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Abstract 

Background:  Epitope prediction is a useful approach in cancer immunology and 
immunotherapy. Many computational methods, including machine learning and 
network analysis, have been developed quickly for such purposes. However, regarding 
clinical applications, the existing tools are insufficient because few of the predicted 
binding molecules are immunogenic. Hence, to develop more potent and effective 
vaccines, it is important to understand binding and immunogenic potential. Here, we 
observed that the interactive association constituted by human leukocyte antigen 
(HLA)-peptide pairs can be regarded as a network in which each HLA and peptide is 
taken as a node. We speculated whether this network could detect the essential inter-
active propensities embedded in HLA-peptide pairs. Thus, we developed a network-
based deep learning method called DeepNetBim by harnessing binding and immuno-
genic information to predict HLA-peptide interactions.

Results:  Quantitative class I HLA-peptide binding data and qualitative immunogenic 
data (including data generated from T cell activation assays, major histocompatibility 
complex (MHC) binding assays and MHC ligand elution assays) were retrieved from the 
Immune Epitope Database database. The weighted HLA-peptide binding network and 
immunogenic network were integrated into a network-based deep learning algorithm 
constituted by a convolutional neural network and an attention mechanism. The 
results showed that the integration of network centrality metrics increased the power 
of both binding and immunogenicity predictions, while the new model significantly 
outperformed those that did not include network features and those with shuffled 
networks. Applied on benchmark and independent datasets, DeepNetBim achieved 
an AUC score of 93.74% in HLA-peptide binding prediction, outperforming 11 state-of-
the-art relevant models. Furthermore, the performance enhancement of the combined 
model, which filtered out negative immunogenic predictions, was confirmed on 
neoantigen identification by an increase in both positive predictive value (PPV) and the 
proportion of neoantigen recognition.

Conclusions:  We developed a network-based deep learning method called DeepNet-
Bim as a pan-specific epitope prediction tool. It extracted the attributes of the network 
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as new features from HLA-peptide binding and immunogenic models. We observed 
that not only did DeepNetBim binding model outperform other updated methods but 
the combination of our two models showed better performance. This indicates further 
applications in clinical practice.

Keywords:  T cell epitope prediction, Network analysis, Deep learning

Background
Accurate identification of peptide presentation to major histocompatibility complex 
(MHC) molecules is of great importance for exploring the mechanism of immune 
recognition [1]. The human leukocyte antigen (HLA) gene complex encodes MHC 
proteins in humans. Two main classes of HLA molecules are important in the immu-
nological context. Class I molecules present epitopes to CD8+ T cells, while class 
II molecules present epitopes to CD4+ T cells. The verification methods for assess-
ing immunogenicity include both MS-based MHC-I binding peptide detection and 
immunogenicity verification by specific T-cell response assays [2, 3]. Over the past 
30  years, many studies have been devoted to predicting T cell recognition of MHC 
class I epitopes for immunological reactions. For this purpose, two types of compu-
tational methods have been developed: allele-specific and pan-specific methods. The 
former trains one model for every MHC-I allele [4–7], while the latter considers both 
peptides and MHCs and pools all different alleles together to train one general model 
[8–12]. Most accurate methods retrieve data from The Immune Epitope Database 
(IEDB) [13], where over 73% of the binding data are 9-mer peptides [12].

Many attempts have been made to improve prediction performance. Recently, an 
ever-increasing amount of mass spectrometry (MS)-based HLA peptidome data has 
become available. Therefore, there is growing interest in applying these data to pep-
tide-HLA interaction studies [14]. Some methods also consider proteasomal cleav-
age and transporter-associated antigen processing (TAP)-mediated peptide transport 
[15–18]. In addition, with the rapid development of deep learning methods, shallow 
and high-order artificial neural networks have been proposed by various research 
teams, including NetMHC 4.0 [4], HLA-CNN [7], ConvMHC [8], NetMHCPan 4.0 
[10], MHCflurry 1.2.0 [19], MHCnuggets [20] and NetMHCstabpan 1.0 [21].

