Bayesian information criterion

BIC ¼ 2 log Pfyjĥhg � k log N;

where y are the observed data, ĥh is the set of model para-

meters, Pfyjĥhg is the likelihood of observing the data given

these parameters, k is the number of parameters of the model

and N is the number of observations. The goal is to choose the

model that maximizes the BIC. The first term is a data-fidelity

term, while the second term is a penalization for the number of

parameters in the model.

Although intuitively appealing, having too many para-

meters is not the explanation for the overfitting observed in

EM. Let us consider a set of 100 000 particles of size 200� 200

pixels. We need to determine a volume of size 200� 200� 200

(= 8 000 000 parameters) and 600 000 alignment parameters

(five alignment parameters per particle and one additional

parameter to decide whether or not the particle belongs to the

class that we are reconstructing). This makes a total of

8 600 000 parameters, but there are 4 000 000 000 measure-

ments (pixels). The exact account is not so simple because the

quality and the solvability of the map are also related to the

angular coverage (Sorzano et al., 2001; Naydenova & Russo,

2017; Sorzano, Vargas, Otón, Abishami et al., 2017; Tan et al.,

2017), which mathematically is also related to the null space of

the matrix associated with the set of measurements (Sorzano,

Vargas, Otón, de la Rosa Trevı́n et al., 2017), but it brings in the

idea that the number of measurements largely surpasses the

number of unknowns; correlations among pixels are not

considered either. Consequently, the reconstruction artifacts

observed in the 3D reconstructions do not come from the

freedom of the volume to fit the noise (variance), but from a

mismatch between the model and the data (data not origi-

nating from this model), incorrect estimates of the particle

parameters, or goal functions or algorithms that produce

biased results. This statement is experimentally supported in

this article by multiple experiments addressing different steps

along the image-processing pipeline. The estimation of any

parameter can easily fall into local minima, calling for robust

image-processing algorithms that are capable of reliably esti-

mating all of these parameters in such a noisy environment. In

this article, we argue that there are several sources of bias.

Some of them are related to the sample while others are

related to the algorithm. Among them, the most important at

present is the incorrect estimation of the particle parameters.

For example, for the images supposed to correspond to a

macromolecule of interest, we must determine whether they

all come from a single, homogeneous population of structu-

rally identical particles or exhibit some kind of structural

variability. This task is performed by classification of the

particles into supposedly homogeneous 3D classes (the

cryoEM formulation of this problem is very close to the

formulation of mixture models in machine-learning clustering;

McLachlan & Basford, 1988). Misclassifying particles results

in 3D reconstructions from a mixture of structurally different

objects. For instance, let us imagine that we are trying to

obtain the structure of class 1 from N1 images of that structural

class, and we have a mixture with N2 images of class 2. We will

have an estimate of the underlying structure that, in a very

simple approximation that assumes linearity of the 3D

reconstruction process and the same weight for all images, is

V̂V1ðrÞ ¼
N1

N1 þ N2

V1ðrÞ þ
N2

N1 þ N2

V2ðrÞ

¼ V1ðrÞ þ
N2

N1 þ N2

½V2ðrÞ � V1ðrÞ�: ð2Þ

How large the bias that we obtain in our estimate of V1 is

depends on the amount of contamination from class 2, i.e. N2,

and the true structural difference between V2 and V1. If the 3D

reconstruction process is nonlinear (as it is) or the images

receive different weights (as they do), then the formula above

is not verified in its stated form. However, its simplified

version already points out two interesting features that hold in

more complicated scenarios: (i) the 3D reconstruction is a

mixture of two different structures and (ii) how large our bias

in the estimation of V1 is depends on our number of mistakes,

N2, and the difference between V2 and V1. In addition to the

difficulties described above, we encounter the additional

drawback that the true number of classes is unknown in an

experimental setting.
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Conceptual trade-off between bias and variance of the parameter
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Within a homogeneous population of structurally identical

particles, we may encounter the same bias problems if we

incorrectly estimate the angular orientation and in-plane shifts

of the experimental images or their acquisition parameters

(defoci, beam tilt etc.). N1 would now play the role of the

particles with correct parameters, N2 the role of the particles

with incorrect parameters and V2 a 3D reconstruction with the

incorrect parameters and their corresponding particles.

One of the major sources of systematic errors when esti-

mating parameters is produced by what we refer to as the

‘attraction problem’, which was rigorously proved in equation

(6) in Sorzano et al. (2010). Let us summarize here the main

argument. Many algorithms in the field eventually require a

comparison between the experimental images and a set of

reference images. For example, this comparison is required

when assigning an input image to a 2D class, a projection

direction or a 3D class. We need to compare the input

experimental image with the representative of the 2D class or

the reprojection of the current estimate of the map or the 3D

class along that direction. The two main tools to perform these

comparisons are the Euclidean distance (in real or Fourier

space) and the correlation (actually, using relatively mild

hypotheses, it can be proved that the reference that maximizes

the correlation is the same as the one that minimizes the

Euclidean distance). As soon as one of the references starts to

get more images, its background will be less noisy because of

the higher averaging caused by the larger number of images.

However, in the correlation or Euclidean distance calculation

the background also contributes, and that with lower noise will

contribute less to the Euclidean distance. In this way, it will

seem closer to some experimental images, even if these do not

correspond to the signal represented by the reference.

Consequently, more images are assigned to that reference, and

the larger averaging effect is positively reinforced. Euclidean

distance and correlation can be considered ‘classical’ image-

similarity tools. With the advent of deep learning, a new

approach that has not yet been adopted in cryoEM is the

learning of the distance function itself (Wang et al., 2014). This

possibility could open new research routes towards more

robust image classification and alignment.

Overall, in current practice, we would say that incorrect

parameter estimation is the major source of bias in cryoEM.

Throughout this article, we discuss several strategies to iden-

tify and try to prevent it. One of the most powerful strategies is

to analyze the parameter estimates using several independent

algorithms, or at least multiple runs of the same algorithm with

random initialization. This is in line with the current trend in

machine learning of using ensemble approaches such as

boosting (an ensemble of many high-bias models that

decreases the overall model bias and variance) and bagging

(subsampling data with replacement decreasing the overall

model variance) (Hastie et al., 2001).

3. Experimental sources of bias

Several sources of bias are primarily related to the sample

itself rather than the method of processing the data set,

although everything is inter-related. In the following we

discuss some algorithmic solutions that we can adopt to

prevent structural bias due to these problems.

