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Abstract: A circular grating angle encoder is a key component in the dynamic torque calibration
system. To improve the accuracy of an angle measurement, in this paper, the source of the angle
measurement error of the circular grating is analyzed; an eccentricity error model and an inclination
error model are proposed, respectively; further, these two models are combined to establish a total
error model. Through the simulation study with the models, the conditions, in which the eccentricity
error or inclination error can be ignored, are discussed. The calibration and compensation methods
of the angle measurement error are given, and a progressive error compensation function which
integrates the first harmonic fitting and the second harmonic fitting is obtained. An experiment is
performed to verify the proposed calibration and compensation methods. The peak-to-peak value of
the compensated angle measurement error of the single reading head can be reduced by about 93.76%,
which approximates to the error of the mean value of the double reading heads. The experimental
results show that the error calibration and compensation method based on the proposed error model
can effectively compensate the angle measurement error of the circular grating with a single reading
head, and obtain a high-precision measurement angle.

Keywords: dynamic torque calibration; circular grating; eccentricity error; inclination error;
error compensation

1. Introduction

Torque transducers are widely used in rotating machinery [1,2], such as engines,
motors, generators, propellers, etc. The calibration, measurement, and analysis of torque
transducers is the key to ensure the normal and safe operation of this equipment [3].
However, the calibration of torque transducers is still in the laboratory static calibration
stage, and the research on dynamic calibration models and calibration method is not
very extensive. Thomas [4] carried out a sinusoidal torque calibration using the laser
interferometric method, and initially realized the calibration of a sinusoidal excitation
torque with a maximum frequency of 100 Hz and amplitude of 100 N·m. Then, Georg
et al. [5] realized the calibration of the torque sensor under a dynamic torque and rotation
conditions, respectively. Zhang et al. [6] developed a dynamic torque calibration device
with a calibration range of 0.1–200 N·m and a maximum frequency of 100 Hz.

In the dynamic torque calibration system, the circular grating angle encoder (referred
to as “circular grating” for short) is a common angle measuring component. The application
of the high-precision and high-resolution circular grating can improve the accuracy of
the torque calibration results. The error of the circular grating angle measurement can
be introduced by different conditions, such as the eccentricity of the rotating shafting [7]
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(referred to as “eccentricity error” for short), the inclination between the axis of rotation
and the geometric axis of the rotating shafting [8,9] (abbreviated as “inclination error”),
the axial movement of the rotating shafting, the roundness of the radial section of the
rotating shafting [10,11], and the circular grating itself [12], etc.

The methods to improve the angle measurement accuracy of circular gratings pro-
posed in previous studies can be summarized as increasing the number of reading heads
and using a compensation algorithm. Scholars have conducted a lot of research on the
angle measurement of multi-reading heads of circular grating [13–18]. Some important
studies are listed below. Zhang [13] proved the error elimination principle of the multi-
reading heads structure by using the harmonic analysis method. Ralf et al. [14] developed a
self-calibration method for the fast and precise in situ calibration of angle encoders without
recourse to external reference standards. It depended on the proper geometric arrangement
of multiple reading heads, and the use of an algorithm based on Fourier transform to
analyze the measurement difference of double heads in order to recover the indexing error
of the grating. Liu et al. [15] developed an optimization-based arrangement method for the
self-calibration of angle encoders. Ren et al. [16] analyzed the error sources affecting the
angle measurement accuracy, and proposed the compensation method of multi-reading
heads reading averaging. Based on the Back Propagation neural network, Xue et al. [17]
established a model that can compensate the error over the whole circumference. Lou
et al. [18] proposed a novel self-calibration method for five degrees-of-freedom error mo-
tions of rotary tables, and they installed two encoders with multiple reading heads on
the spindle’s different positions to measure rotation angles. The above-mentioned studies
all use two or more reading heads to compensate the angle measurement error of the
circular grating, but they have not analyzed the specific angle measurement error model
of the single reading head. Moreover, when only increasing the number of reading heads
without algorithm compensation, the accuracy of the angle measurement is mostly not
enough. Therefore, they all provided different error compensation algorithms to improve
the accuracy of the angle measurement. However, many commercial grating encoders
are equipped with only one reading head, and increasing the number of reading heads
would, inevitably, increase the cost of the project. It would, inevitably, increase the error
items caused by the installation of the reading heads, and increase the complexity of the
error analysis. Furthermore, for some special applications, such as in article [19], the angle
measuring system is required to be as light as possible, and a single reading head is usually
used. In addition, when using semi-circular gratings and circular arc gratings for an angle
measurement, only a single reading head can be used instead of multi-reading heads.

