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Deciphering the whole network of protein interactions for a given proteome (‘interactome’) is the
goal of many experimental and computational efforts in Systems Biology. Separately the prediction
of the structure of protein complexes by docking methods is a well-established scientific area.
To date, docking programs have not been used to predict interaction partners. We provide a proof of
principle for such an approach. Using a set of protein complexes representing known interactors in
their unbound form, we show that a standard docking program can distinguish the true interactors
from a background of 922 non-redundant potential interactors. We additionally show that true
interactions can be distinguished from non-likely interacting proteins within the same structural
family. Our approach may be put in the context of the proposed ‘funnel-energy model’; the docking
algorithm may not find the native complex, but it distinguishes binding partners because of the
higher probability of favourable models compared with a collection of non-binders. The potential
exists to develop this proof of principle into new approaches for predicting interaction partners and
reconstructing biological networks.
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Introduction

The thousands of proteins expressed in cells perform many
of their functions through interactions with other pro-
teins. Protein–protein interactions are therefore essential
to understanding the function of biological systems, and
their characterisation has become an important task for both
experimental and computational approaches in systems
biology. Experimental methods include yeast two-hybrid
systems (Uetz et al, 2000; Ito et al, 2001), mass spectrometry
(Ewing et al, 2007) and protein chips, among others (reviewed
in Piehler, 2005).

Computational methods are based on simple sequence
and genomic features intuitively related to interactions and
functional relationships (Skrabanek et al, 2008), including
colocalisation or gene neighbourhood methods (Ramani
et al, 2008), analysis of gene fusion (Enright et al, 1999),

phylogenetic profiling (Pellegrini et al, 1999) and co-evolution
(Burger and van Nimwegen, 2008; Juan et al, 2008; Pazos and
Valencia, 2008). Such methods can be used on a large scale to
predict whole interactomes (Juan et al, 2008) but their
applicability has limitations. Protein structure information is
often incorporated with interaction data (reviewed in Lee et al,
2009); however, this structural information has rarely been
used for the large-scale prediction of protein interaction
partners, which is surprising given that it is the structural
features of two proteins that determine if they interact. Aloy
and Russell (2002) developed a method that mapped homo-
logues of interacting proteins onto the structure of complexes
and assessed if the homologues were likely to fit together and
therefore interact.

Protein docking lies at the other extreme of the prediction of
interaction partners. It is generally applied to individual pairs
of proteins that are known to interact, to model the three-
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dimensional structure of the complexes they form. Docking
programs usually comprise two standard steps: generation of
thousands of alternative poses to sample all possible interac-
tion modes, followed by scoring these poses using a ‘pseudo-
energy’ function. Approximately correct solutions are gener-
ated by the first step, but scoring functions often fail to rank
them properly (Lensink et al, 2007).

The potential to use protein docking algorithms to infer
protein–protein interactions has often been discussed. Dock-
ing algorithms aim to compute the structure of protein
complexes, so in principle, they should be able to discriminate
between pairs of proteins that interact and those that do not.
However, given their poor performance in ranking correct
conformations, it has generally been regarded to be beyond the
scope of current protein docking algorithms to detect interac-
tion partners (Russell et al, 2004; Aloy and Russell, 2006; Gray,
2006). We have challenged this preconception, by assessing
the potential of a general docking method to detect interaction
partners. We report a high-throughput docking experiment,
which shows that current docking algorithms can be used to
distinguish between native interacting and non-interacting
proteins.

To date, only one other high-throughput docking experiment
has been reported (Mosca et al, 2009). Mosca et al (2009) used
protein–protein docking, in a conventional manner to expand
the structural coverage of the Saccharomyces cerevisiae
interactome. Their interest was therefore in identifying
accurate models of the complex structure of pairs of proteins
that are known to interact. In this study, protein docking
is used to address a different problem, namely, predicting
which pairs of proteins interact sampling from a large set of
alternative possibilities.