3.1. Use of incorrect particles

The 3D reconstruction algorithm will assume that a single

structure is perfectly compatible with the measurements

except for random, zero-mean noise that is superposed on the

projection images. This assumption is violated by protein

denaturation, conformational heterogeneity and the presence

of contaminants, aggregations, disassembled particles, radia-

tion damage, particle superposition within the ice layer etc. In

a way, deciding whether a patch of a micrograph is a particle or

not is the first parameter that we must determine.

All particle pickers have false positives (objects incorrectly

identified as particles) and false negatives (missed particles).

At present, the trend is to set the picking parameters so that

‘all’ particles are selected. The idea is to maximally exploit the

structural information present in the micrographs. However,

this puts pressure on the 2D and 3D image processing to

identify particles that do not really correspond to isolated,

single particles of the macromolecule under study. Despite the

solid image-processing and artificial intelligence background

of the most widely used pickers nowadays (Abrishami et al.,

2013; Bepler et al., 2019; Wagner et al., 2019), all of them have

a false-positive rate that ranges between 10% and 30%

depending on the data set (Sanchez-Garcia et al., 2020).

Algorithms such as Deep Consensus (Sanchez-Garcia et al.,

2018) were specifically designed to take all of these candidates

to particle centers and apply a deep-learning algorithm to

learn their commonalities and decide which of the coordinates

really correspond to a particle and which are false positives.

There are also algorithms that try to remove the coordinates of

protein aggregations, carbon edges, contaminants or any other

sample defect (Sanchez-Garcia et al., 2020). In our experience,

the combination of crYOLO (Wagner et al., 2019), Xmipp

picking (Abrishami et al., 2013), Deep Consensus (Sanchez-

Garcia et al., 2018) and Micrograph Cleaner (Sanchez-Garcia

et al., 2020) produces very few false-positive particles. Any

denoising algorithm such as that described by Bepler et al.

(2020) can also help to produce cleaner micrographs in which

particle finding is simplified and, consequently, presumably

more accurate. A dangerous practice is to select particles using

a reference external to the study, because it may lead to biased

reconstruction, as in the famous case of the HIV trimer (Mao,

Wang et al., 2013; Mao, Castillo-Menendez et al., 2013;

Henderson, 2013; Subramaniam, 2013; van Heel, 2013).

Obviously, an important consequence of not using the

correct particles for the macromolecule being reconstructed is

that the presence of incorrect particles will contaminate the

3D reconstruction, as described in equation (2).

As we mentioned above, the 3D reconstruction process

assumes that the projection of the reconstructed map matches

the experimental projection except for the noise. This

assumption is violated in a series of cases.
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(i) If our particles are not isolated (they can be nearby or

superposing; Noble et al., 2018), they do not correspond to the

structure under study (but instead to contaminants, images of

ice, aggregations, particles on carbon etc.) or they correspond

to the structure being reconstructed plus some attached flex-

ible matter (antibodies, surrounding membrane, factors that

may or may not be bound etc.). In these circumstances, the 3D

alignment algorithm will try to satisfy the reconstructed

particle and its surrounding matter. As shown in Supple-

mentary Experiment 1, the current practice of taking as many

particles as possible, disregarding their quality and hoping that

the algorithm will manage is very likely to be counter-

productive. The reader may note that the induced artifacts are

not constrained to the area outside the macromolecule. Inside

the macromolecule there are also important structural differ-

ences caused by the nearby entities.

The solution to this problem would consist of powerful

particle picking, as described above, and 2D image analysis:

particle screening (Vargas et al., 2013), 2D classification

(Sorzano et al., 2010; Scheres, 2012b; Punjani, Rubinstein et al.,

2017) and outlier analysis of the classes (Sorzano, Vargas et al.,

2014). Choosing those particles from classes in which particles

are isolated should be preferred, and if this is not feasible due

to the high concentration of particles, then making the 3D

alignment with a tight mask (used for alignment, not recon-

struction) could help, but in general this is not a solution. Note

that the tight mask can be used in two places: (i) to construct

the reference mask to apply to the input volume so that it

removes the information around the particles and (ii) to mask

the reconstructed map so that we can ‘hide’ the artifacts

outside the particle, but not the structural modifications inside

the mask. We do not object to its first use, as removing artifacts

from the reference volume prevents artifactual features from

acting as noise anchors. However, we discourage its second use

as we may not see possible biases whose effect is more easily

detected outside the macromolecule.

As a final warning, we should be aware that choosing

particles only from ‘good-looking’ 2D classes does not guar-

antee good particles due to the attraction problem in 2D

classes (Sorzano et al., 2010) (depending on the algortihm

used, for example RELION 2D or cryoSPARC 2D) or the

scattering of bad particles into the existing classes (Sorzano,

Vargas et al., 2014).

(ii) If particles are misclassified during the 3D classification

(either because the classification is performed attending to the

angular orientation of the particles, several populations are

mixed or because differences in the 3D classes are found by

incorrect angular assignments; Sorzano et al., 2020). Supple-

mentary Experiment 2 shows examples of the instability of the

3D classification process and 3D attraction problems.

A possible strategy to avoid misclassification could be to

repeat the 3D classification process several times and with

different algorithms (Scheres et al., 2007; Scheres, 2012a;

Lyumkis et al., 2013; Punjani, Brubaker et al., 2017), keeping

only those images that are consistently classified together. The

reason is that performing this classification is extremely

challenging for currently existing algorithms, and we cannot

just take ‘the first classification result’, as it will most likely

contain important mixtures of different subpopulations.

3.2. Use of incorrect symmetry

If our structure is pseudosymmetric and we reconstruct it as

symmetric, we will lose the small differences between subunits.

If our structure has some symmetry parameters, such as a

helix, and we use different parameters, we will strongly distort

our structure. These symmetry-related biases can occur in

standard single-particle studies (Ludtke et al., 2004), electron

crystallography (Gil et al., 2006; Biyani et al., 2018), helical

reconstructions (Egelman, 2014) and studies of icosahedral

viruses (Koning et al., 2016). Additionally, macromolecules are

intrinsically flexible objects that could be fluctuating around

an energetically stable solution (Sorzano et al., 2019), and

these fluctuations automatically break all symmetries at high

resolution.