In order to improve the angle measurement accuracy of circular gratings with a
single reading head, researchers have conducted a lot of work on the compensation al-
gorithm [7,8,20–30]. Chen et al. [7,8], respectively, derived the eccentricity error model
and the inclination error model of the circular grating angle measurement based on the
Moiré fringe equations. However, the above research did not consider the influence of
the eccentricity error phase and inclination error phase, as well as the interaction between
them. Ralf et al. [20] proposed an in-depth treatment of the use of the Fourier approach,
including transfer functions for the calibration of angle encoders. Li et al. [21] analyzed
the angle measurement error distribution characteristics of the circular grating encoder,
and established a method to obtain the angle error compensation value through the uncer-
tainty calculation based on the Monte Carlo method (MCM). Deng et al. [22] presented a
method based on the adaptive differential evolution Fourier neural network (ADE-FNN).
Mark et al. [23] established a simple method for a high-precision rotary angle encoder
calibration for long-range angular errors. Cai et al. [24] proposed a novel error compen-
sation method based on the empirical mode decomposition (EMD) method. Jia et al. [26]
established a method based on the Fourier expansion-back propagation (BP) neural net-
work optimized by the genetic algorithm (FE-GABPNN). Gao et al. [27] designed an angle
compensation scheme based on Fourier fitting. Different novel error compensation algo-
rithms are proposed in the above studies, but the error model is not discussed in detail.
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Zheng et al. [28] discussed the influence of the circular grating eccentricity error on the
measurement accuracy of the articulated arm coordinate measuring machine, proposed an
error compensation parameter method, and established a six-circular grating eccentricity
error compensation model. Yu et al. [19] presented an eccentricity error compensation
method based on the calibration experiment using a single reading head. The above
studies only derive the corresponding eccentricity error model, but do not fully consider
the combined influence of the eccentricity error and inclination error. Based on the Abbe
principle, Li et al. [29] used a new method to analyze the angular positioning error of the
rotary table by using a circular grating with multi-reading heads. Based on compressed
sensing and sparsity decomposition, Chen et al. [30] proposed a novel method to improve
the angle measurement accuracy of circular grating. Although the above research gave the
corresponding eccentricity error model and inclination error model, they did not consider
the phase relationship between them. Moreover, when analyzing the inclination error
model, the eccentricity caused by the inclination error was not considered. In summary,
most of the existing research on the angle measurement of the circular grating with a single
reading head is only in the compensation algorithm. In terms of the error model analy-
sis, there is more research on the eccentric error model, and less on the inclination error,
and especially less on the relationship between them.

The correctness of the angle measurement error model of the circular grating directly
affects the compensation accuracy of the error compensation method. The self-error of
circular grating and the error caused by roundness can be reduce to a negligible degree
by using the high-precision circular grating. Because the axial movement of the shaft is
perpendicular to the measurement plane of the reading head, the axial movement error
is orthogonal to the rotation angle, and generally does not affect the angle measurement
error of the circular grating. Most of the current models of the angle measurement error of
the circular grating do not consider the inclination error, or think that the inclination error
is negligible relative to the eccentricity error. In fact, the influence of the inclination error
on the angle measurement is also very obvious and, in some cases, it is consistent with the
influence of the eccentricity error. Therefore, when analyzing the angle measurement error
of the circular grating, the inclination angle error should not be ignored all the time.

The contributions of this paper are as follows: (1) After analyzing the sources of errors,
the eccentricity error model and the inclination error model are, respectively, proposed.
Further, a total error model combining the two models is established. (2) According to
the characteristics in each model, the applicable conditions and approximate simplified
application formulas of each model are given. Through the simulation study with the
models, the conditions, in which the eccentricity error or inclination error can be ignored,
are discussed. (3) The calibration and compensation methods of the angle measurement
error are given, and the progressive error compensation function which integrates the
first harmonic fitting and the second harmonic fitting is obtained. Then, an experiment
is performed to verify the proposed calibration and compensation methods. The angle
measurement accuracy after the compensation of the single reading head is consistent with
that acquired with the double reading heads. (4) The angle measurement error calibration
function is applied to the dynamic torque calibration system, and the simulation results
show that this method can improve the accuracy of the dynamic torque calibration system.

The structure of the article is introduced as follows: The dynamic torque calibration
system is briefly introduced in the next section. In Section 3, the eccentricity error model
and the inclination error model of the angle measurement error of the circular grating are,
respectively, derived, and the comprehensive angle measurement error model is given.
Then, different simulations are executed based on the three error models, and their results
are compared. Section 4 introduces the error calibration experiment and proposes the
error compensation method. Section 5 discusses the results of the calibration experiments.
The conclusions are presented in Section 6.
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2. Dynamic Torque Calibration System

Without considering the friction damping, the torque T of the rotating shafting can be
expressed as the following formula.

T = J · ..
α, (1)

where J is the moment of inertia,
..
α is the angular acceleration.

In Equation (1), the dynamic torque is directly traceable to the time, angle, and mass [6].
Therefore, a dynamic torque calibration system was established based on this principle,
as shown in Figure 1.
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Figure 1. Schematic diagram of the dynamic torque calibration system.

