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Usefulness of 10-2 Matrix 
Frequency Doubling Technology 
Perimetry for Detecting 
Central Visual Field Defects in 
Preperimetric Glaucoma Patients
Younhea Jung1, Hae-Young L. Park1, Yi Ryeung Park2 & Chan Kee Park1

It is generally acknowledged that structural loss can precede functional loss in some patients with early 
glaucoma. However, conventional standard automated perimetry (SAP) has limitations in the detection 
of functional loss, especially in the macular area. This study explores visual field loss in the macular 
areas of patients with preperimetric glaucoma exhibiting structural thinning in the area by examining 
the correlations between the ganglion cell-inner plexiform layer (GCIPL) and the results of matrix 
frequency-doubling technology (FDT) 10-2 tests. The structure-function relationships between the 
GCIPL thicknesses and the mean sensitivities (MSs) of the corresponding areas based on conventional 
SAP 24-2, FDT 10-2, and FDT 24-2 were examined in 62 patients. The highest correlation was found 
for FDT 10-2 (r = 0.544, P < 0.001) followed by FDT 24-2 (r = 0.433, P = 0.002) and SAP (r = 0.346, 
P = 0.007). The correlation coefficients between each GCIPL sector and the corresponding central MS 
according to FDT 24-2 and 10-2 were all statistically significant, and the correlations were significantly 
stronger for FDT 10-2 than 24-2 in the inferior and inferonasal sectors. In conclusion, preperimetric 
glaucoma patients with structural loss in the macula as indicated by GCIPL thinning also exhibited 
functional loss as revealed by FDT 10-2, and the functional loss was less evident with conventional SAP.

Although it is generally considered that glaucomatous field defects start in the periphery and preserve the central 
field, there are increasing numbers of reports indicating that the macular area is involved even in the early stage 
of glaucoma1. However, standard automated perimetry (SAP), which is conventionally used in clinical practice 
to determine the functional loss, might not be optimal in the detection of glaucomatous field loss in the macular 
area because the test points lie 6° apart. Therefore, SAP has only 12 points located in the macular area where over 
30% of the retinal ganglion cells (RGCs) are located1,2.

We previously reported the ability of short wavelength perimetry (SWAP) 10-2 to detect functional loss in 
the macular area3. However, SWAP 10-2 uses the full threshold strategy, which requires a longer test time and 
does not provide normative values, and hence does not provide global indices, such as the mean deviation and 
the pattern standard deviation. These limitations make SWAP 10-2 difficult to apply in general clinical settings.

Frequency-doubling technology (FDT) 10-2 perimetry has an internal normative database and thus provides 
the mean deviation and pattern standard deviation, which make the results easier to interpret in the clinical set-
ting. FDT 10-2 has several advantages in the detection of functional loss in the macula. First, FDT is based on the 
frequency-doubling illusion, which occurs when viewing a sinusoidal grating of low spatial frequency undergoing 
counterphase flickers at a high temporal frequency4,5. It has been suggested that FDT represents the function of 
the magnocellular RGCs with partial input from other RGCs, and several studies have demonstrated that FDT 
may detect glaucomatous field loss earlier than SAP6–9. Second, FDT 10-2 has 32 test points placed 2° apart in 
the macular area. Therefore, we hypothesized that the structure-function relationship of the macula would be 
stronger using FDT 10-2.
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The purpose of this study was to examine the ability of FDT 10-2 to detect functional loss in the macular area 
in patients with no evident functional loss as indicated by conventional SAP 24-2 perimetry but with suspected 
structural loss as indicated by GCIPL thinning.

Results
A total of 62 patients with preperimetric glaucoma were included in this study. Table 1 presents the baseline 
characteristics of these patients. The mean age was 71.41 ± 8.95 years, and mean intraocular pressure was 
13.64 ± 2.92 mmHg. The mean test durations were 4.56 ± 0.36 min, 5.02 ± 0.26 min, and 4.16 ± 0.14 min for 24-2 
SAP, FDT 24-2, and FDT 10-2, respectively.

