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The mTOR inhibitor, everolimus (RAD001), overcomes resistance to imatinib
in quiescent Ph-positive acute lymphoblastic leukemia cells
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In Ph-positive (Phþ ) leukemia, the quiescent cell state is one of
the reasons for resistance to the BCR-ABL-kinase inhibitor,
imatinib. In order to examine the mechanisms of resistance
due to quiescence and the effect of the mammalian target of
rapamycin inhibitor, everolimus, for such a resistant popula-
tion, we used Phþ acute lymphoblastic leukemia patient cells
serially xenotransplanted into NOD/SCID/IL2rcnull (NOG) mice.
Spleen cells from leukemic mice showed a higher percentage of
slow-cycling G0 cells in the CD34þCD38� population compared
with the CD34þCD38þ and CD34� populations. After
ex vivo imatinib treatment, more residual cells were observed
in the CD34þCD38� population than in the other populations.
Although slow-cycling G0 cells were insensitive to imatinib in
spite of BCR-ABL and CrkL dephosphorylation, combination
treatment with everolimus induced substantial cell death,
including that of the CD34þCD38� population, with p70-S6 K
dephosphorylation and decrease of MCL-1 expression. The
leukemic non-obese diabetic/severe combined immunodefi-
ciency (NOD/SCID) mouse system with the in vivo combination
treatment with imatinib and everolimus showed a decrease of
tumor burden including CD34þ cells. These results imply that
treatment with everolimus can overcome resistance to imatinib
in Phþ leukemia due to quiescence.
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Introduction

Marked clinical improvement was reported when a BCR-ABL-
kinase inhibitor, imatinib, was combined with chemotherapy for
the treatment of Ph-positive (Phþ ) acute lymphoblastic leuke-
mia (ALL).1,2 However, further improvement is needed to
decrease relapses owing to residual or resistant leukemic cells.
Leukemia stem cells (LSCs) are reported to be responsible for
leukemia relapse.3 Mathematical models of the chronic phase of
chronic myeloid leukemia suggested that imatinib does not
eradicate LSCs,4,5 and the survival of malignant cells is
reportedly attributable to the quiescence of LSCs.6

In order to overcome drug resistance, rational combinations
of molecular targeting drugs of different signal pathways
have been explored.7 The mammalian target of rapamycin
(mTOR) has attracted attention as a therapeutic target of LSCs.8,9

mTOR regulates cell growth and apoptosis through the

phosphatidilinositide-3-kinase (PI3K)/AKT/mTOR pathway, which
was reported to be constitutively activated in most AMLs10 or in
T-ALL cell lines.11 The inhibitory effect of an mTOR inhibitor,
rapamycin, on the Phþ leukemia cell lines with T315I was
reported,7 and more recently, the effect of everolimus (RAD001)
on human childhood B-cell progenitor ALL was reported in a
non-obese diabetic/severe combined immunodeficiency (NOD/
SCID) model.12 The mTOR inhibitor everolimus is an orally
available mTOR inhibitor which was approved by the Food and
Drug Administration for advanced renal cell carcinoma. A phase
I/II study has been performed in patients with acute leukemia,13

and clinical trials alone or in combination with other drugs are
also currently ongoing for lymphoma and myeloma.14 Effects of
everolimus on human Phþ ALL have not been well examined.

In this study, we examined the efficacy of everolimus in
combination with imatinib utilizing Phþ ALL cell lines and an
NOD/SCID/IL2rgnull (NOG) mouse model of human BCR-ABLþ

leukemia,15 in which the hierarchy of leukemia cells was
maintained.