The dynamic torque calibration system mainly included an exciter and a torque cal-
ibration unit. The calibrated torque transducer was installed between the exciter and
the torque calibration unit. In order to realize the calibration of dynamic torque, we first
controlled the exciter to generate a varying torque. Because there was a large error between
the real value and the preset value of the torque generated by the exciter, we needed to
use the torque calibration unit to accurately measure the actual dynamic torque of the
shafting. During excitation, the generated torque was transferred via the torque trans-
ducer onto the torque calibration unit to generate the angular acceleration of its shafting.
By measuring the angular acceleration and the moment of inertia of the shafting, the dynamic
torque could be accurately determined according to Equation (1) [4]. Then, the dynamic
torque value measured by the dynamic torque calibration unit was compared with the
value measured synchronously of the torque transducer to realize the dynamic calibration
for the torque transducer.

As a dynamic torque calibration system, the accurate dynamic torque value had
to first be obtained before it could be compared with the measured value of the torque
transducer. Therefore, it was required to accurately measure the moment of inertia J and
angular acceleration

..
α of the shafting. The moment of inertia J of the shafting of the torque

calibration unit was constant in a single experiment and could be measured in advance by
the torsional pendulum method [31]. In the calibration experiment, the rotation angle α of
the shafting was dynamically measured by a circular grating. The angular acceleration

..
α

could be obtained by twice differentiating the measured angle α. Then, substituting J and
..
α

into Equation (1), the dynamic torque could be obtained. Finally, the dynamic torque results
were used to calibrate the torque transducer. In order to obtain a higher calibration accuracy,
the dynamic torque calibration system was equipped with a high-precision circular grating
for the angle measurement, and the error compensation was performed on the measured
angle. In the following sections, the error model and compensation method of the circular
grating angle measurement was discussed in detail.
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3. Establishment and Simulation Analysis of Angle Measurement Error Model
3.1. Angle Measurement Error Modeling
3.1.1. Eccentricity Error Modeling

Without considering the inclination error, the eccentricity error of the circular grating
with a single reading head is shown in Figure 2.
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Figure 2. Schematic diagram of the eccentricity error of angle measurement with a single
reading head.

In Figure 2, the blue dotted circle indicates the circular grating radial section where
the measuring point of reading head one was located (referred to as “reading section”
for short). r is the radius of the radial section. The rotation center O and the geometric
center O′ of the reading section generally did not coincide. The distance between these
two points is the eccentricity e. According to the position of the measuring point of reading
head one, two two-dimensional rectangular coordinate systems were established on the
reading section, namely, the fixed coordinate system (FCS) xOy and the rotating coordinate
system (RCS) x′O′y′. When the reading section rotated counterclockwise from the position
of the blue dotted circle to the position of the black solid circle, α was the actual rotation
angle of the shafting. The rotating coordinate system x′O′y′ rotated counterclockwise
around the origin O to the coordinate system x”O”y” position. The measuring point of
reading head one changed from A to B. β is the measured value of reading head one. δ is
the eccentricity error. Evidently, δ = β − α. The coordinates of each point before and after
rotation in Figure 2 are shown in Table 1.

Table 1. The coordinates of points before and after rotation.

FCS Origin RCS Origin Measuring Point

Before rotation O(0, 0) O′(xO′ , yO′ ) A(xA, yA)
After rotation O(0, 0) O”(xO”, yO”) B(xB, yB)

According to the two-dimensional coordinate transformation matrix, we had:{
xO′′ = xO′ cos α + yO′ sin α

yO′′ = −xO′ sin α + yO′ cos α
(2)

In Figure 2, O”K is perpendicular to the y′-axis. Then,

k = xO′′ − xO′ = yO′ sin α− xO′(1− cos α) (3)
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Let ∠O′Ox be θe, which is called the eccentricity angle, so:{
xO′ = e cos θe
yO′ = e sin θe

(4)

Substituting Equation (4) into Equation (3), we obtained:

k = e[cos(α− θe)− cos θe] (5)

In ∆O”KB, the length of side O”B is equal to r, then:

sin δ =
k
r
=

e
r
[cos(α− θe)− cos θe] (6)

When the value of e was much smaller than r, we had:

δ ≈ e
r
[cos(α− θe)− cos θe] (7)

Equation (7) shows that the eccentricity error was related not only to the eccentricity e,
but also to the eccentricity angle θe. θe has four special values:

1. When θe = ±π/2, xO′ = 0 and yO′ = ±e. In this case, the initial y′-axis of the RCS
coincides with the y-axis of the FCS. Then, Equation (7) can be simplified to:

δ = ± e
r

sin α (8)

2. When θe = 0 or θe = π, yO′ = 0, xO′ = ±e. In this case, the initial x′-axis of the RCS
coincides with the x-axis of the FCS. Then, Equation (7) can be simplified to:

δ = ± e
r
(1− cos α) (9)

3.1.2. Inclination Error Modeling

Without considering the eccentricity error, the inclination error of the circular grating
with a single reading head is shown in Figure 3.
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Figure 3. Schematic diagram of the inclination error of angle measurement with a single reading head. (a) Axial section of
the shafting; (b) reading section of the shafting.
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In Figure 3a, θ is the included angle between the rotation axis and the geometric axis
of the shafting, which is called the inclination angle. L is the distance from the spatial
intersection of the rotation axis and the geometric axis of the shafting to the radial section
of the circular grating. r is the outer diameter of the circular grating.