Table 2 presents the correlations between the GCIPL thicknesses (GCIPLTs) and the corresponding central 
mean sensitivities (MSs) in decibels. The correlation coefficients of the average GCIPLTs and the corresponding 
central MSs (dB) were 0.346 (P = 0.007), 0.443 (P < 0.001), and 0.544 (P < 0.001) for 24-2 SAP, FDT 24-2, and 
FDT 10-2, respectively. The correlations between each GCIPL sector and the corresponding central MS ranged 
from 0.212 to 0.602 for FDT 24-2 and from 0.297 to 0.611 for FDT 10-2, and all of these correlations were sta-
tistically significant. The correlation coefficients were higher for FDT 10-2 than for FDT 24-2 with marginal 
significance globally and in the superior and superonasal sectors (P = 0.080, 0.071, and 0.070, respectively) and 
with statistical significance in the inferior and inferonasal sectors (P = 0.011 and 0.005, respectively). The correla-
tions between each GCIPL sector and the corresponding central MSs were significant only in the inferotemporal 
(r = 0.364, P = 0.005) and inferior (r = 0.397, P = 0.002) sectors for SAP 24-2.

Table 3 presents the correlation between the GCIPLTs and the corresponding central unlogged MSs. Figure 1 
provides scatter plots of the GCIPLs and the corresponding central MSs for each perimetry. A representative case 
of a 55-year-old female with a glaucomatous optic disc with an inferotemporal nerve fibre layer defect is presented 
in Fig. 2. SAP 24-2 did not reveal central field defects, whereas FDT 24-2 and FDT 10-2 revealed central field 
defects in the areas in which the GCIPL was thinner.

Discussion
The purpose of our study was to determine whether reduced macular thickness accompanied visual field loss in 
preperimetric glaucoma patients. We investigated the relationship between macular thickness as measured by the 

Variable Mean ± standard deviation

Age (years) 71.41 ± 8.95

Sex (male/female) 26/36

Intraocular pressure (mmHg) 13.64 ± 2.92

Refraction (diopters) −2.34 ± 2.82

Axial length (mm) 23.92 ± 1.31

Central corneal thickness (μm) 521.54 ± 35.45

Ganglion cell/inner plexiform layer thickness (μm)

 Average 74.24 ± 6.46

     Superonasal sector 78.77 ± 7.77

     Superior sector 75.59 ± 8.88

     Superotemporal sector 76.70 ± 6.43

     Inferonasal sector 74.59 ± 9.03

     Inferior sector 69.16 ± 10.57

     Inferotemporal sector 70.48 ± 10.19

FDT 10-2

 Test duration (min) 4.16 ± 0.14

 MD −3.19 ± 3.28

 PSD 3.80 ± 1.95

 Centre MS (dB) 27.69 ± 3.61

FDT 24-2

 Test duration (min) 5.02 ± 0.26

 MD −6.43 ± 4.29

 PSD 4.12 ± 1.30

 Centre MS (dB) 25.61 ± 4.58

SAP 24-2

 Test duration (min) 4.56 ± 0.36

 MD −1.70 ± 1.71

 PSD 2.15 ± 1.25

 VFI 97.63 ± 2.36

 Centre MS (dB) 30.77 ± 2.07

Table 1.  Baseline characteristics. FDT = frequency doubling technology, MD = mean deviation, PSD = pattern 
standard deviation, MS = mean sensitivity, VFI = visual field index.
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GCIPL and visual field loss as detected by FDT 10-2 in patients whose visual field loss was not detected by SAP 
24-2. To the best of our knowledge, the structure-function relationship of the macular area based on GCIPLT and 
FDT 10-2 has not been reported in preperimetric glaucoma.

The structure-function relationships between GCIPLTs and mean sensitivities of the macular area as measured 
by FDT 10-2 were analysed and compared to those of SAP 24-2 and FDT 24-2. Although SAP 24-2, FDT 24-2, and 
FDT 10-2 all revealed significant correlations with the average GCIPLT, the correlation coefficient was greater for 
FDT 10-2 than FDT 24-2 with marginal statistical significance. Among the GCIPL sectors, the superior GCIPL sec-
tors did not exhibit significant correlation with the SAP 24-2 results, but significant correlations with the FDT 24-2 
and FDT 10-2 results were found. The inferior GCIPL sectors exhibited statistically significant correlations in the 
inferotemporal and inferior sectors for SAP 24-2 and in all sectors for both FDT 24-2 and FDT 10-2. Furthermore, 
the correlations were significantly stronger for FDT 10-2 than FDT 24-2 in the inferior and inferonasal sectors.

