data reports

OPEN 3 ACCESS

ISSN 2056-9890

Crystal structure of bis[S-hexyl 3-(4methylbenzylidene)dithiocarbazato- $\kappa^2 N^3$,S]nickel(II)

M. B. H. Howlader,^a M. S. Begum,^a* M. C. Sheikh,^b R. Miyatake^c and E. Zangrando^d

^aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, ^bDepartment of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan, ^cCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan, and ^dDepartment of Chemical and Pharmaceutical Sciences, via Giorgieri 1, 34127 Trieste, Italy. *Correspondence e-mail: sabina_sust@yahoo.com

Received 2 January 2015; accepted 7 January 2015

Edited by P. Dastidar, Indian Association for the Cultivation of Science, India

In the title complex, $[Ni(C_{15}H_{21}N_2S_2)_2]$, the Ni^{II} atom exhibits a square-planar coordination geometry and is located on an inversion centre leading to a *trans* configuration of the *N*,*S*chelating ligands. In the crystal, the complex molecules stack at a distance of 4.6738 (3) Å along the *a* axis, which exclude any significant interactions between the aromatic rings.

Keywords: crystal structure; nickel complex; dithiocarbazate.

CCDC reference: 1035820

1. Related literature

For the structures of related complexes, see: Chan *et al.* (2008); Islam *et al.* (2011, 2014); Li *et al.* (2006); Zhang *et al.* (2004). For the structure of the ligand, see: Howlader *et al.* (2015).

2. Experimental

2.1. Crystal data [Ni(C₁₅H₂₁N₂S₂)₂] $M_r = 645.62$ Triclinic, $P\overline{1}$ a = 4.6738 (3) Å b = 10.5132 (5) Å c = 16.4789 (8) Å $\alpha = 86.522$ (3)° $\beta = 84.850$ (3)°

 $\gamma = 79.057 (3)^{\circ}$ $V = 791.00 (7) \text{ Å}^{3}$ Z = 1Cu K\alpha radiation $\mu = 3.55 \text{ mm}^{-1}$ T = 173 K $0.37 \times 0.08 \times 0.02 \text{ mm}$

CrossMark

2.2. Data collection

Rigaku R-AXIS RAPID
diffractometer9100 measured reflections
2834 independent reflectionsAbsorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
 $T_{min} = 0.615, T_{max} = 0.932$ 9100 measured reflections
2029 reflections with $F^2 > 2\sigma(F^2)$
 $R_{int} = 0.074$

2.3. Refinement

N

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.071 & 180 \text{ parameters} \\ wR(F^2) &= 0.218 & H\text{-atom parameters constrained} \\ S &= 1.09 & \Delta\rho_{max} &= 0.98 \text{ e } \text{\AA}^{-3} \\ 2834 \text{ reflections} & \Delta\rho_{min} &= -0.35 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1Selected bond lengths (Å).

Ni-N1	1.933 (3)	Ni-S1	2.1775 (10)

Data collection: *RAPID-AUTO* (Rigaku, 2001); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku, 2010); software used to prepare material for publication: *CrystalStructure*.

Acknowledgements

MBHH and MSB are grateful to the Department of Chemistry, Rajshahi University, for the provision of laboratory facilities. MCS acknowledges the Department of Applied Chemistry, Toyama University, for providing funds for singlecrystal X-ray analyses.

Supporting information for this paper is available from the IUCr electronic archives (Reference: DS2244).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Chan, M. H. E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). *Polyhedron*, 27, 1141–1149.
- Howlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, o103–o104.