In Figure 3b, O is the rotation center, and the reading section rotates around O.
The red circle represents the trajectory of the geometric center of the reading section. When
the rotating coordinate system x′O′y′ rotated counterclockwise around the origin O to the
coordinate system x”O”y” position, the geometric center of the reading section rotated
from O′ to O” at an angle of α.

In the reading section, the maximum distance between measuring point A of reading
head one and the rotation center O was:

max(R) = L · sin θ+r · cos θ (10)

The reading section was an ellipse, and its major axis a and minor axis b were, respectively:{
a = r

cos θ
b = r

(11)

Because the value of θ is usually very small, it was approximately considered that
the reading cross-section was circular (the radius was still equal to r) to simplify the
calculation. Then, the reading section of the shafting at the inclination was similar to that
at the eccentricity. Therefore, the distance from the center of the ellipse to the rotation axis
was the eccentricity caused by the inclination, which was:

eL = max(R)− a = L · sin θ + r(cos θ − 1
cos θ

) (12)

According to Equation (6), the inclination error was:

δ = arcsin
([

L
r

sin θ + (cos θ − 1
cos θ

)

]
[cos(α− θL)− cos θL]

)
(13)

Because cos θ − 1
cos θ = tan θ sin θ � L

r sin θ, it was rounded off during calculation.
Therefore, Equation (13) could be approximately simplified to:

δ ≈ L
r

sin θ[cos(α− θL)− cos θL] (14)

3.1.3. Total Error Model

When the eccentricity error and the inclination error coexist, the total error combining
the two factors is:

δ = δe + δθ (15)

where δe is the eccentricity error and δθ is the inclination error. According to Equation (7)
and Equation (14), we obtained:

δ =
e
r
[cos(α− θe)− cos θe] +

L
r

sin θ[cos(α− θL)− cos θL] (16)

When θL = θe, we had:

δ =
(e + L sin θ)

r
[cos(α− θe)− cos θe] (17)

The total error increased due to the superposition of the eccentricity error and the
inclination error. This condition should be avoided in the experiment, which reduced the
accuracy of angle measurement.
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When θL = θe + π, we had:

δ =
(e− L sin θ)

r
[cos(α− θe)− cos θe] (18)

In this case, the two errors could be partially offset. In the experiment, the shafting
should work under this condition as much as possible to improve the angle measurement
accuracy.

Let θL = θe + θeL and substitute it into Equation (16) to obtain:

δ = −2
r

sin
α

2

[
(e + L sin θ cos θeL) sin(

α

2
− θe)− (L sin θ sin θeL) cos(

α

2
− θe)

]
(19)

Let C = e + L sin θ cos θeL, D = L sin θ sin θeL, cos ϕ = C√
C2+D2 and sin ϕ = C√

C2+D2 .
Then, we obtained:

δ = −1
r

√
C2 + D2 cos(θe + ϕ) +

1
r

√
C2 + D2 cos(α− θe− ϕ) (20)

Let δ0 = − 1
r

√
C2 + D2 cos(θe + ϕ), Cδ = 1

r

√
C2 + D2, ϕ0 = π

2 − θe− ϕ. Then,

δ = δ0 + Cδ sin(α + ϕ0) (21)

Error δ is a first harmonic function. Then, we could calibrate the measurement angle
by fitting the error data to the first harmonic, and provide an error compensation curve.
Moreover, after determining the eccentricity parameters (including e and θe) and the
inclination parameters (including L and θL), we could compensate for the measurement
value of the single reading head to obtain a higher measurement accuracy.

3.2. Simulation Comparison of Various Models of Angle Measurement Error
3.2.1. Simulation Comparison between the Eccentricity Error Model and the Inclination
Error Model

The purpose of the simulation in this section was to analyze the relationship between
the models given in Section 3.1. Therefore, the assumed values of these parameters in
the model could be arbitrary values, which would not affect the simulation conclusions.
However, during the model simulation analysis, we should also consider the actual situa-
tion. The radius of a commonly used circular grating is about 100 mm, so let r = 100 mm.
Because the length of the shafting in the experiment was 71 mm, we assumed that the
spatial intersection position of the rotation axis and the geometric axis was just in the
middle of the shafting when the shafting rotation produced an inclination angle; therefore,
let L = 35.5 mm. Because the machining accuracy of the rotating shaft and the bearing was
were very small when the shafting rotated, generally e ≤ 0.1 mm, θ ≤ 0.1◦. For ease of
analysis, we set e and θ to be larger values; therefore, let e = 0.1 mm, θ = 0.1◦. In this way,
the angle measurement errors caused by them would be larger, which was helpful for us to
observe the characteristics of these errors and draw correct conclusions.