The better correlations between the FDT 10-2 MSs and the GCIPLTs compared to those for SAP 24-2 can be 
explained by several factors. First, although there are divergent reports, many studies have reported that FDT 
perimetry can detect glaucomatous damage earlier than SAP. Racette et al.10 reported that matrix FDT distin-
guishes glaucomatous eyes from healthy eyes better than SAP 24-2. Sample et al.11 also compared the sensitivity 
of FDT perimetry with that of other perimetries, including SAP, and concluded that FDT is the most sensitive. Liu 
et al.12 also reported that matrix FDT perimetry exhibits sensitivity in the detection of glaucoma that is compa-
rable to that of SAP (69% and 68% for matrix FDT and SAP, respectively) and somewhat higher than that of SAP 
in early glaucoma patients (52% and 46% for matrix FDT and SAP, respectively). In contrast, Burgansky-Eliash 
et al.13 and Spray et al.14 reported comparable performances of FDT 24-2 and SAP 24-2 in the detection of glau-
coma. Many have proposed that the superiority of FDT of SAP in the detection of glaucoma is attributable to the 
reduced redundancy of the M cells that mediate the FDT stimulus, whereas SAP is not specific to a particular 
RGC type15. Hence, the relatively small proportion and reduced overlap of the receptive fields of M cells in the 
macular area may account for the difference between FDT and SAP. However, Swanson et al.16 reported that the 
M cell pathway is more sensitive to SAP than FDT and suggested that the difference between FDT and SAP may 
be due to the larger stimulus size and smaller contrast range of the FDT stimuli.

Second, the test points of FDT 10-2 are denser in the macular area than those of SAP 24-2. FDT 10-2 has 32 
test points in the macular region, whereas the SAP 24-2 has only 12 points. Hangai et al.17 reported several cases 
in paracentral visual field defects were detected only with SAP 10-2 and not with SAP 24-2.

Additionally, different threshold strategy algorithms (SITA vs. ZEST) could also account for this difference. In 
this study, the SITA and ZEST algorithms, which are both widely used in clinical practice, were used for SAP and 
matrix FDT, respectively. SITA and ZEST are both Bayesian perimetric strategies based on maximum-likelihood 
principles, but SITA is a mixture of both maximum-likelihood threshold and staircase procedures, whereas ZEST 

SAP 24-2 (dB) FDT 24-2 (dB) FDT 10-2 (dB)

P value*r P r P r P

GCA average 0.346 0.007 0.443 <0.001 0.544 <0.001 0.080

Superotemporal sector 0.192 0.183 0.212 0.004 0.297 0.021 0.152

Superior sector 0.156 0.246 0.286 0.017 0.431 0.001 0.071

Superonasal sector 0.119 0.365 0.368 0.010 0.455 <0.001 0.070

Inferotemporal sector 0.435 0.001 0.602 <0.001 0.607 <0.001 0.475

Inferior sector 0.392 0.002 0.407 0.004 0.611 <0.001 0.011

Inferonasal sector 0.251 0.053 0.347 0.016 0.567 <0.001 0.005

Table 2.  Pearson correlations between the ganglion cell/inner plexiform layer thicknesses and the 
corresponding central visual field sensitivities (in decibels). *P value comparing the difference in the correlation 
coefficients between FDT 24-2 and FDT 10-2. SAP = standard automated perimetry, FDT = frequency doubling 
technology, GCA = ganglion cell analysis.

SAP 24-2 (1/L) FDT 24-2 (1/K) FDT 10-2 (1/K)

P value*r P r P r P

GCA average 0.370 0.004 0.492 <0.001 0.563 <0.001 0.190

Superotemporal sector 0.150 0.107 0.215 0.037 0.246 0.045 0.352

Superior sector 0.163 0.226 0.323 0.019 0.435 0.001 0.111

Superonasal sector 0.116 0.377 0.393 0.006 0.415 0.001 0.384

Inferotemporal sector 0.364 0.005 0.525 0.001 0.547 <0.001 0.389

Inferior sector 0.397 0.002 0.484 0.001 0.629 <0.001 0.028

Inferonasal sector 0.386 0.002 0.365 0.011 0.532 <0.001 0.029

Table 3.  Pearson correlations between the ganglion cell/inner plexiform layer thicknesses and the central 
visual field sensitivities (unlogged). *P value comparing the difference in the correlation coefficients between 
FDT 24-2 and FDT 10-2. SAP = standard automated perimetry, FDT = frequency doubling technology, 
GCA = ganglion cell analysis.
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is based on the maximum-likelihood test procedure18. Turpin et al.18 compared the performances of a SITA-like 
strategy, the staircase-QUEST, and ZEST using a computer simulation model and reported that ZEST outper-
formed the staircase-QUEST in terms of producing lower mean errors.