Materials and methods

Leukemic cells
Xenografts were established in NOD/SCID/IL2rgnull (NOG) mice
as previously described.15 Briefly, Phþ ALL patient cells were
serially xenotransplanted into immunodeficient NOG mice, and
engrafted spleen cells were obtained 8–10 weeks after injection.
Erythrocytes were removed by erythrocyte lysis buffer (EL-buffer;
Qiagen, Hilden, Germany), and the remaining leukemic cells
were preserved in liquid nitrogen until use. Leukemic repopu-
lated cells were thawed and washed, resuspended in RPMI
containing 10% fetal bovine serum, 5 mM MgCl2 and 0.2 mg/ml
DNase I (Roche Diagnostics, Mannheim, Germany) and
incubated at 37 1C for 10 min. Cells were washed and
resuspended at 1 million cells per ml in RPMI containing 20%
fetal bovine serum with cytokines (human stem cell factor,
50 ng/ml, human interleukin-3 20 ng/ml and human granulo-
cyte/macrophage-colony-stimulating factor, 20 ng/ml), and
incubated with imatinib for 48 h at 37 1C in a CO2 incubator.
In an in vitro long-term culture, spleen (SP) cells derived from
leukemic NOG mice were co-cultured with S17 stromal cells
and treated with imatinib and everolimus.16 S-17 cells and
leukemic cells were passaged twice weekly.

Reagents
Everolimus and imatinib were supplied by Novartis Institutes
for Biomedical Research (Basel, Switzerland). Imatinib was
dissolved in dH2O and used for in vitro and in vivo experiments.
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Everolimus was stored as 10�2 M stock solution in dimethylsulf-
oxide for an in vitro experiment. For in vivo experiments,
everolimus was formulated at 2% (wt/wt) in a microemulsion
vehicle. Aliquots of everolimus and control vehicle were stored
at �20 1C.

Immunoblotting
Antibodies against the phospho(p)-Abl (Tyr245), p-CrkL
(Tyr207), p-mTOR (Ser2448), p-p70 S6 kinase (Thr389),
p-4EBP1 (Thr37/46), MCL-1, p-AKT (Ser473), AKT and
p-FOXO1(Thr24)/FoxO3a(Thr32) were from Cell Signaling
(Boston, MA, USA). Immunoblotting was performed with the
standard protocols as previously described.17

Flow cytometric analysis and cell sorting
After the treatment period, cells were washed at 4 1C and then
stained with anti-CD34-allophycocyanin (APC), anti-CD38-PE-
Cy7 (Becton Dickinson, San Jose, CA, USA), and anti-CD45-
APC-Alexa Fluor 750 (Invitrogen, Carlsbad, CA, USA) antibodies
(1:100) for 30 min on ice. Cells were subsequently labeled with
annexin-V-fluorescein isothiocyanate and propidium iodide (PI)
according to the manufacturer’s protocol (Annexin-V-FLUOS
Staining Kit; Roche Diagnostics). The cells were acquired by
FACS Aria (Becton Dickinson) and analyzed by Flow Jo
software. DNA contents analysis was assessed using the
standard procedure as previously described.18 For CD34þ

selection, leukemic cells were subjected to immunomagnetic
separation using a MACS CD34 MicroBead Kit (Miltenyi
Biotech, Auburn, CA, USA) following the manufacturer’s
recommendations. The collected cells were applied to a second
column and the purification step was repeated. Staining of cells
with Hoechst 33342 (Sigma, St Louis, MO, USA) with PyroninY
(Polysciences, Warrington, PA, USA) was performed as pre-
viously described.19 Briefly, thawed leukemic spleen cells were
separated with the MACS CD34 MicroBead Kit (Miltenyi
Biotech) into CD34þ cells and flow-through cells containing
CD34� cells. MACS-separated cells or drug-treated cells on S17
were washed and stained with Hoechst 33342 and PyroninY,
and washed at 4 1C. MACS-separated CD34þ cells were then
stained with anti-CD38-APC, and flow-through cells containing
CD34� cells were stained with anti-CD34-APC. Flow cyto-
metric analysis was performed using FACS Aria.

For cell sorting, leukemic spleen cells were stained with
anti-CD34-APC, anti-CD38-PE-Cy7 and anti-CD45-APC-Cy7
antibodies and labeled with PI. PI� CD45þ cells were sorted
for CD34 and CD38 expression using FACS Aria, incubated with
treatment drugs for 6 h at 37 1C in a CO2 incubator as described
above.