Let r = 100 mm and e = 0.1 mm. The shafting rotated one turn, and the value of α
was from 0◦ to 360◦. The angle measurement error data calculated by using the proposed
eccentricity error model (Equation (7)) are shown in Table 2.

The relationship among eccentricity error δe, eccentricity angle θe, and rotation angle
α is shown in Figure 4.

As shown in Figure 4, when the eccentricity e was the same and the eccentricity angle
θe was different, the eccentricity error results obtained by Equation (4) were also different.
It showed that the eccentricity angle was an important parameter for the eccentricity error
compensation. Only when the eccentricity angle was determined could the initial position
of the rotation be determined, and the measurement result could be compensated.
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Table 2. Simulation data of the eccentricity error (unit: degree).

α
θec 0 15 30 45 90 180 270

0 0 0 0 0 0 0 0
15 −0.002 0.002 0.006 0.009 0.015 0.002 −0.015
30 −0.008 0 0.008 0.015 0.029 0.008 −0.029
45 −0.017 −0.006 0.006 0.017 0.041 0.017 −0.041
90 −0.057 −0.041 −0.021 0 0.057 0.057 −0.057
180 −0.115 −0.111 −0.099 −0.081 0 0.115 0.000
270 −0.057 −0.070 −0.078 −0.081 −0.057 0.057 0.057
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Let r = 100 mm, L = 35.5 mm, θ = 0.1◦, and θL = θe + 30◦. The shafting rotated one turn,
and the value of α was from 0◦ to 360◦. The angle measurement error data calculated by
using the proposed inclination error model (Equation (14)) are shown in Table 3.

Table 3. Simulation data of the inclination error (unit: degree).

α
θL 0 15 30 45 90 180 270

0 0 0 0 0 0 0 0
15 −0.009 0.007 −0.002 −0.005 0.004 0.005 −0.009
30 −0.018 0.013 −0.001 −0.011 0.006 0.013 −0.018
45 −0.026 0.016 0.002 −0.019 0.006 0.021 −0.025
90 −0.041 0.012 0.023 −0.046 −0.008 0.048 −0.035
180 −0.011 −0.037 0.068 −0.065 −0.058 0.063 0.002
270 0.030 −0.049 0.045 −0.019 −0.050 0.015 0.036

Let r = 100 mm, θ = 0.1◦, and θL = 30◦. The shafting rotated one turn, and the value of
α was from 0◦ to 360◦. The relationship among the inclination error δL, L, and the rotation
angle α is shown in Figure 5.
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From the comparison of the data in Tables 2 and 3, it can be seen that the inclination
error and the eccentricity error were in the same order of magnitude. The same conclusion
can be drawn by comparing Figures 4 and 5. Therefore, when analyzing the angle mea-
surement error of the circular grating, the inclination angle error is also a very important
factor and cannot be ignored all the time.

3.2.2. Total Error Simulation

Let r = 100 mm, L = 35.5 mm, θ = 0.1◦, and θL = θe + 30◦. The shafting rotated one turn,
and the value of α was from 0◦ to 360◦. The angle measurement error data calculated by
using the proposed total error model (Equation (16)) are shown in Table 4.

Table 4. Simulation data of the total error (unit: degree).

α
θe 0 15 30 45 90 180 270

0 0 0 0 0 0 0 0
15 −0.011 0.009 0.004 0.004 0.019 0.007 −0.024
30 −0.026 0.013 0.007 0.004 0.035 0.020 −0.046
45 −0.043 0.010 0.008 −0.003 0.047 0.038 −0.065
90 −0.098 −0.029 0.002 −0.046 0.049 0.105 −0.092
180 −0.126 −0.148 −0.032 −0.146 −0.058 0.177 0.002
270 −0.028 −0.119 −0.034 −0.100 −0.107 0.072 0.094

Let r = 100 mm, L = 35.5 mm, θ = 0.1◦, α = 15◦, θe ∈ [−π, π], and θL ∈ [−π, π].
The relationship among the total error δ, θe, and θL is shown in Figure 6.

Let λ = e
L sin θ , which is the amplitude ratio of the eccentricity error and the inclination

error in the total error. If λ < 10−2, the eccentricity error was two orders of magnitude
smaller than the inclination error. In this case, the inclination error was the main source of
the errors. In order to simplify the calculation, we could ignore the eccentricity error and
use the inclination error to approximate the total error. If λ > 102, the eccentricity error was
two orders of magnitude larger than the inclination error. In this case, the eccentricity error
was the main source of the errors. In order to simplify the calculation, we could ignore the
inclination error and use the eccentricity error to approximate the total error.
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Through the above-mentioned comparative analysis, the following conclusions were
drawn: both the eccentricity error and the inclination error were the main factors of the
angle measurement error of the circular grating. In specific applications, the proportion of
the two should be analyzed before appropriate simplification.