It has been reported that high affinity MHC-epitope interactions tend to be associ-
ated with higher immune responsiveness [22]. However, even though MHC binding 
is necessary for recognition by T cells, it is in itself not sufficient to define immuno-
genicity. According to a previous report [23], a CD8+ T cell immunogenic peptide is 
able to form a complex with class I MHC molecules and trigger the activation and 
proliferation of T cells. Nevertheless, there is a lack of effective strategies available 
to predict immunogenicity [24]. The existing binding prediction tools are insufficient 
for neoantigen prediction in clinical applications considering that recognition is also 
influenced by several other factors, such as the abundance of proteins, immunodomi-
nance, antigen processing and the presence of a suitable T-cell repertoire [25–27]. 
Hence, top-ranking candidates predicted by binding affinity for alleles are usually 
falsely reported as neoantigens [28]. Thus, the demand to understand binding and 
immunogenic potential should be met eagerly for more potent and peptide-based 
vaccines.
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Here, we observed that the interactive association constituted by HLA-peptide pairs 
can be regarded as a network in which each HLA and peptide is taken as a node. We 
believe that in this network, the features of nodes or edges are important and informa-
tive for detecting essential HLA-peptide interactive potentials. Thus, in this study, we 
developed a new network-based deep learning model called DeepNetBim (a deep 
learning model based on network analysis by harnessing binding and immunogenicity 
information) for accurate HLA class I pan-specific epitope presentation prediction. To 
overcome the previously explained deficiencies, we applied the weighted HLA-peptide 
binding network and immunogenic network into a network-based deep learning algo-
rithm by combining binding and immunogenic models to predict HLA-peptide interac-
tions efficiently.

Extensive tests on benchmark and independent datasets demonstrated that Deep-
NetBim binding model can significantly outperform other well-known binding predic-
tion tools. Furthermore, the performance enhancement of the combined model, which 
filtered out negative immunogenic predictions, was confirmed on neoantigen identifi-
cation by increases in both the positive predictive value (PPV) and the proportion of 
neoantigen recognition. Overall, DeepNetBim provides a powerful and useful tool for T 
cell epitope recognition and further immunotherapy practice.

Results
In this study, a new network-based deep learning model called DeepNetBim was pro-
posed (in the following paragraphs, we use ‘HLA’ to refer to ‘HLA class I’ for conveni-
ence). The weighted HLA-peptide binding network and immunogenic network were 
applied to a network-based deep learning algorithm constituted by a convolutional neu-
ral network (CNN) and an attention mechanism (Fig. 1). First, the quantitative class I 
HLA-peptide binding data and qualitative immunogenic data were retrieved from the 
IEDB database. Then, the weighted HLA-peptide binding network and immunogenic 
network were constructed separately to acquire quantified individual network fea-
tures. Next, the encoded peptides and the obtained network features were fed into an 

Fig. 1  Workflow diagram of DeepNetBim framework. First, the binding and immunogenic data were 
retrieved from the IEDB database. Then, the weighted HLA-peptide binding network (coloured in blue) and 
immunogenic network (coloured in purple) were constructed separately to acquire quantified network 
features. Next, the encoded peptides and the obtained network features were fed into an attention-based 
deep learning process. Finally, the predicted binding affinity and binary immunogenic category of the above 
two independent models were combined to make the final prediction. BA binding affinity, IC immunogenic 
category
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attention-based deep learning process. Finally, the predicted binding affinity and binary 
immunogenic categories of the abovementioned independent models were combined to 
make the final prediction (“Methods”).

Evaluation of network metrics by stepwise regressions

In our model for predicting binding affinity and immunogenic category, we explored 
four traditional centrality metrics (degree, closeness, betweenness and eigenvector) 
for each HLA and peptide. To investigate the roles that the extracted network metrics 
may play in the binding or immunogenic propensities of HLA-peptide pairs, we applied 
two multiple linear models: a linear regression model and a logistic regression model 
for binding and immunogenic data separately. In these two models, the eight network 
attributes ( HLAdegree , HLAcloseness , HLAbetweeness , HLAeigenvector , PEPdegree , PEPcloseness , 
PEPbetweeness , PEPeigenvetor ) were taken as independent variables, while the transformed 
binding affinity (BA) was taken as the response variable in the linear regression model 
(Eq. 1), and immunogenicity category (IC) was taken as the binary response variable in 
the logistic regression model (Eq. 2) as following:

where θ = P(IC = 1|x) , and αb and αi are intercepts of the two models. β and γ represent 
the attribute coefficients in the binding and immunogenic regression models, respec-
tively. During each model’s construction, stepwise regression was applied. The stepwise 