Only subjects with preperimetric glaucoma were included in the present study; therefore, one could argue that 
a few of these patients could have exhibit defects with FDT but not SAP, which could have resulted in selection 
bias. However, in our study, we examined the correlation between the GCIPL and each perimetry rather than the 
diagnostic capabilities.

We previously reported that SWAP 10-2 can detect functional damage in the macular area better than SAP 
24-23. However, the longer test duration and the difficulty of the interpretation of the data limits the usefulness 
of SWAP 10-2 in clinical settings. Additionally, van der Schoot et al.19 reported that SWAP does not detect con-
version to glaucoma earlier than SAP. Further research comparing various perimetries using 10-2 strategies may 
provide more information about the visual function of the macular area. Additionally, the current study is a ret-
rospective study that evaluated the usefulness of FDT 10-2 in the detection of functional loss in the macular area, 
and further longitudinal studies are warranted to compare the usefulness of various visual field strategies in the 
detection of the progression of the disease in this area.

In conclusion, this study found significant correlations between reduced GCIPLTs and the mean sensitivities 
of the corresponding areas as obtained by FDT 10-2, FDT 24-2, and SAP 24-2 in preperimetric glaucoma patients. 
However, the FDT 10-2 results produced the best correlations with the GCIPLTs. These findings suggest the 
usefulness of FDT 10-2 in patients with reduced GCIPLTs even if their visual fields seem normal on SAP 24-2.

Methods
The present study included 62 preperimetric glaucoma patients who visited the Seoul St. Mary’s Hospital College 
of Medicine of the Catholic University of Korea between December 2015 and February 2016. The study was 
conducted in accordance with the ethical standards of the Declaration of Helsinki and was approved by the 
Institutional Review Board of Seoul St. Mary’s Hospital College of Medicine, which waived the written informed 
consent because of the study’s retrospective design.

For each patient, the following examinations were conducted, and the results were analysed: best-corrected 
visual acuity, gonioscopy, dilated fundoscopic examination, fundus photography, red-free fundus photography, 
Goldmann applanation tonometry, achromatic SAP 24-2 using the SITA standard program (Humphrey Visual 
Field Analyzer, Carl Zeiss Meditec, Inc., Dublin, CA), FDT 24-2 perimetry and FDT 10-2 perimetry using the 
FDT Humphrey Matrix (Carl Zeiss Meditec, Inc.), and spectral domain (SD) optical coherence tomography 
(OCT) scanning (Cirrus HD-OCT 4000, software version 6.5.0.772; Carl Zeiss Meditec, Inc.) including ganglion 
cell analysis (GCA). All patients underwent SAP testing at least twice prior to enrolment.

The following were required for inclusion in the study: a best-corrected visual acuity of at least 20/40, a spher-
ical error between +4.0 and −6.0 diopters, a cylinder error within ±2 diopters, an open angle on gonioscopy, an 
intraocular pressure (IOP) ≤21 mmHg with or without glaucoma medication, and a reliable GCA with at least 

Figure 1.  Structure-function relationships of the average ganglion cell/inner plexiform layer thicknesses 
and standard automated perimetry 24-2, matrix frequency doubling technology 24-2, and matrix frequency 
doubling technology 10-2 (logged: A,B and C, respectively; unlogged: D,E and F, respectively).
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one sector coded as yellow (outside 95% of the built-in normative database) or red (outside 99% of the built-in 
normative database), reliable visual field (VF) test results with false-positive and -negative error rates <15% and 
a fixation loss <15% for both SAP and FDT. A normal SAP 24-2 required the pattern standard deviation of a P 
value >5%, and the glaucoma hemifield test results to be within normal limits.

The exclusion criteria included the following ocular or systemic conditions that might affect the VF results: 
any history of retinal disease; neurological disease; cerebrovascular disease; medications that might affect the VF, 
such as plaquenil; ocular trauma; and ocular surgery other than uncomplicated cataract surgery. When both eyes 
met the inclusion criteria, one eye of each subject was chosen randomly.

Preperimetric glaucoma was defined by a normal SAP 24-2 in addition to glaucomatous optic neuropathy 
(e.g., neuroretinal rim thinning, notching, and/or an RNFL defect) based on the colour and red-free fundus pho-
tography as detected independently by two glaucoma specialists who were blinded to the patient data (HP and 
CP). Disagreements between the two specialists were resolved by consensus.