- Islam, M. A. A. A. A., Sheikh, M. C., Alam, M. S., Zangrando, E., Alam, M. A., Tarafder, M. T. H. & Miyatake, R. (2014). *Transition Met. Chem.* 39, 141– 149.
- Islam, M. A. A. A., Tarafder, M. T. H., Sheikh, M. C., Alam, M. A. & Zangrando, E. (2011). *Transition Met. Chem.* 36, 531–537.
- Li, S. L., Wu, J. Y., Tian, Y. P., Tang, Y. W., Jiang, M. H., Fun, H. K. & Chantrapromma, S. (2006). Opt. Mater. 28, 897–903.
- Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, M. L., Tian, Y. P., Zhang, X. J., Wu, J. Y., Zhang, S. Y., Wang, D., Jiang, M. H., Chantrapromms, S. & Fun, H. K. (2004). *Transition Met. Chem.* 29, 596–602.

supporting information

Acta Cryst. (2015). E71, m26-m27 [doi:10.1107/S2056989015000328]

Crystal structure of bis[S-hexyl 3-(4-methylbenzylidene)dithiocarbazato- $\kappa^2 N^3$,S]nickel(II)

M. B. H. Howlader, M. S. Begum, M. C. Sheikh, R. Miyatake and E. Zangrando

S1. Structural commentary

The metal is located on a crystallographic inversion centre and the two Schiff bases, in their deprotonated imino thiolate form, act as chelating ligands to the metal centre via the azomethine nitrogen N1 and thiolate sulphur S1 atoms in a transplanar configuration as imposed by the crystal symmetry. The complex has coplanar geometry with the exception of the hexyl chains that pend hedgewise. In the complex, the Ni—S and Ni–N bond distances are of 2.1777 (11) and 1.933 (4) Å, respectively, with a S(2)—Ni—N(2) chelating angle of 86.06 (10)°. These geometrical parameters agree with those reported for similar nickel complexes either when ligands assume a *trans* (Islam, *et al.*, 2011; Islam, *et al.*, 2014; Zhang, *et al.*, 2004) or a *cis* configuration (Chan, *et al.*, 2008; Li, *et al.*, 2006). The ligand, recently reported (Howlader, *et al.*, 2015), underwent rotation about the C9—N2 by 180° in order to allow the N,S chelating behavior towards the metal. Upon coordination some salient features are observed with respect to the free ligand, and the most significant are an elongation of the C(9)—S(1) bond length (1.720 (4) Å in NiL₂ that must be compared to 1.670 (3) Å in HL, thus validating the coordination with deprotonated thiolate sulphur atom. Correspondingly the N(2)—C(9) bond length, of 1.335 (3) Å, shortens to 1.270 (6) Å in the NiL₂ complex, while the N(1)—N(2) bond length of 1.375 (3) Å in HL is slightly elongated in the complex (1.426 (5) Å, Table 1).

S2. Supramolecular features

The complexes stack at a distance of 4.6738 (3) Å (axis a), which exclude any significant interactions between the aromatic rings.

S3. Synthesis and crystallization

A solution of Ni(CH₃COO)₂.4H₂O (0.06 g, 0.25 mmol, 8 mL methanol) was added to a solution of the ligand, S-hexyl (E)-3-(4-methylbenzylidene)dithiocarbazate, (0.15 g, 0.5 mmol, 10 mL methanol). The resulting mixture was stirred at room temperature for four hours. A dark reddish brown precipitate was formed, filtered off, washed with methanol and dried in vacuo over anhydrous CaCl₂. Dark reddish brown single crystals, suitable for X-ray diffraction, of the compound were obtained by slow evaporation from a mixture of chloroform and acetonitrile (1:1) after 7 days. M.P. 374 K.

S4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were located geometrically and treated as riding atoms, with C—H = 0.95–0.99 Å, and with Uiso~(H) = 1.2U~eq~(C) or 1.5U~eq~(C) for methyl H atoms.

Figure 1

ORTEP drawing (ellipsoid probability at 50%) of the centrosymmetric NiL₂ complex.

Figure 2

Crystal packing of the complex.