(1)
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+ βHLAcloseness
• xHLAcloseness

+ βHLAbetweeness
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• xHLAeigenvector
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Table 1  Coefficients of network metrics in two multiple regression models

Binding (linear regression) HLA attributes

Variable αb βHLAdegree βHLAcloseness βHLAbetweeness βHLAeigenvector

coefficient 0.281 − 0.048 0.095 0.02 0.003

Peptide attributes

Variable βPEPdegree βPEPcloseness βPEPbetweeness βPEPeigenvector

Coefficient − 0.044 − 0.173 − 0.003 0.05

Immunogenic (logistic regression) HLA attributes

Variable αi γHLAdegree γHLAcloseness γHLAbetweeness γHLAeigenvector

Coefficient 1.914 5.241 − 1.878 − 4.083 − 2.242

Peptide attributes

Variable γPEPdegree γPEPcloseness γPEPbetweeness γPEPeigenvector

Coefficient − 0.429 3.791 0.092 − 1.022
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procedure helps to extract the primary factors that may affect binding or immunogenic-
ity and remove the variables that were not statistically significant. In addition, it avoids 
selecting a variable that is highly correlated to selected variables. The fitted coefficients 
are shown in Table 1. All of those variables were selected through stepwise selections in 
both models with p < 2× 10−16 , which confirms the necessities of all these variables. 
Furthermore, the increase in positive coefficients (such as βHLAcloseness

, βHLAbetweeness
, 

βHLAeigenvector
, βPEPeigenvector

, γHLAdegree
, γ PEPcloseness

, γ PEPbetweeness
 ) was significantly asso-

ciated with increased binding and immunogenic propensities of HLA-peptide pairs and 
vice versa.

The correlation between the metrics is shown in Additional file 1: Fig. S1. The correla-
tion among network metrics was higher amongst HLA attributes and amongst peptide 
attributes than between attributes of these two distinct groups. Furthermore, the density 
distribution of network metrics of HLA and peptides in positive (binder/immunogenic) 
and negative (nonbinder/nonimmunogenic) datasets of the two models are visualized 
in Additional file 1: Fig. S2. Large differences in the density distribution of positive and 
negative datasets implied that there might be large associations among network met-
rics and different binding and immunogenic categories (p value < 0.001 by Kolmogo-
rov–Smirnov test). In addition, we applied the chi-squared test on network metrics and 
their corresponding categories (see Additional file 2: Table S1). A statistically significant 
result (p value < 0.001) indicated that the network centrality metrics might reveal some 
intrinsic interactive potentials embedded in HLA-peptide pairs. All of these results illus-
trated that the network metrics were crucial components for HLA-peptide interaction 
predictions.

Improved performance by DeepNetBim

The binding and immunogenic models both achieved good performance on each test set 
with 0.015 mean absolute error on the binding model and 94.7% accuracy on the immu-
nogenic model on average based on fivefold cross-validation. In addition, to better inves-
tigate how the performance improved by integrating network metrics in DeepNetBim, 
we compared the DeepNetBim model with its submodel and the transformed models we 
mentioned in the “Methods” section.

We first compared the full model (original model) of DeepNetBim with its submodel, 
namely, the PepOnly model, which solely utilized encoded peptide sequence informa-
tion without integrating network metric features. As expected, the original DeepNetBim 
achieved a significant improvement over PepOnly, both in the binding model and the 
immunogenic model with lower absolute error and higher accuracy rate, respectively. 
Figure 2a, b show performance comparisons of the 6 most frequently appearing alleles in 
the binding model and in the immunogenic model. Furthermore, we constructed several 
submodels, each missing one of the network metrics, and we compared them to Deep-
NetBim during the deep learning training. In each case, the original model achieved bet-
ter performance. This confirmed the contribution of each of the network metrics (shown 
in Additional file 1: Fig. S3).