Fifty-six proteins in their unbound form from a well-
established non-redundant benchmark set of protein com-
plexes (Mintseris et al, 2005; the ‘benchmark set’ in this study)
were docked with a set of 922 monomeric non-redundant
(at superfamily level) structures, which provide a background
of docking score distributions for pairs of proteins that are
unlikely to interact. The background set contains full-length
proteins (further details in Supplementary Figures S1–S4
and Supplementary Tables SI, SII). By comparing the
docking of a protein with its known interactor to those of this
large background of potentially non-interacting proteins, we
test whether the docking scores can be used to identify the
known interactor from the background and therefore be used
for the prediction of interaction partners (Supplementary
Figure S16). In a further example, three of the interactors are
tested against proteins of the same homologous family (SCOP
superfamily; Murzin et al (1995)) to test the possibility of
distinguishing true interactions from similar but not likely
binding proteins.

This large-scale experiment generated over one billion
complex models, requiring the use of supercomputing facil-
ities (see Materials and methods). The energy distributions of
the models generated by docking the individual complex
components with this library of proteins were compared with
the models generated from the docking of the bench-
mark complexes. We demonstrate that the distribution of
scores obtained by the docking of the known interactors is
distinguishable from the distributions of scores obtained from

the models of the individual complex components docked with
the structures in the background set.

Results

Benchmark and background docking score
distributions

Our high-throughput approach is designed to assess if it is
possible to predict which pairs of proteins interact using a
rigid-body docking approach (Halperin et al, 2002), using only
the geometric complementarity of the two molecular surfaces
to score the docking poses. Docking was performed using
the docking program HEX (Ritchie and Kemp, 2000).
We compared the models generated for known interactors
with those for a large background set of different structures
that are unlikely to interact with either of the partners. For each
of the 56 unbound proteins, the 20 000 best scoring poses
with the known interactor and background structures (18.44 M
models per benchmark set protein) were retained for
comparison. The docking score distributions for the models
of the benchmark complexes were plotted with those for the
922 proteins in the background set (Figure 1 and Supplemen-
tary Figure S5). In Figure 1A, the benchmark complex of Gt-a
docked with RGS9 has a docking score distribution (red
distribution) at lower (better) scores than the distributions for
RGS9 docked with the background set (black distributions).

The statistical significance of the docking score distributions
for the 56 known interactors compared with the background
set was assessed using the Wilcoxon rank-sum test (Wilcoxon,
1945). The distribution of the known interactors was
compared with each of the individual background distribu-
tions and the percentage of background distributions of the
known interactor is significantly less than (i.e., at better
scores) was recorded. At the 1% significance level, 14 of the
known interactors’ score distributions are at significantly
better scores than 99% of the background distributions, with
the score distributions of 25 known interactors being
significantly better than 90% of background pairs and 36
examples being significantly better than 80% (Table I). There
are, however, some benchmark complexes whose score
distributions cannot be distinguished from the background
pairs, particularly eight examples where the known inter-
actor’s distribution is significantly better than less than 50% of
the background distributions (e.g., Supplementary Figure S5,
complex 2SNI).

We also applied receiver operating characteristic (ROC)
analysis to assess the global ability of the method in separating
the 56 pairs representing real interactions (positives) from the
51 632 negative pairs (see Materials and methods). The AUC
parameter of the ROC analysis is 0.80 (in a 0.0–1.0 scale),
indicating that the discriminative power of the method is
clearly better than the random value of 0.5 (Supplementary
Figure S12).

Docking algorithms tend to perform better for enzyme/in-
hibitor complexes, as this kind of interaction is highly based on
shape complementarity (Vajda, 2005). To assess the effect of
this on our results, we evaluated the performance separately
for enzyme inhibitor and other types of complexes. Overall,
the general tendency to discriminate the right interactions
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can also be observed in the 29 available enzyme/inhibitor
complexes, with a slight tendency to be worse (15 of poor
discrimination out of 29, Table I).

If it is assumed that proteins from different species are
less likely to interact, then as the background set contains
structures from many different species, many of the dockings
performed are between proteins that will not interact in
natural conditions. Species-specific background sets (i.e., only
docking proteins from the same species) were generated and
the experiment repeated. This experiment is limited to 32 of
the 56 interactors, for which there were sufficient structures
from the same species. Differences in performance are mainly
small compared with the results with the full background set

(See Supplementary Table SIV). This demonstrates that it is
valid to use a multispecies background set.