Bis[S-hexyl 3-(4-methylbenzylidene)dithiocarbazato- $\kappa^2 N^3$,S]nickel(II)

Crystal data	
$[Ni(C_{15}H_{21}N_2S_2)_2]$	$\gamma = 79.057 \ (3)^{\circ}$
$M_r = 645.62$	$V = 791.00 (7) \text{ Å}^3$
Triclinic, P1	Z = 1
Hall symbol: -P 1	F(000) = 342.00
a = 4.6738 (3) Å	$D_{\rm x} = 1.355 {\rm ~Mg} {\rm ~m}^{-3}$
b = 10.5132 (5) Å	Cu <i>K</i> α radiation, $\lambda = 1.54187$ Å
c = 16.4789 (8) Å	Cell parameters from 5923 reflections
$\alpha = 86.522 \ (3)^{\circ}$	$\theta = 4.3 - 68.2^{\circ}$
$\beta = 84.850 \ (3)^{\circ}$	$\mu = 3.55 \text{ mm}^{-1}$

T = 173 K Platelet, brown	$0.37 \times 0.08 \times 0.02 \text{ mm}$
Data collection	
Rigaku R-AXIS RAPID diffractometer Detector resolution: 10.000 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>ABSCOR</i> ; Rigaku, 1995) $T_{\min} = 0.615, T_{\max} = 0.932$ 9100 measured reflections	2834 independent reflections 2029 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.074$ $\theta_{max} = 68.2^{\circ}$ $h = -5 \rightarrow 5$ $k = -12 \rightarrow 12$ $l = -19 \rightarrow 19$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.071$ $wR(F^2) = 0.218$ S = 1.09 2834 reflections	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained
180 parameters	$w = 1/[\sigma^2(F_o^2) + (0.1314P)^2]$
Primary atom site location: structure-invariant direct methods	where $P = (P_0^{-} + 2P_0^{-})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.98 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.35 \text{ e} \text{ Å}^{-3}$

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

 $U_{\rm iso}*/U_{\rm eq}$ х v Ζ Ni 1.0000 1.0000 1.0000 0.0372(4)**S**1 1.1112(3)0.83443(10)0.92242 (6) 0.0516(4)S2 0.80909 (9) 0.76635 (6) 0.0479 (4) 1.4585 (2) N1 0.7454(7)0.9180(3)1.07644 (18) 0.0365 (8) N2 1.3765 (7) 1.0201 (3) 0.85050(18) 0.0405 (8) C1 -0.0675(10)0.4837 (4) 1.2473 (3) 0.0514 (11) H1A -0.00561.3025 0.077* 0.4630 H1B -0.04910.4035 1.2184 0.077* 1.2503 0.077* H1C -0.27170.5288 C2 0.1222 (9) 0.5695 (4) 1.2022 (2) 0.0420 (10) C3 0.1476 (9) 0.6854 (4) 1.2321 (3) 0.0489(11) H3 0.0431 0.7105 1.2825 0.059* C4 0.3184 (9) 0.7676 (4) 1.1923 (2) 0.0455 (10) H4 1.2154 0.055* 0.3281 0.8471 C5 0.0390(9)0.4769(8)0.7344(4)1.1181(2)C6 0.4513 (10) 0.6168 (4) 1.0883 (3) 0.0522 (12) 0.5913 0.063* H6 0.5555 1.0380 C7 0.5349 (4) 0.0511 (11) 0.2807(10)1.1288(2)H7 0.2718 0.4547 1.1063 0.061*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