In the network construction section, we proposed two other transformed models: a 
shuffle model and a random model (see “Methods” section). After this transformation, 
the features of the newly obtained network metrics were fed along with the encoded 
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peptides into the deep learning neural network to obtain the final result. Through com-
parison, we found that both the shuffle networks and the random networks performed 
poorly in terms of absolute error (binding model) and the area under the ROC curve 
(AUC) (immunogenic model) (Fig.  2c, d). Although the overall network metric values 
in the shuffle network model remained the same as in the original model, they were still 
remarkably outperformed by DeepNetBim. In addition, we observed that the higher 
shuffle levels translated into worse performance. The random network behaved similarly 
to the 100% shuffle model to some extent. Such a comparison indicated the necessity to 
assign the network edge weights correctly and effectively. All of these results demon-
strated that integrating network metrics in DeepNetBim can effectively boost the predic-
tion performance for not only HLA-peptide binding but also peptide immunogenicity.

Evaluation of DeepNetBim binding model on the independent datasets

The IEDB has an automatic server benchmark page that evaluates different predictive 
methods for HLA-peptide binding pairs. We used the latest dataset whose measure-
ment type was IC50 (http://​tools.​iedb.​org/​auto_​bench/​mhci/​weekly/​single/​2019-​03-​
15). Other updated benchmark datasets only contain binary data; therefore, they are not 
suitable for binding affinity prediction comparison. The dataset contains 434 peptides, 
368 of which were positive. These data were isolated from the training section of the 
network construction phase. Two performance metrics, Spearman’s rank correlation 

a b

c d

Fig. 2  Improved performance of integrating network metrics in DeepNetBim. a Absolute error for binding 
affinity prediction and b accuracy rate for immunogenic prediction of the original model (coloured in blue) 
and the PepOnly model (coloured in white) for the 6 most frequent alleles in the test dataset. c Absolute error 
for binding affinity prediction and d ROC curve for immunogenic prediction of the original network, shuffle 
networks (shuffled network edge weights) and random network (reassigned network weights by uniform 
distribution) in the test dataset

http://tools.iedb.org/auto_bench/mhci/weekly/single/2019-03-15
http://tools.iedb.org/auto_bench/mhci/weekly/single/2019-03-15
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coefficient (SRCC) and AUC, were retrieved between the predicted binding affinity and 
experimentally validated values. The DeepNetBim binding model achieved a compara-
ble performance and 11 other well-acknowledged prediction tools with 0.273 improve-
ment in terms of SRCC and 0.1 improvement in terms of AUC on average. Remarkably, 
two widely used tools, NetMHC4.0 [4] and NetMHCpan 4.0 [10], achieved SRCC val-
ues of 0.737 on average, while the DeepNetBim binding model achieved 0.9374 (Fig. 3a). 
On the benchmark dataset, DeepNetBim also significantly outperformed the PepOnly 
model. It confirmed the necessity of network metrics.

Then, we investigated the performance of the DeepNetBim binding model on inde-
pendent data from an external study [29] compared to the PepOnly model and the 
two most frequently used machine learning algorithms: NetMHC4.0 [4] and NetMH-
Cpan4.0 [10]. The dataset contained 434 nonduplicate 9-mer HLA-A*0201-restricted 
CD8 + T cell epitopes from the herpes simplex virus type 1 (HSV-1) genome. Among 
all 434 HLA-peptide pairs, the DeepNetBim binding model made more accurate predic-
tions on 288 of them with lower absolute error compared with NetMHC4.0 and 293 of 
them compared with NetMHCpan4.0 (Fig. 3b). Between NetMHCpan4.0 and DeepNet-
Bim, we observed differences in prediction in 160 pairs greater than 0.1, of which 77.5% 
(124) were predicted more accurately by our model. Similar results were obtained from 
DeepNetBim after we compared it with NetMHC4.0 (157 pairs showed a difference 
greater than 0.1, of which 79.6% were better predicted by DeepNetBim). In general, the 
DeepNetBim binding model showed significantly better performance (p value < 0.001 by 
t-test) both with NetMHC4.0 and with NetMHCpan4.0. The results demonstrated that 
DeepNetBim possessed relatively high generalizability for binding prediction.