Cirrus HD-OCT Imaging.  Only Cirrus HD-OCT images with signal strengths ≥6 were used. Scans exhib-
iting algorithm segmentation failure, any blinking artefacts, involuntary ocular movement, or any misalignment 
were excluded. For GCA, the 512 × 128 cube scan mode was used to obtain the three-dimensional macular cube 
OCT scan. The GCA algorithm automatically measured the macular GCIPLT, which included the ganglion cell 
layer and the inner plexiform layer (IPL). The average GCIPLT and six sectoral (i.e., superonasal, superior, super-
otemporal, inferotemporal, inferior, and inferonasal) GCIPLTs were measured within a macular elliptical annulus 
with vertical inner and outer diameters extending from 1.0 mm to 4.0 mm respectively, and horizontal inner and 
outer diameters extending from 1.2 mm to 4.8 mm, respectively20.

Figure 2.  A representative case. A patient with preperimetric glaucoma with thinning of the inferior and 
inferotemporal sectors in the macular area (F) detected by matrix frequency doubling technology 10-2 (I) and 
24-2 (H) but not by standard automated perimetry 24-2 (G).
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Visual Field Examination.  All patients underwent SAP 24-2 using the Humphrey Field Analyzer and FDT 
24-2 and FDT 10-2 using the FDT Humphrey Matrix. All VF tests were performed within 3 months, and the 
order of the VF tests was randomized using a random table. SAP 24-2 was performed using the Swedish interac-
tive threshold algorithm (SITA) with a stimulus size of 0.43°(Goldmann size III) placed 6° apart. Both FDT 24-2 
and FDT 10-2 used the Matrix threshold test algorithm known as the Zippy Estimation of Sequential Thresholds 
(ZEST), which is comparable to SITA21. FDT 24-2 was performed with a stimulus of 5°, a spatial frequency of 
0.5 cycles/degree, and a temporal frequency of 18 Hz. FDT 10-2 was performed using a stimulus of 2°, a spatial 
frequency of 0.5 cycles/degree, and a temporal frequency of 12 Hz.

The structure-function relationships were compared between the GCIPLTs and MSs of the topographically 
corresponding areas as measured with 24-2 SAP, FDT 24-2, and FDT 10-2. VF sensitivity was analysed using both 
the logarithmic decibel scale and the nonlogarithmic (1/Lambert and 1/Michelson contrast in SITA and FDT, 
respectively) scale. The nonlogarithmic value was calculated as decibels = 10 × log(1/Lambert) for SAP and as 
decibels = 20 × log(1/Michelson contrast) for FDT.

The SAP 24-2 central MS was defined as the average of the data from the 12 central points, which were 
assumed to topographically correspond to the macular area scanned in the GCA20. Similarly, the FDT 24-2 cen-
tral MS and FDT 10-2 central MS were defined as the average of the data from the 12 central points and 32 central 
points, respectively, for each perimetry (Fig. 3)3,22. After taking RGC displacement in the foveal area into account, 
the foveal sensitivity values at the centres of the FDT 24-2 and FDT 10-2 were excluded from the analyses. VF 
sensitivity and GCIPL data from the sectors from the left eyes were converted into the right-eye format.

Statistical Analyses.  To assess structure-function relationships, regression analyses were performed while 
treating the average/sectoral GCIPLTs as the independent variables and the topographically corresponding sensi-
tivities of each perimetry as the dependent variables. Pearson’s correlation coefficients were analysed to examine 

Figure 3.  Ganglion cell/inner plexiform layer sectors (A) and the corresponding visual field areas in standard 
automated perimetry 24-2 (B), matrix frequency doubling technology 24-2 (C), and matrix frequency doubling 
technology 10-2 (D).
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the associations between the average/sectoral GCIPLTs and the sensitivities of the corresponding areas of each 
perimetry.

The relationships between the average GCIPLTs and the central MSs were analysed for each perimetric modal-
ity and strategy. Additionally, the relationship between each GCIPL sector and central MS of each topographically 
corresponding sector were also analysed. Differences in the correlation coefficients were compared using the 
method described by Steiger23. A P value of less than 0.05 was considered statistically significant. The Statistical 
Package for the Social Sciences (SPSS, Inc., Chicago, IL, software version 18.0) was used for the statistical analyses.
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