0.6638 (9) 0.7429 1.3189 (8) 1.6632 (9)	0.8089 (4) 0.7691 0.9071 (4)	1.0680 (2) 1.0186	0.0418 (10) 0.050*
0.7429 1.3189 (8) 1.6632 (9)	0.7691 0.9071 (4)	1.0186	0.050*
1.3189 (8) 1.6632 (9)	0.9071 (4)		
1 6632 (9)		0.8487 (2)	0.0370 (9)
1.0052 ())	0.9110 (4)	0.7013 (3)	0.0469 (11)
1.7787	0.9530	0.7355	0.056*
1.8022	0.8559	0.6632	0.056*
1.4718 (9)	1.0153 (4)	0.6522 (2)	0.0463 (10)
1.3404	1.0736	0.6903	0.056*
1.3482	0.9738	0.6203	0.056*
1.6461 (9)	1.0959 (4)	0.5943 (2)	0.0467 (10)
1.7684	1.1383	0.6262	0.056*
1.7784	1.0378	0.5563	0.056*
1.4508 (9)	1.1991 (4)	0.5453 (2)	0.0488 (11)
1.3236	1.1563	0.5154	0.059*
1.3227	1.2580	0.5837	0.059*
1.6143 (10)	1.2790 (4)	0.4849 (3)	0.0545 (12)
1.7445	1.2204	0.4468	0.065*
1.7386	1.3235	0.5147	0.065*
1.4131 (11)	1.3796 (5)	0.4361 (3)	0.0670 (14)
1.3058	1.3358	0.4015	0.100*
1.5293	1.4337	0.4019	0.100*
1.2742	1.4342	0.4735	0.100*
	1.6632 (9) 1.7787 1.8022 1.4718 (9) 1.3404 1.3482 1.6461 (9) 1.7684 1.7784 1.4508 (9) 1.3236 1.3227 1.6143 (10) 1.7445 1.7386 1.4131 (11) 1.3058 1.5293 1.2742	1.5169(6) $0.9071(4)$ $1.6632(9)$ $0.9110(4)$ 1.7787 0.9530 1.8022 0.8559 $1.4718(9)$ $1.0153(4)$ 1.3404 1.0736 1.3482 0.9738 $1.6461(9)$ $1.0959(4)$ 1.7684 1.1383 1.7784 1.0378 $1.4508(9)$ $1.1991(4)$ 1.3236 1.1563 1.3227 1.2580 $1.6143(10)$ $1.2790(4)$ 1.7386 1.3235 $1.4131(11)$ $1.3796(5)$ 1.3058 1.3358 1.5293 1.4337 1.2742 1.4342	1.5165 (6) $0.5071 (4)$ $0.60467 (2)$ $1.6632 (9)$ $0.9110 (4)$ $0.7013 (3)$ 1.7787 0.9530 0.7355 1.8022 0.8559 0.6632 $1.4718 (9)$ $1.0153 (4)$ $0.6522 (2)$ 1.3404 1.0736 0.6903 1.3482 0.9738 0.6203 $1.6461 (9)$ $1.0959 (4)$ $0.5943 (2)$ 1.7684 1.1383 0.6262 1.7784 1.0378 0.5563 $1.4508 (9)$ $1.1991 (4)$ $0.5453 (2)$ 1.3236 1.1563 0.5154 1.3227 1.2580 0.5837 $1.6143 (10)$ $1.2790 (4)$ $0.4849 (3)$ 1.7445 1.2204 0.4468 1.7386 1.3235 0.5147 $1.4131 (11)$ $1.3796 (5)$ $0.4361 (3)$ 1.3058 1.3358 0.4015 1.5293 1.4337 0.4019 1.2742 1.4342 0.4735

Atomic displacement parameters $(Å^2)$

	<i>L</i> /11	1/22	I /33	1712	1/13	<i>L</i> /23
NI:	0.0441 (7)	0.0227.(()	0.0251 (5)	0.0150 (4)	0.0022 (4)	0.0027 (4)
IN1	0.0441 (7)	0.0337 (6)	0.0351 (5)	-0.0150 (4)	0.0033 (4)	0.0027 (4)
S1	0.0706 (9)	0.0392 (6)	0.0472 (6)	-0.0254 (6)	0.0172 (6)	-0.0036(5)
S2	0.0571 (8)	0.0331 (6)	0.0520 (6)	-0.0121 (5)	0.0142 (5)	-0.0052 (4)
N1	0.044 (2)	0.0325 (16)	0.0337 (16)	-0.0097 (15)	0.0010 (14)	-0.0006 (13)
N2	0.045 (2)	0.0378 (18)	0.0370 (17)	-0.0105 (16)	0.0085 (15)	0.0032 (14)
C1	0.047 (3)	0.047 (2)	0.061 (3)	-0.016 (2)	-0.001 (2)	0.013 (2)
C2	0.034 (2)	0.042 (2)	0.050(2)	-0.0104 (18)	-0.0010 (18)	0.0111 (18)
C3	0.051 (3)	0.044 (2)	0.051 (2)	-0.013 (2)	0.016 (2)	-0.0023 (19)
C4	0.053 (3)	0.034 (2)	0.049 (2)	-0.015 (2)	0.012 (2)	-0.0064 (17)
C5	0.040 (2)	0.039 (2)	0.038 (2)	-0.0142 (18)	0.0024 (18)	0.0049 (16)
C6	0.071 (3)	0.045 (2)	0.044 (2)	-0.027 (2)	0.013 (2)	-0.0083 (19)
C7	0.068 (3)	0.043 (2)	0.048 (2)	-0.027 (2)	0.004 (2)	-0.0037 (18)
C8	0.050 (3)	0.044 (2)	0.0337 (19)	-0.017 (2)	0.0048 (18)	-0.0028 (16)
C9	0.036 (2)	0.037 (2)	0.036 (2)	-0.0065 (18)	0.0024 (17)	0.0012 (16)
C10	0.049 (3)	0.039 (2)	0.050(2)	-0.010 (2)	0.016 (2)	-0.0037 (18)
C11	0.050 (3)	0.044 (2)	0.045 (2)	-0.014 (2)	0.007 (2)	-0.0020 (18)
C12	0.048 (3)	0.043 (2)	0.049 (2)	-0.016 (2)	0.009 (2)	-0.0037 (18)
C13	0.051 (3)	0.050 (2)	0.047 (2)	-0.017 (2)	0.007 (2)	-0.0016 (19)
C14	0.061 (3)	0.047 (2)	0.056 (3)	-0.019 (2)	0.011 (2)	-0.001 (2)
C15	0.079 (4)	0.061 (3)	0.063 (3)	-0.026 (3)	0.001 (3)	0.007 (2)