The combined model showed enhanced performance

In the Methods section, we proposed the combined model, which regarded the use 
of the immunogenic model as a filter. Here, to investigate how effective the combined 
model is, we applied it to the independent dataset. The independent data used to evalu-
ate the combined model were obtained from Koşaloğlu-Yalçın, which contains 41 9-mer 

a b

Fig. 3  Performance comparison on the benchmark dataset and the external dataset. a Performance of the 
binding model compared with PepOnly and other tools on the latest IEDB benchmark dataset in terms of 
AUC and SRCC. b Performance compared with PepOnly, NetMHC4.0 and NetMHCpan4.0 on external data in 
terms of absolute error value
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neoantigens (positive) with 1600 random 9-mer peptides (random) collected from the 
publicly available The Cancer Genome Atlas (TCGA) data portal [30]. Figure 4a depicts 
the predictive performance of our two separate models on this independent dataset. 
Both binding and immunogenic models significantly distinguished positive samples 
from random samples (p value < 0.001 by one-sided Mann–Whitney U test).

Predicted peptides were categorized into predicted binders/immunogenic (positives, 
P) or predicted nonbinders/nonimmunogenic (negatives, N) for each model. Based 
on experimental validation, these predictions were then split into four categories: true 
positives (TP), true negatives (TN), false positives (FP) and false negatives (FN). Four 
commonly used performance metrics for evaluating algorithms were applied: accu-
racy, sensitivity, specificity and positive predictive value (PPV). These four are defined 
as follows: accuracy = (TP + TN)/(P + N), sensitivity = TP/(TP + FN), specificity = TN/
(TN + FP), PPV = TP/(TP + FP).

Table 2 shows the model performance measured by the four abovementioned metrics. 
According to [18], the rarer the event to be predicted, the harder it is to achieve high 
PPV prediction. Through model combination, we were able to improve the PPV from 
6.1% of the binding model and 3.8% of the immunogenic model to 8.1% by using the 
combined model.

The percentile ranks of binding and immunogenic models were derived across all neo-
antigen candidates. We compared the predictive methods by calculating the proportion 

a
b

Fig. 4  Performance on the separate models and the combined model. a Boxplot of positive and random 
peptides in the binding and the immunogenic model with p value < 0.001 by one-sided Mann–Whitney 
U test. b The proportion of recognized neoantigens in the top-ranked 10, 20, 30, 40 and 50 neoantigen 
candidates

Table 2  Performance on combined model

Binding model Immunogenic model Combined 
model

Accuracy 0.695 0.627 0.676

Sensitivity 0.780 0.585 0.708

Specificity 0.694 0.628 0.676

PPV 0.061 0.038 0.081
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of identified neoantigens capable of eliciting CD8 + T cell responses in the top-ranked 
10, 20, 30, 40 and 50. In 2019, Wu et al. [31] reused this dataset and obtained comparable 
performance. Additionally, in their study, they provided predicted immunogenic scores 
for neoantigen identification according to their method named DeepHLApan. Com-
pared with their study [31], the final result indicates that our combined model exhibits a 
better performance than that achieved by DeepHLApan (Fig. 4b). In addition, it is noted 
that the separate models recognized no neoantigens in the top 10 candidates, while the 
combined model improved recognition to 20%.

Discussion
With the development of cancer immunotherapy, it is essential to predict which of 
the peptides presented on the cell surface could be targeted for the T-cell response. 
In this study, we developed a network-based deep learning method by harnessing 
binding and immunogenicity information to obtain improved HLA-epitope interac-
tion prediction. When investigating network structures, we utilized centrality met-
rics to quantify the “importance” or “influence” of nodes and edges. Network metrics 
have been used in many fields, such as contagion phenomena and social communities 
[32–34]. The stepwise regression of the extracted attributes of the network effectively 
indicates the binding or immunogenic propensities in the HLA-peptide interaction 
process, which confirms the significance of network exploration. The great improve-
ment of DeepNetBim by correctly incorporating network centrality metrics validated 
the contribution of newly added network features. In addition, DeepNetBim achieved 
better performance compared with other well-known tools both on the IEDB bench-
mark dataset and the external dataset on binding affinity prediction. The fact that our 
original model outperformed several submodels may also explain why it was better 
than other published tools that only make use of deep learning methods. Further-
more, when we calculated both the PPV and the proportion of identified neoantigens, 
we confirmed an increased performance by combining the HLA binding and immu-
nogenic models.