We compared the performance (from here on performance
refers to how distinguishable the benchmark distribution is
from the background distributions) of the benchmark dock-
ings to the amount of conformational change between the
unbound and bound forms of the protein, which is often used
to indicate how difficult the proteins are to dock. Interestingly,
there is no correlation between the conformational change and
the performance of the benchmark docking (Supplementary
Figure S8). Additionally, we found that good shape comple-
mentarity is identified for all of the benchmark complexes, as
their score distributions are generally in the range of �800 to
�300 (Supplementary Figure S6). So even for complexes
where the rigid body docking is not able to accurately predict
the correct interface of the complex, areas of shape comple-
mentarity are still identified. This contrasts with the back-
ground dockings, which show a much greater range of score
distributions, and many have high scores (close to zero) where
no shape complementarity is identified. This is also demon-
strated in the ROC curve (Supplementary Figure S12).

We also observed no correlation between performance of
complexes in our experiment and the size of the proteins in
the benchmark complex (Supplementary Figure S7) or their
affinity (described by their dissociation equilibrium constants;
Kastritis and Bonvin (2010); Supplementary Figure S9). The
results are also invariant to the number of docking models that
are retained when 10 000, 5000 or only 1000 models are
considered (Supplementary Figure S10). Comparable results
were obtained for four of the complexes when the number of
poses retained was increased to 100 000 (Supplementary
Figure S10).

The background set is representative at the SCOP super-
family level. To investigate if the results are sensitive to the size
of the background set and to identify if smaller background
sets could be used in future research, we simulated the results
obtained when the background set is reduced to 50, 100, 300 or
500 structures. The results suggest that a minimum size of
B500 is appropriate for the background set (Supplementary
Figure S11).

Table I Statistical significance of benchmark complex docking score distribu-
tions

% Background
better than

All
(%)

Enzyme/
inhibitors (%)

Others
(%)

100 3 (5) 1 (3) 2 (7)
499 14 (25) 5 (17) 10 (37)
495 19 (34) 6 (21) 13 (48)
490 25 (45) 7 (24) 18 (67)
485 31 (55) 10 (34) 21 (78)
480 36 (64) 14 (48) 22 (81)
470 40 (71) 17 (59) 23 (85)
460 46 (82) 22 (76) 24 (89)
450 48 (85) 23 (79) 25 (93)
o50 56 (100) 29 (100) 27 (100)

The percentage of the background docking score distributions that the
benchmark complex score distribution is significantly less than is shown.
Cumulative counts and percentages are displayed. Statistical significance was
tested using Wilcoxon rank-sum test at a 1% significance level. The results are
also split for the two complex categories in the docking benchmark (enzyme/
inhibitor and others).

Figure 1 Docking score distributions for benchmark complexes. The docking
score distribution for a benchmark complex (red and white line) and one of the
components docked with the background set (black lines) are shown for (A) Gt-a
docked with RGS9 and (B) acetylcholinesterase complexed with fasciculin2.
The native benchmark complexes are shown (red/blue structure) and selected
models for the benchmark component docked with the background set
(red/cyan).
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Description of the distributions

The docking score distributions are divided into three
populations. The first contains protein pairs in which the
docking program failed to find shape complementarity
between them. These distributions are narrow and have
negligible docking scores. Distributions in the second popu-
lation have intermediate scores and are broader than the
first population. Finally, the third population exhibits the
best scores with the broadest distributions. In the latter,
the docking program has identified significant shape comple-
mentarity between the structures, resulting in a large number
of poses with good scores. Such distributions may be
indicative of potential interactors.

Overall, the 922 background score distributions are observed in
two patterns, which may be useful when identifying potential
interactors. In the first pattern, many distributions have a
negligible score and most of the remaining distributions are in
the medium scoring population. The results for acetylchoinester-
ase docked with fasciculin2 and Gt-a docked with RGS9 follow
this pattern (Figure 1). The second pattern has few distributions in
the negligible scoring population, with the majority present in the
medium scoring population (Supplementary Figure S5, complex
2MTA). In two-thirds of the complexes where the real interactors
are clearly distinguishable from the background dockings, the
score distributions exhibit the first pattern. The opposite is true for
those interactors whose models were indistinguishable from the

background set, with the majority of these distributions showing
populations belonging to the second pattern. Most proteases
(particularly Subtilisin) in the test set exhibit the second pattern of
distributions. This may be due to the broad substrate specificity of
such enzymes (Supplementary information).