Geometric parameters (Å, °)

Ni—N1	1.933 (3)	C6—C7	1.385 (5)
Ni—N1 ⁱ	1.933 (3)	С6—Н6	0.9500
Ni—S1	2.1775 (10)	C7—H7	0.9500
Ni—S1 ⁱ	2.1775 (10)	C8—H8	0.9500
S1—C9	1.720 (4)	C10—C11	1.519 (5)
S2—C9	1.757 (4)	C10—H10A	0.9900
S2-C10	1.811 (4)	C10—H10B	0.9900
N1—C8	1.294 (5)	C11—C12	1.521 (5)
N1—N2 ⁱ	1.425 (4)	C11—H11A	0.9900
N2—C9	1.269 (5)	C11—H11B	0.9900
N2—N1 ⁱ	1.425 (4)	C12—C13	1.521 (6)
C1—C2	1.501 (5)	C12—H12A	0.9900
C1—H1A	0.9800	C12—H12B	0.9900
C1—H1B	0.9800	C13—C14	1.513 (5)
C1—H1C	0.9800	C13—H13A	0.9900
C2—C3	1.371 (6)	C13—H13B	0.9900
С2—С7	1.391 (6)	C14—C15	1.517 (6)
C3—C4	1.383 (5)	C14—H14A	0.9900
С3—Н3	0.9500	C14—H14B	0.9900
C4—C5	1.399 (5)	C15—H15A	0.9800
C4—H4	0.9500	C15—H15B	0.9800
C5—C6	1.387 (5)	C15—H15C	0.9800
C5—C8	1.452 (5)		
N1—Ni—N1 ⁱ	180.00 (14)	N2—C9—S1	125.9 (3)
N1—Ni—S1	93.96 (9)	N2—C9—S2	120.3 (3)
N1 ⁱ —Ni—S1	86.04 (9)	S1—C9—S2	113.9 (2)
$N1$ — Ni — $S1^i$	86.04 (9)	C11—C10—S2	113.5 (3)
$N1^{i}$ — Ni — $S1^{i}$	93.96 (9)	C11—C10—H10A	108.9
S1—Ni—S1 ⁱ	180.0	S2—C10—H10A	108.9
C9—S1—Ni	95.86 (13)	C11—C10—H10B	108.9
C9—S2—C10	103.09 (19)	S2—C10—H10B	108.9
$C8$ — $N1$ — $N2^{i}$	113.8 (3)	H10A—C10—H10B	107.7
C8—N1—Ni	126.3 (3)	C10-C11-C12	113.2 (3)
N2 ⁱ —N1—Ni	119.9 (2)	C10—C11—H11A	108.9
C9—N2—N1 ⁱ	111.9 (3)	C12—C11—H11A	108.9
C2—C1—H1A	109.5	C10-C11-H11B	108.9
C2—C1—H1B	109.5	C12—C11—H11B	108.9
H1A—C1—H1B	109.5	H11A—C11—H11B	107.8
C2—C1—H1C	109.5	C13—C12—C11	112.4 (3)
H1A—C1—H1C	109.5	C13—C12—H12A	109.1
H1B—C1—H1C	109.5	C11—C12—H12A	109.1
C3—C2—C7	117.1 (4)	C13—C12—H12B	109.1
C3—C2—C1	121.3 (4)	C11—C12—H12B	109.1
C7—C2—C1	121.7 (4)	H12A—C12—H12B	107.9
C2—C3—C4	123.0 (4)	C14—C13—C12	114.4 (4)