However, the DeepNetBim algorithm is only applicable to 9-mer peptides considering 
that the majority of MHC class I peptide-binding data are 9-mers in IEDBs [12]. Insuf-
ficient training data on the remaining lengths led us to unsatisfactory performances after 
several attempts. Nevertheless, the outperformance of DeepNetBim compared with 
other state-of-the-art tools on 9-mer peptides indicates that padding or deletion strat-
egies may work on 8-mer, 10-mer or 11-mer peptides, which is worth trying in future 
endeavours. On the other hand, other types of influences that have been reported previ-
ously, such as N- or C-terminal extensions [35], are not included in our study.

In addition, some potentially immunogenic peptides may not have been recognized 
owing to the limited response rate, inefficient T cell priming and heterogeneity in the 
tumour fractions [36]. Thus, the risk introduced by potential false negative immuno-
genic peptides should be noted. To balance the sensitivity and specificity of the predic-
tive algorithm, an adjustable weighting factor could be applied to integrate the binding 
and the immunogenic model. Furthermore, as we described in the Methods section, 
the IEDB database captured the results of the MHC assay and T cell activation assay. 
To date, limited by the training size of the immunogenic data, two types of assays were 
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pooled together for the following deep learning process. In the future, if the amount of 
new immunogenic resources increases substantially, we can build specific predictive 
models for the different types of epitope assays.

Although this novel method has limitations, it is the first study to integrate network 
features with a deep learning algorithm to better interpret and understand HLA-pep-
tide interactions. Even though we have demonstrated how effectively DeepNetBim can 
be applied to predict HLA-peptide interactions, we speculate that the well-designed 
ensemble classifier of DeepNetBim and previous work may provide a sustainable frame-
work and increase the accuracy in further research. We anticipate that network-based 
deep-learning approaches such as the one presented in this work will play increasingly 
important roles in future studies.

Conclusions
We developed a network-based deep learning method called DeepNetBim as a pan-spe-
cific epitope prediction tool. It extracted the attributes of the network as new features 
from HLA-peptide binding and immunogenic models. We observed that not only did 
DeepNetBim binding model outperform other updated methods but the combination of 
our two models showed better performance. This indicates further applications in clini-
cal practice.

Methods
Binding and immunogenic data

The binding affinity dataset was collected from the IEDB (http://​www.​iedb.​org/) [13]. 
To generate a pan-specific binding model, we kept only 9-mer peptides, as they collec-
tively represent 73% of the total peptide binding data [12]. The resulting size is suitable 
for the training step in the following deep learning process. Thus, 104 HLA alleles were 
retrieved, with each allele having more than 5 peptide binding entries, and 88,913 non-
redundant HLA-peptide pairs were obtained after duplicated data were removed.

All peptide binding affinities were measured by half-maximal inhibitory concentration 
(IC50) values. For this study, the binding affinity was log-transformed to fall in the range 
between 0 and 1 by using the relation 1− log(x)/log (50,000), where x is the measured 
binding affinity [37]. Based on strong biological support [38], we used an IC50 threshold 
of 500 nM (binder ≤ 500 nM) for binary classification. Thus, with this kind of log-trans-
formation, a measured affinity less than 500  nM was assigned an output value above 
0.426.