4. Error Calibration and Compensation Experiment
4.1. Experiment Setup

The calibration and compensation experiment system for the angle measurement error
of the circular grating included a shaft, a circular grating, an autocollimator, a 24-sided
prism, a data acquisition unit, and an air floating platform, as shown in Figure 7.
The angular measurement accuracy of the circular grating was 1.05” and the resolution was
0.21”. The accuracy of the 24-sided prism was 0.5”. The accuracy of the Autocollimator was
0.5” and the resolution was 0.01”. The sampling frequency of the data acquisition unit was
0.1 MHz. The air floating platform could isolate the vibration interference of the external
environment. The 24-sided prism and the circular grating were installed on the same side
of the shaft. The circular grating was equipped with double reading heads. The double
reading heads were arranged on the upper and lower diameter positions of the circular
grating. The parameters of the double reading heads were the same. When the shafting
rotated to different positions, the data acquisition unit synchronously collected the angle
measurement data of the autocollimator and the double reading heads. The measurement
value of reading head one was used for the angle measurement error analysis of the single
reading head. The synchronized measurement values of reading head one and reading
head two were used for the measurement error analysis of the double reading heads.
The error compensation method was described in detail in the next section.

4.2. Calibration and Compensation Method for the Angle Measurement Error

Before compensating the angle measurement error of the circular grating, the angle
measurement system should be calibrated to obtain the compensation curve. The 24-sided
prism and the circular grating were installed on the same side of the shaft. During the
calibration experiment, we rotated the shaft so that the 24-sided prism was aligned with
the autocollimator from the 0th side to the 23rd side in sequence. According to the
characteristics of the 24-sided prism, the shafting rotated 15◦ each time, and the readings of
the autocollimator and the double reading heads were recorded once. When the shafting
rotated one circle, we obtained a set of measurement data. The above experiment was
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repeated 40 times to obtain 40 groups of measurement data. The 25 groups of measurement
data were processed according to the calibration method steps in Figure 8 to obtain the
angle measurement error compensation curve of a single reading head.
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In Figure 8, after the shafting rotated one circle, the measurement value β1 of reading

head one and the measurement value β2 of reading head two were, respectively, compared
with the corresponding angle values of the 24-sided prism, and the angle measurement
errors ∆β1 and ∆β2 were obtained. The arithmetic average of the two was ∆β12, which
was the angle measurement error of the double reading heads. Through an observation,
it was found that the discrete point distribution curve of ∆β12 was close to the second
harmonic curve. According to the principle of eliminating the angle measurement error
of the double reading heads, the uniform arrangement of the double reading heads could
only eliminate odd harmonic error components. It shows that ∆β12 contained the second
harmonic component. Then, the difference ∆β1′ between the angle measurement error ∆β1
of reading head one and the angle measurement error ∆β12 of the double reading heads
had to include the angle measurement error described in Equation (21). The 25 groups of
experimental data were processed to find the corresponding ∆β12 and ∆β1′ , respectively.
The arithmetic average was ∆β12 and ∆β′1. Performing a sine fitting on ∆β12 and ∆β′1,
respectively, we obtained the second harmonic fitting error compensation function and the
first harmonic fitting error compensation function.

The first harmonic fitting error compensation function was:

δ1 = δ10 + A1 sin(α + ϕ1) (22)

where ϕ1 is the initial phase of the first harmonic, A1 is the first harmonic amplitude,
and δ10 is the first harmonic amplitude offset. Comparing Equation (22) and Equation (21),
it can be seen that the first harmonic fitting error compensation function was consistent
with the total error model of the circular grating angle measurement.

The second harmonic fitting error compensation function was:

δ12 = δ120 + A12 sin(2α + ϕ12) (23)

where α is the true value of the rotation angle, ϕ12 is the initial phase of the second
harmonic, A12 is the second harmonic amplitude and δ120 is the second harmonic amplitude
offset. Then, δ = δ1 + δ12 was the error compensation function of the single reading head,
and Equation (23) was the error compensation function of the double reading heads.
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According to the initial phases ϕ1 and ϕ12 of the fitting function and the position of the
shaft corresponding to the 0th side of the prism, the initial flag of the error compensation
could be determined. Then, in the experiment, according to the error compensation
functions, starting from the initial flag, the angle measurement error of one revolution of
the shafting could be compensated. To each group of measurement data, the compensation
function β1* and the residual error v1 after the compensation of reading head one were,
respectively:

β1∗ = α + δ (24)

v1 = β1 − β1∗ (25)
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The compensation function β12* and the residual error v12 after the compensation of
the double reading heads were, respectively:

β12∗ = α + δ12 (26)

v12 = β12 − β12∗ (27)

where β12 is the mean value of the double reading heads.
Using the remaining 15 groups of measurement data, we could calculate the resid-

ual error v1 of reading head one and the residual error v12 of the double reading heads
according to the above equations, and validate the proposed error compensation functions.