Pseudosymmetry is currently one of the most active lines of

research. This is useful for analyzing macromolecules with

almost equivalent subunits and for analyzing the asymmetric

part of particles in which a part is symmetric or has a different

symmetry (for instance, nucleic acids inside an icosahedral

virus capsid, virus portals etc.). One of the solutions is to

perform symmetric and asymmetric reconstructions to verify

the consistency between the two structures. However, this

option is not always feasible due to the 3D attraction problem.

Alternatives are symmetry expansion (Scheres, 2016) or

symmetry relaxation (Huiskonen, 2018), in which the method

tries to separate the particles into structurally homogeneous

groups. Another solution would be to analyze the set of

images around its symmetric conformation using continuous

heterogeneity tools (Dashti et al., 2014; Jin et al., 2014;

Haselbach et al., 2018) and focusing on groups of particles

according to their deformation parameters (Jin et al., 2014).

3.3. Missing information

If we lack information from some projection directions, this

may cause, depending on which directions are missing, empty

regions in the Fourier domain for which we simply do not

know what the protein looks like. Filling this region with

zeroes is usually a bad choice as it results in an elongation of

the structure along the missing direction. The absence of

measurements in some regions of the Fourier domain is well

known in the field because it occurs in some data-collection

schemes such as random conical tilt (Radermacher & Hoppe,

1980; Radermacher et al., 1987; Radermacher, 1988; Sorzano,

Alcorlo et al., 2015) and orthogonal tilt (Leschziner & Nogales,

2006). An ideal single-particle analysis should not suffer from

this problem as in principle particles can be acquired from

any possible orientation. An alternative to filling the Fourier

space with zeroes is to provide information that guarantees

some kind of continuity (Moebel & Kervrann, 2020). However,

many projects in SPA face the problem of uneven angular

distributions, potentially causing severe artifacts in the

3D reconstructions. Some of these uneven angular distribu-

tions are truly caused by a preferential interaction of the
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macromolecule with the water–air interface or the sample

support (Tan et al., 2017; Noble et al., 2018). In these cases, the

lack of experimental data could be complemented with a

priori volumetric constraints (external surface, total mass,

non-negativity etc.; Sorzano et al., 2008). This is not an easy

task as it involves iterative reconstruction algorithms, which

are now in disuse because they are much slower than their

Fourier gridding counterparts. At present, it is preferred to tilt

the sample (Tan et al., 2017) or to look for different sample-

preparation conditions that do not cause preferential views.

4. Algorithmic sources of bias

Structural biologists are very much aware of the problems

referred to above and try their best to overcome them.

However, algorithmic reasons may also prevent us from

achieving an unbiased estimate of the structure under study.

Some of them are very well known, such as the dependence of

the final structure on the initial guess or the existence of

software bugs. Some others are suspected, such as the exis-

tence of local minima in the parameters to estimate. Yet others

are buried deep in the 3D reconstruction and classification

process and are seldom exposed, but are critical.

In this section, we discuss sources of bias that are more

related to the image processing itself. We focus on problems

that presently remain a bottleneck or that have received less

attention from the community. The initial volume problem is

of primary importance. As such, it has received all kinds of

attention, from descriptions of the problem to algorithmic

proposals to tackle it. Although it can cause really poor results

if it is not properly selected, our view is that it is now no longer

a major bottleneck in most projects as one of the many existing

algorithms will be able to find a suitable initial volume. How-

ever, our view is that at present the use of incorrect para-

meters for the particles is the greatest source of structural bias

(along with the population mixture that is still observed after

3D classification). The 3D attraction problem causes a major

algorithmic problem in some experiments in which the angular

assignment is totally biased. Incorrect masking can be a source

of structural bias if it truncates part of the structure or leaves

extra masses that do not correspond to the macromolecule

under study. Still, otherwise, it is not a large challenge except in

that it may give us a false sense of good quality by inflating the

Fourier shell correlation (FSC). Finally, the image metric and

3D reconstruction algorithm are sources of bias that have

never been put forward. Although they do not represent a

major problem, it is worth enumerating them in this article and

making users aware that the choice of the 3D reconstruction

algorithm also introduces its own contribution to the recon-

structed structure that might be confounded with true struc-

tural features of the macromolecule being reconstructed.

We may identify the following sources of bias induced

during the image-processing procedure.

4.1. Initial volume

The dependence of the final structure on the initial volume

used to be one of the most severe problems some years ago

(Henderson, 2013; Subramaniam, 2013; van Heel, 2013). The

3D alignment and reconstruction process is normally some

variant of gradient descent. For this reason, the starting point

of the iterations plays a crucial role in the optimization

process. This is the reason behind the well known Einstein

from noise effect (Shatsky et al., 2009). Several solutions have

been proposed in recent years to tackle this problem, such as

stochastic optimization algorithms (Ogura & Sato, 2006;

Elmlund et al., 2013; Vargas et al., 2014; Punjani, Brubaker

et al., 2017), slowly converging algorithms (Scheres, 2012a;

Sorzano, Vargas et al., 2015) and consensus algorithms

(Sorzano, Vargas et al., 2018; Gómez-Blanco et al., 2019).

Thanks to all of these new algorithms, the initial volume

dependence is no longer a major bottleneck in the image-

processing pipeline as long as these algorithms are judiciously

used. There are also ways to validate the initial volume

through external measurements such as SAXS data (Jiménez

et al., 2019). In any case, it should be noted that a bad choice of

the initial volume very often leads to erroneous results.

4.2. Incorrect alignment parameters

One of the most important sources of bias is an inaccurate

estimation of the alignment parameters. Stewart & Grigorieff

(2004) reported important differences in the image alignment

depending on the goal function that is being optimized.

Consequently, differences in the angular assignment between

different programs should be expected. We can think of two

different kinds of errors: (1) the alignment parameters found

are a small, randomly perturbed version of the true (although

unknown) alignment and (2) the alignment parameters found

are in a region of the projection sphere or in-plane alignment

totally unrelated to the true alignment. In any case, both kinds

of mistakes result in an error in the particle orientation, with

some errors larger than others depending on whether that

specific particle is in case (1) or (2) (see equation 2).