The immunogenic data were retrieved from IEDB. The immune epitope assay data we 
collected included data from T cell activation assays, MHC binding assays and MHC 
ligand elution assays. The immunogenic data were generated based on infectious path-
ogens, diseases, allergens and autoantigens. These binary data were used to create an 
immunogenic model that provided immunogenic or nonimmunogenic results. A total 
of 119 HLA alleles were retrieved, with each allele having more than 5 peptide entries. 
A total of 24,193 nonredundant HLA-peptide pairs were obtained after duplicated data 
were removed (only considering 9-mer peptides).

http://www.iedb.org/


Page 11 of 16Yang et al. BMC Bioinformatics          (2021) 22:231 	

Network construction of binding and immunogenic data

Original network construction

In the original network construction of DeepNetBim, the interactive association con-
stituted by HLA-peptide pairs could be regarded as a network in which each HLA and 
peptide was taken as a node. The binding network and the immunogenic network were 
constructed by applying identical methods separately. In the binding model, the net-
work weight was assigned by the transformed affinity (range from 0 to 1), while in the 
immunogenic model, it was assigned by the immunogenic binary category (0/1) instead. 
Additional file  1: Fig. S4 illustrates the network construction process. The weighted 
HLA-peptide network was established by using the igraph package (version 1.2.4.2) [39] 
in R (version 3.6.1). However, considering that only positive values are allowed in the 
igraph package, in the immunogenic model, the weight of the nonimmunogenic peptides 
with a 0 value was substituted by a small positive value close to 0 (which is 10−10 in our 
work, as an approximation method), while the weight of immunogenic peptides was set 
to 1 [40].

In DeepNetBim, the binding network and the immunogenic network were constructed 
separately but processed in the same way. Both edge weights and the number of edges 
were taken into account. For each HLA and peptide, the outcomes of each network 
were measured by four traditional centrality metrics: degree (the count of the number 
of other nodes that are adjacent [41]), betweenness (the frequency that a node falls on 
the shortest paths between pairwise nodes [41]), closeness (the inverse of the sum of the 
shortest paths from the node to all other nodes [41]) and eigenvector (the eigenvector of 
the largest eigenvalue of an adjacency matrix that represents the topology [42]). Origi-
nally, centrality metrics were used to identify the relative significance of individuals in 
social network analysis [33]. Here, the introduced metrics could be employed to describe 
the binding or immunogenicity propensities of the HLA-peptide pairs.

The acquired four centrality metrics for each model were scaled and then assigned to 
each HLA allele and peptide as new features that were used in the following deep learn-
ing model (see Deep learning network architecture part). Thus, for an HLA-peptide pair, 
eight new features were created (four for HLA and four for peptide).

The transformed network construction

To investigate the effectiveness of network metrics in the DeepNetBim model, we 
implemented two other transformed types of networks: shuffle networks and random 
networks for both the binding and immunogenic models. In the shuffle network, the 
network was reconstructed at the beginning by shuffling the edge weights at different 
levels (25%, 50%, 75% and 100% shuffle). The 25% shuffle model shuffled a quarter of the 
network edge weights, while the remaining three quarters of the network structure was 
unchanged. The 100% shuffle model shuffled all network edge weights. Such transforma-
tion only converted the connections of the network, while the overall values of weights 
were kept the same. Different from the shuffle model, the random model reassigned the 
network edge weights obeying a [0, 1] uniform distribution. We also acquired the corre-
sponding four types of network metrics for further comparison with the original model. 
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In the results section, we compared the output of the original model with that of the two 
transformed models to measure the effect of the network metrics.

Sequence encoding

Peptide sequence data were encoded in terms of the BLOSUM50 scoring matrix [43], 
whose encoding scheme was widely used in previous studies [44–46]. As BLOSUM50 is 
a 20 * 20 substitution matrix, each amino acid is represented by its similarity to the other 
amino acids. Compared with the one-hot encoding strategy (i.e., encoded by 19 zeros 
and one), the BLOSUM matrix contains prior knowledge about subtle evolutionary and 
chemical relationships between the 20 amino acids [37, 47, 48]. In our work, peptides 
that contained amino acids “X”, “B”, and “U” were substituted by the character “Z”, which 
was not in the amino acid alphabet. Thus, each peptide was encoded to a 9*21 matrix, 
where each residue was represented by the corresponding row in the BLOSUM matrix. 
In our framework, the elements of the BLOSUM50 matrix were divided by a scaling fac-
tor of 10 to facilitate deep learning model training. In the DeepNetBim model, when 
predicting a newly added HLA-peptide pair in the network analysis, Euclidean distances 
between the new peptide and other encoded peptides in the training set were calculated 
accordingly. After that, the closest peptide network metrics in terms of Euclidean dis-
tances were chosen to represent metric features of the newly added peptides, and the 
median HLA network metrics were chosen to represent metric features of newly added 
HLA alleles.