5. Results and Discussion
5.1. Experimental Results and Discussion of the Angle Measurement Error

According to Section 4.2, the experiment was repeated 40 times to obtain 40 groups
of angle measurement data. In total, 25 groups of measurement data were processed
according to the steps shown in Figure 8. β1 and β2 in the fifth group of data, and the
corresponding ∆β1′ and ∆β12, are listed in Table 5.

Table 5. The fifth group of angle measurement data and errors.

α (◦) 15 30 45 60 75 90 105 120

β1 (◦) 14.9972 29.9942 44.9918 59.9890 74.9859 89.9848 104.9821 119.9806
β2 (◦) 15.0044 30.0093 45.0129 60.0172 75.0199 90.0194 105.0207 120.0209

∆β1′ (”) −12.89 −27.20 −38.08 −50.78 −61.19 −62.39 −69.31 −72.57
∆β12′ (”) 2.98 6.33 8.47 11.10 10.45 7.60 5.04 2.78

α (◦) 135 150 165 180 195 210 225 240

β1 (◦) 134.9805 149.9821 164.9832 179.9873 194.9914 209.9951 224.9992 240.0037
β2 (◦) 135.0196 150.0169 165.0150 180.0130 195.0107 210.0086 225.0055 240.0025

∆β1′ (”) −70.33 −62.49 −57.20 −46.30 −34.89 −24.31 −11.25 2.03
∆β12′ (”) 0.25 −1.78 −3.13 0.57 3.81 6.54 8.49 11.16

α (◦) 255 270 285 300 315 330 345 360

β1 (◦) 255.0053 270.0065 285.0073 300.0081 315.0063 330.0035 345.0016 360.0003
β2 (◦) 255.0003 269.9983 284.9952 299.9934 314.9943 329.9959 344.9971 359.9994

∆β1′ (”) 9.11 14.74 21.70 26.50 21.63 13.53 8.00 1.77
∆β12′ (”) 10.07 8.54 4.56 2.65 1.10 −1.10 −2.31 −0.55

After averaging 25 groups of data, the data were fitted to obtain the parameter val-
ues in the compensation function of the angle measurement error of reading head one,
as shown in Table 6.

Table 6. The parameter values in the angle measurement error compensation function of reading
head one.

Parameter ϕ1 (◦) ϕ12 (◦) A1 (”) A12 (”) δ10 (”) δ120 (”)

Value 208.711 19.791 47.05 6.40 −24.04 4.18

According to the fitting results in Table 6, the compensation vectors δ1, δ12, and δ
could be obtained. The compensation results of the single reading head and the double
reading heads are shown in Table 7.

In Table 7, the peak-to-peak error (16.92”) after the first harmonic compensation
of reading head one was reduced to 17.05% of the peak-to-peak error (99.24”) before
compensation, which was basically the same as the error (14.29”) of the mean value of the
double reading heads. Further, the peak-to-peak error (6.19”) after the second harmonic
compensation of reading head one was reduced to 6.24% of the peak-to-peak error (99.24”)
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before compensation, which was of the same orders of magnitude as the error (2.68”)
after the second harmonic compensation of the mean value of the double reading heads.
After two progressive compensations, the peak-to-peak error of reading head one was
reduced by 93.76%, which was almost two orders of magnitude, and the compensation
effect was very significant. The error curve of reading head one after compensation and
the error curve of the average value of the double reading head are shown in Figure 9.

Table 7. Comparison of the peak-to-peak error between reading head one and the double reading heads (unit: arc second).

Peak-to-Peak Error
before Compensation

Peak-to-Peak Error after First
Harmonic Compensation

Peak-to-Peak Error after Second
Harmonic Compensation

Reading Head One
∆β1 ∆β1 − δ1 v1

99.24 16.92 6.19

Double Reading Heads
∆β12 - v12

14.29 - 2.68
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It can be intuitively seen in Figure 9 that the trend and amplitude of the error curve
after the first harmonic compensation of reading head one and the error curve of the mean
value of the double reading heads were basically the same. After the second harmonic com-
pensation, the trend and amplitude of the error curve of reading head one were also very
close to the error curve of the mean value of the double reading heads. The experimental re-
sults showed that the compensated angle measurement accuracy of the single reading head
was consistent with that of the double reading heads. Moreover, comparing the data of v1
and ∆β12, we could also see that the error of the single reading head after two progressive
compensations was much smaller than the error of the mean value of the double reading
heads without compensation. It showed that the angle measurement accuracy of the single
reading head after the secondary compensation was higher than the angle measurement
accuracy of the mean value of the double reading heads without compensation.

Next, we used the remaining 15 groups of measurement data to verify the error com-
pensation function obtained from the previous 25 groups of measurement data.
The residual error v1 of reading head one after two progressive compensations is shown in
Figure 10.
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Figure 10. The residual error v1 of reading head one after two progressive compensations (15 groups
of measurement data).