Mouse models
Humanized leukemic mouse model. NOG and NOD/SCID
mice were obtained from the Central Institute for Experimental
Animals (Kawasaki, Japan) and Clea Japan (Tokyo, Japan),
respectively. Seven-week-old male NOD/SCID mice received
2 Gy of total body irradiation from an X-ray source (MBR-1520R-
3; Hitachi Medico Technology Corporation, Tokyo, Japan),
24 h before administration of leukemic 2� 107 cells. Everolimus
(5 mg/kg), imatinib (100 mg/kg) or vehicle were diluted with dH2O,
and given daily at 10 ml/kg for 10 days by gavage. Bone marrow
and spleen cells were stained with anti-human CD19-PE (Becton
Dickinson) and anti-mouse CD45-PerCP, and acquired with
FACS Aria to analyze chimerism. Cells were also stained with

anti-CD34-APC, anti-CD38-PE-Cy7 and anti-CD45-APC-Alexa
Fluor 750, and were subsequently labeled with annexin-V–
fluorescein isothiocyanate and PI as explained above. Protocols
were approved by the Nagoya University Animal Ethics
Committee.

Histopathology
Livers, spleens and femurs were fixed in 15% buffered formalin.
Hematoxylin and eosin, and CD34 staining were performed as
previously described.20–22 Slides were examined at room
temperature and images were captured by a fluorescence
microscope with a charge-coupled device camera (BZ-8000;
Keyence, Osaka, Japan) fitted with � 20 and � 60 objective.
Images were acquired by BZ-analyzer software (Keyence).

Statistical analysis
Differences among more than two groups were analyzed with
the Bonferroni test followed by one-way analysis of variance.
Statistical analyses were performed with STATA 9.2 software
(StataCorp, College Station, TX, USA).

Results

Ex vivo treatment with imatinib for more residual
quiescent CD34þCD38� population in Phþ ALL cells
We analyzed the cell cycle status of untreated spleen cells
derived from the humanized Phþ ALL leukemia murine model
reported previously.15 In the CD34þCD38� population, a
higher percentage of Hoechstlow/PyroninYlow slow-cycling
quiescent cells was observed than in the CD34þCD38þ

population (Po0.05) and CD34� population (Po0.01). A lower
percentage of the SþG2/M population was also observed
among CD34þCD38� cells (Po0.05; Figure 1a, Supplementary
Figure S1a).

We next treated these cells with imatinib for 48 h and
analyzed the distribution of CD34/CD38 in residual viable cells.
After treatment with imatinib at 0.3, 1 and 3 mM, more residual
CD34þCD38� cells were observed than non-treated cells (12.8
vs 27.2%; Figure 1b, Po0.05; Supplementary Figure S1b).
Significantly more slow-cycling quiescent (G0) cells were
observed within CD34þ38� population after treated with 3mM

of imatinib (P¼ 0.03), and less G0 cells in CD34� population
(P¼ 0.02, Figure 1c).

Treatment of CD34/CD38 sorted cells for 6 h with 3mM imatinib
caused equivalent inhibition of the phosphorylation of BCR-ABL
and direct-substrate CrkL in each CD34/CD38 sub-population
(Figure 1d). Inhibition of phosphorylation with imatinib (1 and
3.3mM) was also observed with intracellular staining of phospho-
CrkL (Supplementary Figure S1c). Expressions of BCR-ABL and
ABL were equivalent in each CD34/CD38 sub-population
(Figure 1d). These results suggested that the slow-cycling
population derived from Phþ leukemia NOG mice was
insensitive to imatinib in spite of BCR-ABL dephosphorylation.

Ex vivo effects of everolimus on leukemic spleen cells,
alone and in combination with imatinib
Furthermore, we have introduced S-17 murine stromal cell lines
to support the leukemic spleen cells in order to assess longer-
term effect of treatment drugs,16 as the CD34þ population of
leukemic cells from the NOG mice eventually differentiated into
CD34� cells and could not be maintained only with cytokines
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for a longer period. If cultured with S17 cells, leukemic spleen
cells were viable for more than 30 days (Figure 2a).