Deep learning network architecture

The DeepNetBim model passes encoded sequences and metrics features into com-
bined modules of CNN and the attention module to make the final prediction. The 

Fig. 5  The architecture of the deep neural network in DeepNetBim. For an HLA-peptide pair, the encoded 
peptide (encoded to 9 × 21 matrix, coloured in blue) and network metrics (encoded to 1 × 8 vector, coloured 
in green) were fed into both convolutional and attention modules. The outputs of the two modules were 
then merged together by concatenating them to a single tensor
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attention-based deep neural network was implemented using the Keras library 2.2.4 
(https://​keras.​io). Figure 5 shows the architecture of the deep learning network.

CNN module

In the DeepNetBim model, the peptide sequence was encoded into a 9 * 21 matrix, while 
the network metrics were encoded into a 1 * 8 matrix (four for HLA and four for the pep-
tide). For the initial feature extraction, each of these two matrices was processed by a one-
dimensional convolutional layer separately as input. For both peptide and network metric 
features, we used 256 convolutional filters of stride size 1 with 70% dropout to scan along 
the input sequence. The rectified linear unit (ReLU) was chosen as the activation function 
after the convolutional layer. Next, both peptide and network metric feature maps were 
flattened separately to obtain the long-form vectors. Then, each of the flattened vectors 
was concatenated with 4 identical copies before sending them to the corresponding fully 
connected layer. After that, two consecutive fully connected layers (with 64 and 4 output 
dimensions) were operated to generate the output of the convolutional layer.

Attention module

An attention layer was incorporated into our model to better improve the performance. 
The attention layer feeds each input feature to a shared neural network with a single hid-
den layer. It assigns different weights to the vectors and then computes their weighted 
average to facilitate the prediction. Briefly, it is expected that this will assign higher 
weights to the residues and positions that are more important in predicting peptide-
MHC interactions [49]. The attention module is concatenated together with the output 
of the convolutional module and then forwarded into a fully connected layer with a sig-
moid active function to obtain the final prediction.

The model was optimized and trained by minimizing the mean squared error loss 
function in the binding model and using the binary cross-entropy loss function in the 
immunogenic model with the Adam optimizer and RMSprop optimizer, respectively 
(minibatch size of 256). The optimal hyperparameters (including the number and size of 
convolutional filters, stride size for convolution, choice of activation function and size of 
fully connected layers) were determined through a grid search approach on the test set. 
A dropout layer was used to reduce overfitting by introducing noise in the CNN module, 
which led to a substantial increase in the overall performance.

The combination of binding and immunogenic models

Considering both HLA binding and immunogenic prediction, we combined the two mod-
els by removing the predicted negative immunogenic HLA-peptide pairs (immunogenic 
category = 0). According to Eq.  3, if the predicted immunogenic category (IC) equals 1, 
we used the transformed predicted binding affinity (BA) as the combined score of our two 
models; otherwise, if the IC equals 0, the combined score corresponds to 0. Put simply, the 
combined model regards the use of the immunogenic model as an additional filter. In the 
results section, we surveyed the performance enhancement by the combined model.

https://keras.io
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Fivefold cross‑validation

Fivefold cross-validation was used to evaluate the model robustness. In fivefold cross vali-
dation, the dataset was randomly partitioned into five nonoverlapping subsets with each 
subset used as the test set, while the remaining subsets were used as the training set.

When there was an HLA or peptide in the testing set that never appeared in the training 
set, it was treated as newly added. In this way, the closest peptide network metrics and the 
median HLA network metrics were chosen to represent them (see the Sequence encoding 
section). Finally, when we applied our DeepNetBim method on the external datasets for pre-
diction, all datasets were utilized for the training to achieve the best prediction performance.
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