In a previous section, we discussed projects with incomplete

angular coverage due to experimental reasons. It is less well

known that the angular assignment algorithm itself can also

cause this bias in the angular assignment through the

previously mentioned 3D angular attraction (Sorzano,

Semchonok et al., 2021). As shown in Supplementary

Experiments 2 and 3, the 3D attraction effect is a problem that

severely affects the validity of the reconstructed map. This

behavior has a doubly deleterious effect: firstly, it places

experimental projections in incorrect directions, causing

structural bias by a mixture of signals and, secondly, it may

deplete low-populated directions in favor of nearby directions,

causing structural bias by lack of information.

Supplementary Experiments 4 and 5 show that, depending

on the data set, uncertainty about the 3D orientation and in-

plane alignment of experimental images affects 10–50% of the

data set (note that these numbers are based on our experi-

ments and different data sets may yield different limits). Two

different algorithms may disagree in the angular assignment of

up to 50% of the images (Supplementary Experiment 4). This

disagreement may also be found in multiple runs of the same
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algorithm (Supplementary Experiment 5). This indicates the

variability of the alignment parameters, but also that for any

particular execution a fraction of the parameters are signifi-

cantly biased. These inconsistent parameters can be identified

if the outputs of several program runs are compared, but this is

seldom performed. The extent of the effect in a particular study

is impossible to determine if only one 3D classification or

angular assignment is performed for a particular set of images.

Its detection necessarily requires multiple independent esti-

mations of the underlying parameters (class membership and/

or angular assignment), preferably using algorithms based on

different mathematical principles. After comparing their

different outputs, one may identify those particles for which

the estimates agree. Unfortunately, for those for which they

disagree it is difficult at the moment to decide which are the

true parameters. Some algorithms are more prone to 3D

attraction. Those related to a Euclidean distance between two

images (such as RELION, cryoSPARC and cisTEM) are more

susceptible to suffering it [see equation (6) of Sorzano et al.

(2010) for the mathematical explanation]. Xmipp HighRes

uses a weighting scheme based on the significance of two score

functions in its global alignment stage, which might be the

reason for its higher immunity to this problem. It should be

noted that an absolute consensus algorithm that only keeps

the images for which all alignment algorithms agree on their

angular assignment would not solve the 3D attraction

problem, as the ‘attracted’ algorithm would prevent the rest

from filling the depleted regions. More creative strategies,

probably involving three or more independent assignments,

should be devised in this case, and this problem is foreseen to

be an active research topic in the future.

Another way to identify misaligned particles is through the

use of multiple objective functions. Most algorithms optimize

a single objective function (log likelihood in the case of

RELION autorefine or cross-correlation in a maximal circle in

Xmipp HighRes local alignment). From the point of view of a

single numerical observer, it is normally not possible to

recognize the presence of misaligned particles. However, the

calculation of several similarity measures may help recognize

the set of misaligned particles or nonparticles still in the data

set. Supplementary Experiment 6 shows how the calculation

of the Xmipp HighRes local alignment similarity measure can

identify two subpopulations where RELION autorefine

cannot. In general, each different similarity measure ‘sees’

different features of the same alignment. Using tools such as

the different similarity measures shown above or the align-

ability of the particles shown in Vargas et al. (2016, 2017) and

Méndez et al. (2021), we should also be able to identify those

particles for which the angular assignment is in doubt. We

have also found it very useful to perform a 3D classification of

the particles in two classes without re-estimating the angles.

Particles with an incorrect alignment tend to cluster in one of

the classes, while the other class retains the particles with good

alignment (Sorzano et al., 2020).

A similar situation of alignment bias occurs if the handed-

ness of the images is mixed, as reported in Sanz-Garcı́a et al.

(2010) (see Supplementary Experiment 7). Once the angular

assignment falls into this situation, it is challenging to disen-

tangle the hand mixture. A possible way is by constructing an

initial volume from the particles assigned to a 3D class and

verifying that the reconstructed structure resembles it.

4.3. Incorrect CTF correction

Another source of bias may come from inaccuracy in the

estimation of the CTF parameters. In its most simplified

version, the CTF formula is sin(���fR2 + . . . ), where � is the

electron wavelength, �f is the defocus and R is the frequency

at which we evaluate the CTF (Sorzano et al., 2007). The two

most important parameters of the CTF are the microscope

voltage (which determines the electron wavelength) and the

micrograph defoci (Sorzano et al., 2009). Zhang & Zhou

(2011) stated that the maximum defocus error to achieve high

resolution should be below 100 Å. Larger errors would result

in incorrect compensation of the phase shift introduced by the

microscope. In the CTF challenge, the discrepancy between

different CTF estimation software programs was around 200

and 300 Å (Marabini et al., 2015). As with any other para-

meter, random fluctuations around the true value must be

expected, and these will naturally limit the maximum achiev-

able resolution. However, if these estimation errors are not

random (as assumed, for instance, in Penczek et al., 2014) but

systematic, we may consistently overcompensate or under-

compensate some frequencies (this effect is significant at

medium frequencies; at high frequencies the CTF oscillates

more rapidly and it is more difficult to make systematic

errors). Systematic errors in the CTF normally translate into a

dark halo around the macromolecule, as seen in many EMDB

entries (see, for instance, EMDB entries EMD-20310 and

EMD-20702 as examples of recent releases from October

2019), and a haze on top of the macromolecule. In Supple-

mentary Experiment 8 we show an example in which the dark

halo around the particle and the haze on top of it are gener-

ated by systematic errors in the estimation of the CTF defocus.

Note that in the CTF formula the pixel size participates

through the frequency term [R = i/(NTs), where i is the index

of the frequency term in the fast Fourier transform of the input

image, N is the image size, which is assumed to be square for

simplicity, and Ts is the pixel size or sampling rate]. Conse-

quently, a small error in the pixel size also systematically

causes miscorrections of the phase flip. In Supplementary

Experiment 8 we also show how systematic errors in the pixel

size also translate into dark halos. At present, it is customary

to refine the CTF parameters per particle locally (Zhang, 2016;

Bartesaghi et al., 2018; Sorzano, Vargas et al., 2018; Zivanov et

al., 2018). Although these optimizations are not expected to be

particularly biased, the amount of signal available to estimate

the CTF parameters per particle is so small that large

variances should be anticipated. To the best of our knowledge,

there has not been any rigorous work that has tried to estimate

the variability of the per-particle parameters. In real practice,

dark halos around the reconstructed maps are very often

observed. These are probably caused by a mixture of random

and systematic errors in the pixel size (which should be small
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and can be corrected with a recalibration using an atomic

model of the structure) and random and systematic errors in

the defocus estimates (which can be minimized by averaging

the defocus values reported by several CTF estimation algo-

rithms). The problem is not the halos and hazes themselves,

which the isosurface visualization programs can easily ignore.