To examine the potential of everolimus to overcome
resistance due to quiescence in Phþ leukemia cells, everolimus
treatment was investigated ex vivo alone and in combination

with imatinib on S17 stromal cells. Everolimus treatment at
100 nM for 5 days increased the sub-G1 population (14 vs 7.9%;
control), and combination of everolimus (100 nM) and imatinib
(1 mM) further increased the sub-G1 population (68%, Figure 2b,
upper panel). Cell cycle status was also investigated after
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Figure 1 Ex vivo analysis of humanized mouse positive (Phþ ) acute lymphoblastic leukemia cells. (a) Leukemic spleen cells were CD34
positively selected with MACS column. CD34þ cells were stained with Hoechst, PyroninY and CD38-allophycocyanin (APC). Cells including
CD34� population that had flowed through the column were stained with Hoechst, PyroninY and CD34-APC. (b) Leukemic spleen cells were ex
vivo cultured with cytokines and treated with or without imatinib (IM) for 48 h. Human CD45þ propidium iodide (PI)� Annexin-V� viable
population was analyzed for CD34 and CD38 distribution. Panels show a representative experiment. (c) After treated with IM for 48 h, CD34þ

cells were positively selected with MACS column, and stained with Hoechst, PyroninY and CD38-APC. Cells including CD34� population that
had flowed through the column were stained with Hoechst, PyroninY and CD34-APC. Graphs show the number of forward scatter/side scatter
gated G0 cells in each CD34/CD38 sub-population, each relative to the untreated control. Bars indicate mean±s.d. values of three independent
experiments (*P¼0.03 between control and IM 3mM for CD34þ CD38�, and **P¼0.02 between control and IM 3mM for CD34�, by one-way
analysis of variance followed by Bonferroni). (d) CD34/CD38 sorted populations were treated with or without IM 3 mM for 6 h. Expression of BCR-
ABL and phosphorylation of BCR-ABL and CrkL in each population was examined by western blotting analysis.
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treatment with S-17 for 5 days. Although the untreated control
and imatinib-treated cells showed 35% of Hoechstlow/PyroninYlow

cells in total acquired cells, combination of imatinib and
everolimus decreased these quiescent cells to 13% of total
acquired cells (Figure 2b, lower panels). Significant difference
was found between imatinib alone and combination of
imatinib plus everolimus (Figure 2c). Treatment with everolimus
and imatinib for 5 days induced substantial cell death in
CD34þ38� population relative to dimethylsulfoxide control
(Figure 2d, Supplementary Figure S1d). These results indicated
that ex vivo combination treatment with imatinib and ever-
olimus was also effective for the quiescent CD34þ38� cells.

Evaluation of molecular biomarkers during cell death
induced by treatment with imatinib and everolimus
We next investigated the effects of imatinib and everolimus on
BCR-ABL and mTOR signaling. Separated CD34þ cells were
treated with and without imatinib (1 mM) or everolimus (100 nM)
for 4 h. After imatinib treatment, phosphorylation of BCR-ABL
was clearly inhibited in each population, but it was not affected
after everolimus treatment (Figure 3a). After everolimus treat-
ment, the phosphorylation of S6 K, which is a direct substrate of

mTOR, was clearly inhibited; however, the phosphorylation of
mTOR and 4EBP1 was not changed (Figure 3b). These results
imply that everolimus inhibited mTOR signaling of CD34þ cells
and induced cell death independently of the BCR-ABL signaling
pathway. Both imatinib alone and in combined treatment
inhibited phosphorylation of BCR-ABL. Conversely, everolimus
alone and in combination both inhibited phosphorylation of
S6 K in both CD34þ38� and CD34þ38þ sub-populations
(Figure 3c). Everolimus alone or in combination with imatinib
decreased the expression of the antiapoptotic BCL-2 family
protein, MCL-1, after 4 h, and the combination of everolimus
and imatinib also decreased the expression of MCL-1, not
BCL-2, after 12 h (Figure 3c). These results implied that
combination treatment with imatinib and everolimus induced
cell death in quiescent Phþ leukemia cells.