The peak-to-peak value and uncertainty of residual errors in 15 groups (as shown in
Figure 10) could be obtained. In the calculated results, the maximum value of the peak-to-
peak value was 7.88”, and the maximum value of the uncertainty was 2.08”. The results
showed that the measurement data had good repeatability, and the error compensation
functions obtained by the method in Figure 8 could effectively compensate the angle
measurement error of the circular grating and improve the angle measurement accuracy of
the shafting.

5.2. Simulation Results of the Error Compensation in the Dynamic Torque Calibration System

For dynamic torque calibration, the shafting swung sinusoidally. The swing angle was
set as α, and:

α = A sin(ωt + ϕ) (28)

where A is the swing angle amplitude, ϕ is the phase, ω is the angular frequency, and t is
the time. Then, the angular velocity was:

dα

dt
= Aω cos(ωt + ϕ) (29)

The angular acceleration was:

d2α

dt2 = −Aω2 sin(ωt + ϕ) (30)

When there were eccentricity and inclination errors in the angle measurement of
the shafting, according to the method in Figure 8, the angle measurement compensa-
tion function could be obtained as shown in Equation (24). Substituting Equation (22)
and Equation (23) into Equation (24), we obtained:

β1∗ = α + δ10 + A1 sin(α + ϕ1) + δ120 + A12 sin(2α + ϕ12) (31)

The derivative of β1* was:

dβ1∗
dt

=
dα

dt
(1 + A1 cos(α + ϕ1) + 2A12 cos(2α + ϕ12)) (32)
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Then, the second derivative of β1* was:

d2β1∗
dt2 = d2α

dt2 (1 + A1 cos(α + ϕ1) + 2A12 cos(2α + ϕ12))

− (dα
dt )

2
(A1 sin(α + ϕ1) + 4A12 sin(2α + ϕ12))

(33)

Therefore, the error compensation function of the angular acceleration was as follows:

∆
..
β = d2β1∗

dt2 − d2α
dt2

= −Aω2 sin(ωt + ϕ)(A1 cos(α + ϕ1) + 2A12 cos(2α + ϕ12))
− Aω cos(ωt + ϕ)(A1 sin(α + ϕ1) + 4A12 sin(2α + ϕ12))

(34)

where ∆
..
β is the error compensation value of the angular acceleration. Thus, according to

Equation (1), the dynamic torque error was:

∆T = J∆
..
β (35)

In the simulation, let the swing angle amplitude be 90◦, the frequency be 10 Hz,
and the initial phase be 0◦. Then, α = π

2 sin(20πt). Let the moment of inertia J be
2 kg·m2 and, using the compensation data in Table 6, we could obtain the dynamic torque
compensation curve as shown in Figure 11. In Figure 11, the peak-to-peak value of the
torque error compensation curve was 11.96 N·m. The simulation results showed that
the application of the error compensation method shown in Figure 8 could improve the
accuracy of the dynamic torque calibration system.
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Figure 11. Error compensation curve of the dynamic torque.

6. Conclusions

After analyzing the sources of the angle measurement error of the shafting, an eccen-
tricity error model and an inclination error model were established, respectively, in this
paper. Further, a total error model combining the two models was established. Through a
simulation study with the models, the conditions, in which the eccentricity error or inclina-
tion error could be ignored, were discussed. The calibration and compensation methods of
the angle measurement error were given, and the progressive error compensation function
which integrated the first harmonic fitting and the second harmonic fitting was obtained.
Then, an experiment was performed to verify the proposed calibration and compensation
methods. Finally, the influence of the angle measurement error on the dynamic torque
calibration system was simulated.

According to the experimental results, the peak-to-peak error of the single reading
head after the first harmonic compensation was only about 17.05% of the peak-to-peak
error before compensation, which was essentially the same as the mean value of the double
reading heads. Further, the peak-to-peak error after the second harmonic compensation
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of the single reading head was only 6.24% of the peak-to-peak error before compensation,
which was also very close to the error after the second harmonic compensation of the mean
value of the double reading heads. After two progressive compensations, the peak-to-peak
value of the compensated angle measurement error of the single reading head could be
reduced by about 93.76%. In the verification experiment, the peak-to-peak value and
uncertainty of residual errors in 15 groups could be obtained. In the calculated results,
the maximum value of the peak-to-peak value was 7.88” and the maximum value of the
uncertainty was 2.08”. The experimental results showed that the error calibration and
compensation method based on the proposed error model could effectively compensate
the angle measurement error of the circular grating with a single reading head, and obtain
a high-precision measurement angle.

The residual error after the second harmonic compensation also contained many
other factors, mainly including the measurement error caused by the roundness and
deformation of the circular grating, and the reading error caused by the reading head itself,
etc. In the next work, we will conduct more in-depth research to obtain a higher angle
measurement accuracy.
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