The problem is that we know that the presence of the halo and

haze implies the existence of fine structure differences inside

the macromolecule, as shown in Supplementary Experiment 8.

Note that we cannot show evidence that there are systematic

errors in determining the defocus in published experiments.

However, we can reproduce the same kind of errors as those in

published experiments by forcing a systematic error in the

defocus determination.

4.4. Image normalization

The 3D reconstruction process assumes that the acquired

images are projections of the macromolecule under study in

different poses. The weak phase object approximation gives

the relationship between the projection image and the volume

to be reconstructed (Koeck & Karshikoff, 2015). In this

approximation, a transmitted beam gives rise to a baseline rate

of electron arrivals modulated by the matter along their path

(the weak phase object approximation states that the modu-

lation is linear). However, this model implies that the raw

images acquired by the microscope must be normalized before

entering the 3D reconstruction process (for example the ice

thickness is not the same for all particles). The normalization

normally sets the statistical properties of the ice to some

prespecified values (Sorzano et al., 2004). However, this

normalization is affected by outlying pixels, nearby particles,

contaminations or carbon edges, illumination gradients,

inhomogeneous camera gain images (Sorzano, Fernández-

Giménez et al., 2018) etc. For this reason, the particle

normalization must be refined in order to make the projection

images maximally consistent with the reconstructed volume

(Scheres et al., 2009; Sorzano, Vargas et al., 2018). We may

think of the normalization process as a linear transformation

of the input images I0 = aI + b. Systematic errors in b translate

into a sphere of density around the reconstructed molecule

(the reason is that the backprojection of an additive constant

in all possible projection directions is not a constant map, but a

sphere whose density increases with the radius up to the

maximum radius that can be embedded in a box of the size of

the particles). This kind of systematic error is seldom seen in

3D reconstructions of single particles. Instead, random errors

in b should be more common. Similarly, it is hard to think up

situations in which the image-normalization process system-

atically biases a. However, images participate in the 3D

reconstruction process with some weight (Grigorieff, 2007;

Scheres et al., 2007; Sorzano, Vargas et al., 2018), and one can

imagine systematically high or low weights depending on the

projection direction (for instance, the attraction problem in

3D places more images along specific directions, resulting in a

higher weight of that direction with respect to the rest). This

situation could not be distinguished from systematic errors

in a.

4.5. Incorrect masking in real or Fourier space

Incorrect masking in real space or Fourier space can either

cut out valid regions of the map or, on the contrary, leave

regions that do not correspond to the structure of interest but

may serve as anchors for noise alignment (a related problem

can be seen for membrane proteins, where the density of the

membrane may drive the angular alignment in undesired

ways).

The use of masks during alignment is recommended. They

prevent the alignment from being driven by artifacts around

the 3D reconstruction that are unrelated to the structure

under study (Sorzano, Vargas et al., 2018; see also Supple-

mentary Fig. 2). The same logic applies to masks in the Fourier

domain: the FSC can serve as an indicator of the reliability of

the different Fourier components. This reliability can be

explicitly used during the alignment phase to limit the amount

of unreliable content that can serve as noise anchors (Scheres,

2012a; Grant et al., 2018; Sorzano, Vargas et al., 2018).

We should distinguish between real-space and Fourier space

masks for angular alignment or as post-processing tools. The

use of real-space masks after reconstruction should be

discouraged because they could hide possible biases. Similarly,

modifications of the amplitude spectrum after reconstruction,

such as the B-factor correction, normally lead to a biased

overboosting of the high-frequency components (Ramı́rez-

Aportela et al., 2020), resulting in publicly deposited maps that

do not comply with the expected behavior of the diffraction of

macromolecules (Vilas, Vargas et al., 2020). Other modifica-

tions that try to match the amplitude spectrum of the recon-

structed map to that of its atomic model (Jakobi et al., 2017)

explicitly address the minimization of this bias as long as the

atomic model is correct (otherwise, this match would induce

another bias). Interestingly, current post-processing approa-

ches such as that in RELION basically amount to a mask and

B-factor correction. After this transformation, the FSC

significantly improves, reporting a higher resolution for the

reconstructed map (see Supplementary Experiment 9).

However, this increase in resolution is merely due to the

change of the mask between that used during reconstruction

and that used during post-processing because the FSC is

invariant to radially symmetric transformations such as the

B-factor correction (Sorzano, Vargas, Otón, Abrisham et al.,

2017). Masking in real space translates into a convolution

in Fourier space [we denote the Fourier transforms of the

estimated map and the applied mask V̂VðRÞ and MðRÞ,

respectively],

FT fV̂VðrÞMðrÞg ¼ V̂VðRÞ ?MðRÞ

¼ V̂VðRÞ þ ½V̂VðRÞ ?MðRÞ � V̂VðRÞ�;

that is, we are biasing our reconstructed volume by another

volume whose Fourier transform is ½V̂VðRÞ ?MðRÞ � V̂VðRÞ�.
The absence of a mask is equivalent to a constant mask of

value 1 everywhere. Its Fourier transform would be a delta
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function in Fourier space, and the bias term would be equal to

zero. However, tight masks are significantly broad in the

Fourier domain, resulting in a large bias, and as shown in

Section 5.1 this can make the FSC arbitrarily large, as shown in

Supplementary Experiment 9. It should also be noted that a

bias with respect to the reconstructed map is not necessarily

bad, as the bias should be measured with respect to the true

underlying structure, not the reconstructed map. In this

regard, the masked volume may be closer to the underlying

structure than the reconstructed map if the mask removes map

artifacts. Unfortunately, the true structure is never known, and

introduction of the mask and its effect on the FSC may result

in overconfidence in the quality of the map.

4.6. The 3D reconstruction algorithm

As we have seen, some metrics may be better suited than

others to identify population mixtures or misaligned particles.

These metrics are translated into different weights of the

particles in the 3D reconstruction. In turn, this projection-

weighting scheme plays an important role in the final recon-

struction. For instance, incorrectly aligned particles would not

have any effect if their weight is minimal. On the other hand,

the possibility of assigning multiple weights to the same image

in different orientations will necessarily introduce structural

bias in the 3D reconstruction, especially if these weights are

similar.