In vivo investigation of effects of everolimus, alone
and in combination with imatinib
To elucidate the in vivo efficacy of everolimus treatment, its
effects were investigated alone (5 mg/kg) and in combination
with imatinib (100mg/kgþ everolimus 5 mg/kg) using NOD/SCID
mice intravenously injected with leukemic spleen cells from
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Figure 2 Ex vivo effects of everolimus on leukemic spleen cells in combination with imatinib (IM). (a) Leukemic spleen cells were co-cultured
with S-17 stromal cells for up to 35 days. Cells were counted with Trypan blue, and viable cells were maintained. (b) Cells were treated with or
without everolimus (Eve, 100 nM) and imatinib (1mM) alone and in combination for 5 days on S-17 cells. DNA contents were assessed (upper
panels) and Hoechst/PyroninY cell cycle analysis (lower panels) was performed. (c) Percentages of G0 population in total acquired cells were
compared with dimethylsulfoxide (DMSO) control after 5-day treatment with imatinib (1mM), everolimus (100 nM) or in combination. Graph shows
the means±s.d. values of three independent experiments (*Po0.05 by one-way analysis of variance followed by Bonferroni). (d) In the stromal-
culturing system, leukemic spleen cells were treated with DMSO (upper column) or in combination of imatinib and everolimus (lower column) for
5 days. Cells were stained with CD34, CD38, human CD45, propidium iodide, and Annexin-V. Cells were gated for human CD45þ and CD34/
CD38, and cell viabilities in CD34þ38� population are shown. Panels show a representative analysis.
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humanized NOG mouse (Figure 4a). Percentage of CD19þ

leukemic cells in peripheral blood was lowest in the imatinib-
plus-everolimus-treated group, compared with the vehicle or
imatinib alone (Figure 4b). Overall tumor burden, as assessed by

spleen weight (Figure 4d) and the total number of splenic human
CD19þ leukemic cells (Figure 4e), was observed to be lowest in
the imatinib-plus-everolimus-treated group. Immunohistochem-
istry showed that the combination of imatinib plus everolimus
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Figure 4 In vivo effects of everolimus on leukemic spleen cells in combination with imatinib. (a) Non-obese diabetic/severe combined
immunodeficiency ( mice were irradiated (IR), and leukemic spleen (SP) cells from NOG (2� 107) were injected. Experiments were performed
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(n¼6) were administered for 10 days, and mice were dissected 24 h after the last administration on day 28 following the tumor injection. (b, c)
Percentages of CD19þ cells in peripheral blood (b) and bone marrow (c) are shown, respectively. (d) Spleen weight was relatively compared with
the average of control mice in each experiment. Bars indicate average of spleen weight in each study group. (e) CD19þ leukemic spleen cell
numbers were relatively compared with the average of control (b–e: *Po0.001, **Po0.005 and ***Po0.05 by one-way analysis of variance
followed by Bonferroni). (f) Hematoxylin and eosin (HE) staining (left panels) and immunohistochemical analysis with CD34 (right panels) of the
spleen from control mice and imatinib and/or everolimus-treated mice were performed. A charge-coupled device camera provided images at
approximately � 100 of the original magnification.
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decreased the infiltrated CD34þ human leukemic cells in spleen,
liver and bone marrow (Figure 4f, Supplementary Figure S2).
Everolimus alone also decreased the percentage of G0 cells in the
CD34þ leukemic cells of the treated bone marrow (Supplemen-
tary Figure S3). These results indicated the in vivo efficacy of
everolimus treatment in a Phþ leukemia murine model.

Discussion

In this study, we showed the effects of everolimus in
combination with imatinib against Phþ ALL quiescent cells.
Ex vivo imatinib treatment of Phþ leukemia cells from a
humanized mouse model showed more residual cells in the
CD34þCD38� population, which contains significantly more
quiescent cells. Our data showed an ex vivo effect against these
residual cells, and the combination of imatinib and everolimus
showed an in vivo effect. These data have shown the potential of
everolimus to overcome imatinib resistance in quiescent cells.
LSCs are reported to be responsible for the resistance to
chemotherapy and molecular targeting agents.23,24 In chronic
myeloid leukemia, non-proliferating quiescent CD34þ cells
have been found to be more resistant than proliferating leukemic
cells after treatment with several chemotherapeutic agents.25

Other studies have shown that inhibitors of mTOR with
conventional therapies induced apoptosis and reduced LSCs.8

The definition of LSCs or cancer stem cells is sometimes
controversial in certain diseases. In human AML, LSCs have
been phenotypically identified within a CD34þCD38� frac-
tion.23,26 In contrast, it is controversial whether ALL LSCs exist
within the CD34þ fraction and how CD34, CD38, CD19 and
CD133 relate to ALL LSCs.15,27–29 In our current study, the
potential of everolimus to overcome imatinib-resistant quiescent
cells was demonstrated by using a humanized leukemic mouse
model that maintains the differentiation hierarchy of Phþ

leukemia.15 However, it cannot be determined at this point if
the real LSCs of Phþ ALL can be diminished until the LSCs in
this disease category are clarified.