Investigation of the interactors’ docking models

The docking models generated for each of the benchmark
complexes were further investigated by considering how
frequently each residue is part of the predicted interface. Heat
map style figures were visually assessed (see Materials and
methods) for their agreement with the native binding site
(Figure 2 and Supplementary Figure S13). For all of the
complexes, both components had either one or two areas on
the surface that were present in a greater proportion of the
predicted interfaces. These patches suggest that HEX identifies
one or two areas of shape complementarity, which result in
good scoring models. For example, for acetlycholinesterase
(Figure 2) one patch contains many residues present in up to
45% of models and the other patch has only a few residues
present in up to 35% of models. For 64% of complex
components, a patch on the heat map overlaps with the native
binding site (Supplementary Table SIII). For example, heat
maps demonstrating the range of results obtained are shown in
Figure 2 and Supplementary Figure S13.

Figure 2 Heat map of the docking model putative binding sites. The Heat map shows how often each residue is present in the binding site modelled by HEX for
(A) Acetylcholinesterase/fasciculin2 and (B) transthyretin/retinol binding protein. The unbound structures are shown and they have been aligned with their equivalent
component in the native complex. The colour scheme as shown in the key indicates the percentage of HEX poses that a residue formed part of the putative interface.
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Distinguishing interactors within the same
superfamily

Our initial experiment compared the docking results of known
interactors with those for a representative set of diverse
structures from different protein folds. To indicate if our
approach can be used to distinguish interactors within a more
homogeneous set of proteins belonging to the same super-
family, an experiment was performed on three of the bench-
mark complexes; acetylcholinesterase and fasciculin2, Ras
GTPase/PIP3 kinase and Rac GTPase/p67 Phox. For acetyl-
cholinesterase and fasciculin2, 23 representative structures
from different protein families belonging to the a/b-hydrolases
superfamily (the acetylcholinesterase superfamily) were
docked with fasciculin2 (see Materials and methods). The
score distribution of the benchmark complex is distinct from
the 23 representatives from the same superfamily (Figure 3).
Further, we did not find any relationship between overall
structural similarity with the real interactor and position of the
score distribution, meaning that similar structures had score
distributions indistinguishable from the background distribu-
tions (Supplementary Figure S14).

Ras GTPase and Rac GTPase both belong to the P-loop
containing nucleoside triphosphate hydrolases SCOP super-
family. Fourteen structures belonging to different families
within this superfamily were docked with both PIP3 kinase
and p67 Phox. For both complexes, the known interactors have
docking score distributions that are distinct from the majority
of the representatives from the same superfamily (Figure 3B
and Supplementary Figure S15). The results for all three
complexes suggest that our approach may be able to
distinguish between the real interactors and decoys that have
similar structures to the interactor (See Supplementary
information for further analysis).

Discussion

This high-throughput docking experiment proves the principle
that a current docking algorithm can be used to distinguish
between interacting and non-interacting proteins. We have
shown that the score distribution of docking conformations
can be used to distinguish known interactors among a diverse
background of non-interacting proteins. We have also illu-
strated the feasibility of this strategy to identify known
interactors from a set of more similar proteins belonging to
the same superfamily.

The results presented here suggest that while a simple
docking algorithm may not accurately find the native complex,
it can distinguish between binding and non-binding partners,
based on their score distributions. This may indicate that
although protein surface morphology is not enough to find the
native interface (otherwise protein docking programs will
always find the right conformation of protein complexes); it at
least contains sufficient information to identify a ‘bona fide’
interactor when a general binding profile is compared with
those of many non-interacting proteins. This observation may
be put in the context of the proposed concept of the funnel-like
intermolecular energy landscape in protein–protein interac-
tions (McCammon, 1998; Tsai et al, 1999). This theory states
that the assembly of two proteins is initiated by the formation

of nonspecific encounter complexes (Blundell and Fernandez-
Recio, 2006), followed by rearrangements of them driven by
stronger and more specific interactions. Such hypothesis
implies that not only the ‘final’ binding surface contains
information for interacting with the partner but also other
parts of the surface. Hence, despite the limitations of the
docking algorithm, it nevertheless is able to distinguish
binding partners, because they will be present in a larger