Strictly speaking, the voxel values of the reconstructed map

are parameters to determine (8 000 000 in our example in

Section 2). Still, once the alignment parameters have correctly

been determined (600 000 in the example in Section 2), an

unbiased determination of the volume parameters is almost

guaranteed with the existing algorithms (Penczek et al., 2004;

Scheres, 2012b; Abrishami et al., 2015; Sorzano, Vargas, Otón,

de la Rosa-Trevı́n et al., 2017). In this way, most of the effort

should be concentrated on determination of the alignment

parameters. In the EM community, these parameters have

been considered to be nuisance (secondary) parameters

(Scheres, 2012a; Lyumkis et al., 2013; Punjani, Brubaker et al.,

2017) arising from some statistical distribution with a Gaussian

or uniform prior. This assumption has proved to be very useful

in converging from a wide range of initial volumes, as shown

by the success of these methods. However, a consequence of

adopting a maximum-likelihood approach is that an image is

allowed to occupy multiple orientations with different prob-

abilities. This is a violation of the image-formation model, as

an image truly arises from only one, although unknown,

orientation. Projection matching does not suffer from this

drawback (although it has others, such as a much smaller

radius of convergence). An image can have a single set of

alignment parameters. As argued in Sorzano, Vargas et al.

(2018), the probability of making an angular error if a single

projection direction is allowed is lower than that of making an

angular error if two or more projection directions are allowed

(because all except at most one must necessarily be wrong).

In Supplementary Experiment 6 we show the distribution of

the number of significantly different alignment parameters

contributing to each of the experimental images in RELION.

As can be seen, most of the images have between 1 and 10

significant contributions, with a maximum of about 200. This

multiplicity of orientations is translated into a weighting

scheme that places the same image at different orientations

with different weights. In Supplementary Experiment 10, we

show the difference between the 3D reconstruction performed

within RELION autorefine and RELION reconstruction with

the same angular distribution. The weighting scheme in

RELION autorefine results in a low-pass filter of the recon-

structed map and a low-frequency white halo superposed on

the map. These differences with respect to the true underlying

structure are a different kind of bias, in this case caused by the

weighting scheme of the reconstruction algorithm.

Maximum-likelihood methods were extended to Bayesian

methods by adding a prior on the Fourier coefficients of the

reconstructed map (Fourier components that are independent

of each other and whose real and imaginary parts are also

independent). This prior acts as a low-pass filter (Scheres,

2012a) and, as for any prior, it results in a regularization that

unavoidably leads to bias (Fessler, 1996; this is the very

purpose of Bayesian methods when data are scarce). Addi-

tionally, the specific prior used in the community so far has

experimentally been shown to be incorrect for macro-

molecular structures (Sorzano, Vargas, Otón et al., 2015), and

consequently as an incorrect prior it systematically biases the

reconstructions obtained with this objective function. Still, this

prior has proved to be very useful for its EM application,

although in the future research on new priors based on the

nature of macromolecules could be exploited. These priors

would not bias the reconstruction process as they would

incorporate prior knowledge matching with the objects being

imaged.

Overall, the problem of obtaining an incorrect structure is

an open problem in the field. How incorrect it is depends on

the countermeasures that we have taken to prevent structural

bias. Heymann et al. (2018) reached a similar conclusion from

the outcome of the map challenge and suggested a set of safe

practices that are very much in line with those suggested here.

In the following section, we show that our most common

strategies to prevent (gold-standard data analysis) and detect

(Fourier shell correlation) biased reconstructions can be

fooled by systematic errors so that additional measures are

necessary.

5. Detection and avoidance of bias

In this section, we discuss the tools that are currently in use to

detect biased reconstructions. As explained, it is easier to

detect biased estimates of the different parameters than their

combined effect in the reconstructed map. We start by

analyzing the FSC as the most widely used map-quality tool.

We show that this tool can easily be fooled by systematic

errors (the kind of errors that bias gives rise to). Similarly, it is

easier to avoid bias in the various parameter-estimation steps

than when splitting the data into two halves from the begin-

ning. We argue that this practice is not common among
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data-analysis applications as it underutilizes the available data

and cannot guarantee the lack of bias. Additionally, we show

that splitting the data into two is not necessary to avoid bias.

Practices closer to cross-validation or separation into training

and test data sets could instead be adopted. Finally, we discuss

the current implementation of phase randomization. The

original idea is worth pursuing, but its current implementation

does not adhere to the original plan.

5.1. On the use of the FSC to detect overfitting

The most common tool to detect the overfitting is the FSC

between the two maps,

FSCðRÞ ¼

P
R2SðRÞ

V̂V1ðRÞV̂V
�
2 ðRÞ

P
R2SðRÞ

jV̂V1ðRÞj
2

" #1=2 P
R2SðRÞ

jV̂V2ðRÞj
2

" #1=2
; ð3Þ

where R is the 3D frequency vector, R is its magnitude, SðRÞ is

the Fourier shell whose center has radius R, and V̂V1 and V̂V2 are

the Fourier transforms of the two maps reconstructed from the

two data halves. [Note that in this formulation we are not

analyzing the statistical distribution of the FSC, and this is why

we have not further expanded V̂V1 and V̂V2 into their determi-

nistic and random components. For a deep analysis of these

distributional properties, the reader is referred to Sorzano,

Vargas, Otón, Abrishami et al. (2017).] If both reconstructions

are biased, V1 + �V1 and V2 + �V2, and the FSC becomes

FSCðRÞ ¼ P
R2SðRÞ

½V̂V1ðRÞ þ�V1ðRÞ�½V̂V2ðRÞ þ�V2ðRÞ�
�

P
R2SðRÞ

j½V̂V1ðRÞ þ�V1ðRÞ�j
2

( )1=2 P
R2SðRÞ

j½V̂V2ðRÞ þ�V2ðRÞ�j
2

( )1=2
:

ð4Þ

With this measurement, the FSC can be made arbitrarily close

to 1 by making �V1 ’ �V2 � V̂V1; V̂V2. This bias of the FSC is

at the core of some of its reported failures (Borgnia et al., 2004;

Egelman, 2014; Subramaniam et al., 2016; Tan et al., 2017).