118.5	C14—C13—H13A	108.7
118.5	C12—C13—H13A	108.7
120.4 (4)	C14—C13—H13B	108.7
119.8	C12—C13—H13B	108.7
119.8	H13A—C13—H13B	107.6
116.3 (3)	C13—C14—C15	113.0 (4)
116.0 (3)	C13—C14—H14A	109.0
127.8 (4)	C15—C14—H14A	109.0
122.9 (4)	C13—C14—H14B	109.0
118.6	C15—C14—H14B	109.0
118.6	H14A—C14—H14B	107.8
120.3 (4)	C14—C15—H15A	109.5
119.9	C14—C15—H15B	109.5
119.9	H15A—C15—H15B	109.5
133.6 (4)	C14—C15—H15C	109.5
113.2	H15A—C15—H15C	109.5
113.2	H15B—C15—H15C	109.5
0.8 (6)	C4—C5—C8—N1	2.7 (8)
-179.6 (4)	N1 ⁱ —N2—C9—S1	1.8 (5)
-0.2 (7)	N1 ⁱ —N2—C9—S2	-177.5 (2)
0.0 (6)	Ni—S1—C9—N2	2.5 (4)
179.5 (4)	Ni—S1—C9—S2	-178.24 (18)
-0.2 (7)	C10—S2—C9—N2	-0.4 (4)
-179.8 (4)	C10—S2—C9—S1	-179.8 (2)
0.8 (7)	C9—S2—C10—C11	-77.3 (3)
-1.0 (6)	S2-C10-C11-C12	-176.9 (3)
179.3 (4)	C10-C11-C12-C13	179.6 (3)
-1.2 (7)	C11—C12—C13—C14	-178.2 (3)
-179.8 (3)	C12—C13—C14—C15	179.1 (4)
-177.7 (4)		
	118.5 118.5 $120.4 (4)$ 119.8 119.8 $116.3 (3)$ $116.0 (3)$ $127.8 (4)$ $122.9 (4)$ 118.6 118.6 $120.3 (4)$ 119.9 $133.6 (4)$ 113.2 113.2 $0.8 (6)$ $-179.6 (4)$ $-0.2 (7)$ $0.0 (6)$ $179.5 (4)$ $-0.2 (7)$ $-179.8 (4)$ $0.8 (7)$ $-1.0 (6)$ $179.3 (4)$ $-1.2 (7)$ $-179.8 (3)$ $-177.7 (4)$	118.5 $C14-C13-H13A$ 118.5 $C12-C13-H13B$ 120.4 (4) $C14-C13-H13B$ 119.8 $C12-C13-H13B$ 119.8 $C13-C13-H13B$ 119.8 $H13A-C13-H13B$ 116.3 (3) $C13-C14-C15$ 116.0 (3) $C13-C14-H14A$ 122.9 (4) $C13-C14-H14B$ 122.9 (4) $C13-C14-H14B$ 118.6 $C14-C15-H15A$ 119.9 $C14-C15-H15B$ 119.9 $C14-C15-H15B$ 119.9 $H15A-C15-H15C$ 113.2 $H15A-C15-H15C$ 113.2 $H15B-C15-H15C$ 113.2 <t< td=""></t<>

Symmetry code: (i) -x+2, -y+2, -z+2.