MCL-1, an antiapoptotic member of the BCL-2 protein family,
reportedly regulates the self-renewal of human hematopoietic
stem cells as well as LSCs.30 Mills et al.31 also reported that
MCL-1 was translationally regulated by mTORC1. Together with
these reports, our results showing decreased expression of
MCL-1 by combination treatment of imatinib and everolimus
suggested that the combination treatment induced cell death of
quiescent Phþ leukemia cells by interfering with the mitochon-
drial-mediated cell death pathway. Rapamycin and its analogs
are also known to induce autophagic cell death,32 and Bellodi
et al.33 reported that target autophagy potentiates tyrosine
kinase-induced cell death in Phþ leukemia cells. We are also
investigating the relation of autophagy in cell death in our
experimental systems.

In this study, everolimus treatment of Phþ leukemia cells from
a humanized mouse model decreased the phosphorylation of
S6 K, but it increased the phosphorylation of AKT (Ser473) and
FOXO1/3a (Supplementary Figure S4a). Rapamycin and its
analogs, such as everolimus and temsirolimus, are allosteric
mTOR inhibitors that function at a distance from the adenosine
triphosphate-catalytic binding site. Of the two cellular protein
complexes of mTOR molecule, mTORC1 and mTORC2,
mTORC1 is sensitive to these allosteric mTOR inhibitors and
mTORC2 is resistant.34 mTORC2 directly activates AKT, and this
AKT activation in a feedback loop has been reported to correlate
with rapamycin failure.35 This feedback loop might also be
related to our data on upregulated AKT.

Recently, a new generation of mTOR inhibitors has been
developed. Dual PI3K/mTOR inhibitors, such as BEZ235,
EX147 and PI-103, inhibit PI3 K and both small molecules of
mTORC1/2.36 Adenosine triphosphate-competitive mTOR
inhibitors that selectively inhibit TORC1/2 molecules also have
been reported to be effective against Phþ transformed leukemia
cells and to be less immunosuppressive than PI3K/mTOR
inhibitors.37 The effectiveness of a new generation of mTOR
inhibitors should also be investigated in our future studies, in
particular, the efficacy of these inhibitors against quiescent or
leukemic stem cells using a humanized leukemic mouse model.
However, it was suggested that dual PI3K/mTOR inhibitors may
cause a greater degree of immune suppression by affecting
normal cell functions.14 Although we have examined the colony
formation of CD34þ human umbilical cord blood and it was
suggested that everolimus did not severely interfere with
hematopoietic colony formation (data not shown), the effects
of everolimus and the new-generation mTOR inhibitors on
normal cells and immune functions must be investigated in
future studies.

Acquired mutation in the BCR-ABL gene also causes primary
and secondary treatment failure in Phþ leukemia. Our data
suggest that imatinib-resistant cell lines with T315I mutation
(Supplementary Figures S4b and c) can be inhibited with
everolimus with downregulation of the mTOR pathway (Sup-
plementary Figure S4d). The in vivo effect of everolimus on
T315I-mutated Phþ leukemic cells is also indicated (Supplemen-
tary Figure S4e). Further study is needed to determine the effect of
everolimus on T315I-mutated leukemia, especially in combination
with a T315I inhibitor such as AP24534 (ponatinib).38

In conclusion, we have investigated the imatinib and ever-
olimus combination effect against human Phþ quiescent
leukemic cells utilizing a mouse model. Everolimus can improve
the treatment of resistant Phþ leukemia. These mice also provide
the opportunity to evaluate the effects of new therapeutic
modalities on leukemic cells in different stages of cell cycle.
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