We may pose the 3D reconstruction problem as that of

estimating a set of parameters H that include the recon-

structed volume, the 3D alignment parameters of each of the

experimental projections and any per-particle imaging para-

meter. The problem is estimating H from the observed data y,

H� ¼ arg maxHf ðHjyÞ ¼
f ðyjHÞf ðHÞ

f ðyÞ
¼ arg maxHf ðyjHÞf ðHÞ:

This is a Bayesian regression problem, as stated in Scheres

(2012a). The first term aims to look for a solution that is

consistent with the acquired data. The second term looks for a

solution that is consistent with what is known, in general,

about biological macromolecules. The drawback of the

Bayesian approach is that, for the moment, we do not have a

realistic prior for the set of macromolecules being recon-

structed. In any case, as with any other regression problem in

statistics, the validity of the result should be include the resi-

duals of the regression; that is, comparing the observed y with

the predicted ŷy. Different strategies, such as regressing with a

large subset of the data and evaluating with a small subset,

could be devised (Ortiz et al., 2019), as is the standard practice

in statistics and X-ray crystallography (free R value; Brünger,

1992). This is also the spirit of measures based on the spectral

signal-to-noise ratio (SSNR; Penczek, 2002; Unser et al., 2005).

However, it is not at the core of the FSC. The FSC compares

two sets of regression parameters ĤH1 and ĤH2. This has the

drawback of being heavily affected by bias: systematic errors

are rewarded by the FSC. There is a connection between the

FSC and the SSNR when the errors are supposed to be

random. However, the functional nature of the relationship is

unknown (Sorzano, Vargas, Otón, Abrishami et al., 2017), and

its sensitivity to bias should be considered before adopting it

as a universal descriptor of the map quality.

At this point, we would like to highlight that the 0.143

threshold normally used in the field is derived under the

assumption of no bias and linearity of the 3D reconstruction

process. This latter assumption is broken by some algorithms,

for example Xmipp HighRes (Sorzano, Vargas et al., 2018).

As a consequence, the FSC between two halves for these

algorithms may sometimes not cross the 0.143 threshold (in

Supplementary Experiment 10, we show the impact of the

nonlinear processing of Xmipp HighRes on the FSC). For this

class of algorithms, we have heuristically found that a

threshold of 0.5 is often a better estimate of the resolution

(despite this concept being ill-defined). This tends to be true

not only for Xmipp HighRes but in general for most 3D

reconstruction algorithms that we have used (RELION,

cryoSPARC and Xmipp). We have normally observed that the

FSC = 0.143 resolution, in most reconstruction algorithms, is

usually the best resolution in the best voxel of the local

resolution map (Vilas et al., 2018; Ramı́rez-Aportela et al.,

2019; Vilas, Tagare et al., 2020) and that the FSC = 0.5 reso-

lution is more representative of the most common local

resolution value.

We have also observed that the FSC typically presents a

change of decaying regime at a frequency that is better related

to the frequency at which the map is reconstructed (Supple-

mentary Experiment 12). However, it is difficult to determine

these regime changes automatically, and a straightforward,

objective criterion cannot be given at this moment.

5.2. The gold standard and cross-validation

Throughout this article, we have analyzed the most common

sources of bias in cryoEM single-particle analysis. For each of

the different sources, we have suggested ways to detect and

avoid these biases. The most common way to avoid overfitting

in cryoEM is the so-called gold-standard data processing,

which divides the data into two independently processed

halves (Scheres & Chen, 2012). The idea is based on previous

work (Grigorieff, 2000) and, as stated in Chen, McMullan et al.

(2013),

Grigorieff showed that when signal-to-noise ratio in the images

becomes low enough, it is impossible to avoid overfitting when
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the two half sets are aligned against the same reference

structure, regardless of how the procedure is initiated. He was

the first to conclude that a reliable estimation of resolution using

FSC can be obtained only when the two half datasets are

independently aligned against two independent reference

structures.

However, a careful reading of Grigorieff (2000) reveals that

what he showed was an experiment in which, with low SNR

and a low number of images, the FSC of two halves aligned

against the same reference was not representative of the FSC

of the full set against the known ground truth. From this

experiment, we cannot take as a general result that the data

set needs to be split into two halves aligned to independent

references. One of the main differences from this result, 20

years later, is that the number of particles used nowadays

largely outpaces the number of particles with which this

experiment was performed (1000 images).

Actually, this procedure of splitting the data into two halves

goes against the most advanced practices in statistics. The

standard recommended approach would be cross-validation

(dividing the data set into K pieces, typically K = 10, proces-

sing K � 1 to produce the map and using the remaining piece

to evaluate the quality of the map; the process is repeated K

times, with each one of the pieces playing the role of the

validation subset; Picard & Cook, 1984). This approach is

computationally expensive since the full 3D alignment and

reconstruction process must be repeated K times, and it may

have problems in the case of very imbalanced classes or with

the attraction problem (Sorzano, Semchonok et al., 2021). In

many domains, the procedure has been simplified to separ-

ating the data set into training (80–90% of the data) and

validation (20–10%) subsets. This is, for example, the case in

deep learning, where it is a well accepted practice. This is also

the approach suggested by Ortiz et al. (2019).

This article argues that the gold-standard approach is

neither necessary nor sufficient to guarantee a lack of bias. It is

not sufficient because the two halves can be easily led into the

same kind of bias (biased initial volume, missing information

induced by the alignment and reconstruction algorithm,

incorrect symmetry, the use of incorrect particles, biased

objective function, incorrect masking and Fourier filtering

etc.). If this is the case, both data halves will have the same (or

similar) bias. This nonsufficiency argument is well known in

the field, in which incorrectly reconstructed structures are

reconstructed despite following the gold standard. What is not

generally considered in the field is that the gold standard is not

necessary either in the sense that processing workflows that

systematically interchange images between the two halves do

not necessarily show signs of overfitting. This is exemplified in

Supplementary Experiment 13. In this example, the set of

input images is randomly split at every iteration and assigned

to one of the two halves. This strategy is similar to the

approach of stochastic gradient descent (Punjani, Brubaker et

al., 2017) with two current solutions instead of one, and it was

generalized to multiple solutions in Sorzano, Vargas et al.