Figure 3 Docking for a single superfamily. (A) Docking score distributions for
the acetylcholinesterase and fasciculin2 complex (red) and for fasciculin2 docked
to members of the a/b-hydrolases superfamily. The docking scores for the three
most structurally similar proteins to acetylcholinesterase are shown in different
colours with their structures. The score distributions for the remaining structures
are shown in black. (B) Docking score distributions for Ras GTPase docked with
PIP3 kinase (red line), and PIP3 kinase docked with other structures from the
same SCOP superfamily as Ras GTPase. The native form of the GTPase/PIP3
kinase complex is shown.
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number of favourable poses compared with a collection of
non-binders. Indeed, binding surfaces seem to be similar to
general surfaces (Levy, 2010).

In the search for an interpretation of physical principles
behind the results, we did not find any obvious feature
common to those complexes with distinct profiles. It is
tempting to think that the results correspond instead to a
complex mixture of the characteristics of the proteins (i.e.,
protein size, protein shape, size of the binding interaction and
number, organisation and structure of potential binding sites)
together with characteristics of their binding partners and the
characteristics necessary to avoid nonspecific binding with
other proteins.

The protocol used here can be extended to a predictive
method with the development of thresholds and rules for the
statistical comparison of the docking score distributions
between pairs of proteins. This approach could further be
used for the analysis of large data sets by docking sets of
protein structures to discover their potential binding partners
in the growing catalogue of proteins of known structure.
Furthermore, it is possible to think of an extension of this
methodology to provide predictions for all known structures.
Recent advances in the docking protocol used have shown 45-
fold speed improvements, which makes such experiments
feasible (Ritchie and Venkatraman, 2010). As this docking-
based methodology for predicting interaction partners is
complementary to all other existing methods, based on
sequence or genome information, the increase in the number
of known protein structures will make it possible to combine
them in a systematic way. This would extend our knowledge
on the interactomes of organisms and consequently improve
our capacity to perform systematic studies on them.

Materials and methods

Generating the background set of structures

The background set of structures was designed to be non-redundant at
the SCOP (Murzin et al, 1995) superfamily level and includes an
example of each superfamily for which a monomeric (based on PDB
biological unit data) structure was available. Where several X-ray
structures were available, the highest resolution structure was chosen.
Where only NMR models were available, the PDB file was selected
arbitrarily and the first model from the ensemble retained. Using SCOP
version 1.75, this resulted in 922 structures in the background set,
which contain 988 different SCOP superfamilies. The full list of pdb
codes and analysis of the characteristics of these structures is provided
in Supplementary information (Supplementary Table SV). Although
the SCOP domain classification was used to select a set of structurally
non-redundant proteins, the full-length proteins containing these
domains (and not the isolated domains) were used to perform the
docking experiments.

Selecting the benchmark complexes

The docking Benchmark 2.0 (Mintseris et al, 2005) is a widely accepted
data set of complexes used for benchmarking docking-based studies.
These complexes were selected based on a number of criteria. Proteins
were only included if they were characterised in an unbound form,
such that no other chain was found in the PDB file. This resulted in a
test set of 56 proteins representing 42 different benchmark complexes
(see Supplementary information for further details). The unbound
structures were used and their orientations randomised prior to
docking.

Docking the benchmark complexes

The Benchmark complexes were docked using HEX (Ritchie and
Kemp, 2000; version 4.5), with the unbound forms of the complex used
as input structures, after randomisation of their orientations. HEX was
run using a shape complementarity scoring function (i.e., electro-
statics turned off). A full table of parameters used for HEX is shown in
Supplementary Table SVI. The top 20 000 scoring models were retained
for analysis. In additional analyses, the top 1000 000, 10 000, 5000 and
1000 models were considered (Supplementary information).

Generating the background set models

The unbound components from the docking benchmark set were
docked with each of the structures from the background set using HEX
as described above. Overall, this experiment generated over 1 billion
complex models. Docking runs were performed using the facilities
of MareNostrum at the Barcelona Supercomputing Centre. Distri-
butions of the docking scores are plotted as explained in Supplemen-
tary Figure S17.