(2018). In this way, the two reconstructed volumes will surely

share common images along the reconstruction history at the

end of the processing. Even though this strategy goes against

the current belief that total independence of input data is an

absolute requirement, we show that there is no obvious sign of

overfitting. This experiment is justified by our claim that the

overfitting observed in cryoEM is more related to systematic

bias than to variance associated with an excessive number of

parameters or the lack of independence between the data. In

this way, the emphasis in data processing should be more on

removing biased parameters rather than the use of half the

data for each reconstruction. Still, this practice of constructing

two half volumes is useful for calculating the FSC at a parti-

cular iteration. This example shows that strategies other than

the gold standard are also possible and may appear in the

future.

5.3. Randomized phases to detect overfitting

Chen, McMullan et al. (2013) suggested the randomization

of phases in the experimental images beyond a given

frequency as a way to detect overfitting. The calculation of the

true SNR in Chen, McMullan et al. (2013) is affected by a

problem of zeroth-order Taylor expansion (Sorzano, Vargas,

Otón et al., 2017). This invalidates a faithful calculation of the

true SNR based on the FSC of the two halves and the FSC of

the two halves after randomizing the phases. In any case, the

suggestion makes sense as a characterization of the ability of

the 3D reconstruction process to identify overfitting, rather

than as a true detector of the overfitting present in the

reconstruction without any randomization. A problem with

the most used implementation of phase randomization,

RELION, is that it works at the volume level and not at the

level of experimental images as originally suggested. This

annuls the whole validation idea. Supplementary Experiment

14 presents the differences between the analysis when the

phase randomization is performed at the level of images or

volumes. Performing it at the level of volumes does not

confirm the validity of the reconstructed volume, and the

reported randomized phase FSC is the logical result (a large

degree of agreement up to the frequency of randomization

and decay from this frequency) of the operation performed.

6. Conclusions

The goal of cryoEM is to elucidate the 3D structures of

biological macromolecules. This task can be hindered by many

pitfalls leading to an incorrect structure determination. The

difference between the true (unknown) structure and the

obtained structure is our bias. The importance of bias depends

on the specific violation and the amount of violation of our

data set and parameter estimates. It may affect only small

details in the reconstruction or lead to a completely wrong

reconstruction. Bias can be induced by the following.

(i) Sample-related sources, such as using particles that do

not correspond to our structure, imposing an incorrect

symmetry or lacking projection directions. For each of these
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problems, we have suggested tools that are capable of

detecting them and avoiding them if possible.

(ii) Algorithmic related sources such as those related to the

initial volume, the particle parameters (angular assignment

and in-plane alignment, defocus and acquisition parameters,

normalization etc.) or the image processing itself (its objective

functions or steps inducing bias, in particular masking in real

or Fourier space etc.). Image-processing biases are hard to

fight as they are at the core of the tools available. Still, we

should be aware that the image-processing workflow is in itself

another source of bias and should do our best to identify

incorrectly estimated particle parameters.

Generally speaking, we can consider two different kinds of

errors when estimating parameters: (1) random errors around

the true solution and (2) parameter estimates significantly

away from the true solution. Given a single parameter esti-

mation, it is impossible to know which situation we are in.

Even if we are given multiple estimates of the alignment and

imaging parameters for a single projection, it is impossible to

know which situation, (1) or (2), each estimate is in. However,

with multiple estimations (at least two), assuming that the

algorithms producing them are reasonably correct, we could

adopt the following strategy: comparing the estimates and

deciding whether most of them agree in some particular region

of the parameter space. If this is the case, we may assume that

we are in error case (1), and then averaging the parameters

would reduce the variability due to each of the estimation

processes. If they disagree, we would not know which of the

two, or more than two, clusters of parameters is the correct

one. We might choose the most populated cluster (if we have

more than two estimates of the parameters for the same

image), hoping that, since the algorithms estimating them are

reasonable, the most populated cluster is close to the

(unknown) ground truth. Then, we could average the para-

meters in that region. We could also ignore those particles for

which not all algorithms agree in the parameter region.

Experimentalists are very much aware of sample-related

errors, and they try their best to avoid them. Algorithmic

errors have been overlooked in the community, and most

structures are reconstructed using a single estimate of the

particle parameters (a single run of the 3D classification and

alignment algorithm), trusting the underlying algorithm

always to find the ‘right’ answer and, if not, being capable of

dealing with incorrect estimates. Moreover, as a community,

we have largely adopted tools (FSC) and strategies (gold

standard) that we think protect us from overfitting, that is,

structure bias. However, they do not. Unfortunately, there are

no statistical means to identify bias without prior knowledge

about the reconstructed structure (but this is unknown, as it is

the whole purpose of cryoEM). This is a general problem in

statistics: bias cannot be estimated from a set of samples.

In this article, we have shown that there might be significant

differences between the particle-parameter estimates from

different algorithms or even different runs of the same algo-

rithm. Whichever strategy we choose to deal with incorrect

estimates at this level, identifying possible bias and reducing

the variance invariably requires multiple independent esti-

mations of the alignment and class-membership parameters.

Although not entirely protected against bias (two coincident

estimates could be simultaneously biased), this approach

could help to produce better, more robust and reliable 3D

reconstructions of cryoEM data.
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Charbonnier, P., Blanc-féraud, L. & Barlaud, M. (1992). J. Vis.
Commun. Image Represent. 3, 338–346.

Chen, S., McMullan, G., Faruqi, A. R., Murshudov, G. N., Short, J. M.,
Scheres, S. H. W. & Henderson, R. (2013). Ultramicroscopy, 135,
24–35.

Chen, Y., Pfeffer, S., Hrabe, T., Schuller, J. M. & Förster, F. (2013). J.
Struct. Biol. 182, 235–245.

Dashti, A., Schwander, P., Langlois, R., Fung, R., Li, W., Hosseini-
zadeh, A., Liao, H. Y., Pallesen, J., Sharma, G., Stupina, V. A.,
Simon, A. E., Dinman, J. D., Frank, J. & Ourmazd, A. (2014). Proc.
Natl Acad. Sci. USA, 111, 17492–17497.

Egelman, E. H. (2014). eLife, 3, e04969.
Elmlund, H., Elmlund, D. & Bengio, S. (2013). Structure, 21, 1299–

1306.
Fessler, J. A. (1996). IEEE Trans. Image Process. 5, 493–506.
Gil, D., Carazo, J. M. & Marabini, R. (2006). J. Struct. Biol. 156, 546–

555.
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