ROC analysis

The ROC analysis (Fawcett, 2006) is used to evaluate the performance
of a binary classifier separating two populations (positive and negative
cases). This analysis can be applied to classifiers (prediction methods),
which associate a numerical score to each case. Ideally, the classifier
would tend to associate high scores to the positive cases and low scores
to the negative ones (or the other way around). All the possible pairs
between chains within the benchmark set and the background set were
considered together for the ROC analysis. The score associated with
each pair was the average value of the corresponding distribution of
docking scores. These scores were converted to ranks in order to
compare between different cases within the benchmark set. Intuitively,
these ranks represent the positions of the energy distributions, such as
the ones represented in Figure 1. Good ranks (distributions compara-
tively shifted to better scores) are expected to be associated with real
interactors (as discussed qualitatively in results). The final list
contains 56 positives and 51 632 negatives.

Generating the interactor heat maps

The putative binding sites from the docked models of the benchmark
complexes were assessed by calculating the percentage of models that
each individual residue formed as a part of the binding site. Residues
with non-hydrogen atoms within 5 Å of non-hydrogen atoms on
residues in the other interactor were classed as part of the putative
binding site. The results were mapped onto the structures, generating
heat maps indicating the locations where HEX had preferentially
docked the interactors. The heat maps were visually inspected to
assess their overlap with the native binding site.

Areas (patches) on the proteins present in a large percentage of the
docking models were identified. Where there was more than one
patch, the patch present in the greatest number of models was ranked
as the first patch and the other as the second patch. The overlap of
these patches with the interaction site was visually assessed. Where
most of the interaction site was a part of a patch, they were classed as
being in agreement. In some examples, patches and the interaction
sites were classed as having a partial overlap, such that a significant
part of the binding site and patch overlapped; it was generally required
that the overlap occur on the area of highest intensity on the patch.
Finally, the patch and interaction site were classed as non-overlapping,
if there was a very small overlap or none at all between them.

Statistical testing

The statistical difference between the score distributions for the
benchmark complex and the background set were assessed using the
Wilcoxon rank-sum test (Wilcoxon, 1945). The Wilcoxon rank-sum
tests compared the ranked set of 20 000 docking scores from the
benchmark complex and the individual background set dockings, and
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determines if the two sets of scores are significantly different.
For each benchmark complex, a one-sided test was performed to
assess if the benchmark complex score distribution was significantly
less than each of the background score distributions. An individual
test was performed against each member of the background set.
The number of background distributions that the benchmark
distribution is significantly less than (at Po0.01) was recorded and
expressed as a percentage of the total number of structures in the
background set (922).

Superfamily examples

For the acetylcholinesterase/fasciculin2 complex, structures belonging
to the same superfamily (c.69.1-a/b-hydrolases) as acetlycholinester-
ase (pdb: 1J06) were identified. Representative structures were chosen
from the 32 different families, such that it was required that the chain
was isolated in the pdb file (i.e., monomeric). This resulted in a final
set of 23 structures: 1j1i, 1s8o, 1a8s, 1pja, 1lpn, 1cvl, 1bu8, 1c7i, 1scq,
1lns, 1imj, 1m33, 1q0z, 1tqh, 1lzk, 2axe, 1uxo, 1dqy, 1vz2, 1ac5,
1mu0, 1d07 and 1ggv. Each of the 23 structures was docked with the
unbound form of fasciculin2 using the same HEX settings as for the
benchmark complexes. Dalilite (Holm and Park, 2000) was used to
align each of the structures to the acetylcholinesterase to identify how
similar the structures are.

For Ras GTPase and Rac GTPase, 14 monomeric proteins belonging
to different families within the P-loop containing nucleoside tripho-
sphate hydrolases SCOP superfamily were identified and docked with
the unbound forms of Phox67 and PIP3 kinase. The 14 pdb structures
are as follows: 1ls1, 1ls6, 1ye8, 1rif, 1rz3, 1yks, 1lv7, 1kgd, 1r2q, 1htw,
1c4o, 2iyv, 1f9v and 1oxx.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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