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Abstract: Lipomatous neoplasms are a rare entity in the pediatric population, comprising less than
10% of soft tissue tumors in the first two decades of life. Some characteristics of pediatric adipocytic
tumors are analogous to their adult counterparts, some pediatric lipomatous lesions however harbor
unique features. In recent years, there have been significant advances in the understanding of the
pathogenesis and hence in the classification and treatment of pediatric adipocytic tumors. This
literature-based article will provide a review of the presently known clinicopathological, immunohis-
tochemical and molecular features of pediatric lipomatous lesions.
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1. Introduction

Although adipocytic neoplasms are the most common soft tissue tumors in adults,
they are relatively rare in the pediatric population. Lipomatous tumors comprise less
than 10% of soft tissue tumors in the first two decades of life [1]. Certain features of
pediatric adipocytic lesions are identical to the respective lesions in adults, there are
however also distinct differences, especially with respect to the distribution spectrum of
the (sub)types. The clinicopathological, immunohistochemical and molecular features (see
also Table 1) of pediatric lipoblastoma/lipoblastomatosis, lipomatosis and liposarcomas
(well-differentiated, dedifferentiated, myxoid, pleomorphic and myxoid pleomorphic) will
be reviewed in this article.

Table 1. WHO classification of pediatric adipocytic tumors and the most frequently associated
cytogenetic/molecular characteristics.

WHO Classification of Pediatric Adipocytic Neoplasms Most Frequently Associated
Cytogenetic/Molecular Characteristics

Lipoblastoma/lipoblastomatosis Structural alteration of chromosome 8q leading to
PLAG1 rearrangements

Lipomatosis Germline, mosaic or somatic mutations of PTEN, PIK3CA
and TSC

Well differentiated liposarcoma/Atypical lipomatous tumor Amplification of MDM2 and/or CDK4
Except in Li-Fraumeni-associated cases: TP53

germline mutationDedifferentiated liposarcoma

Myxoid liposarcoma t(12;16)(q13;p11) translocation, generating FUS-DDIT3
fusion transcripts

Pleomorphic liposarcoma Complex karyotype with multiple (whole chromosomal)
gains and losses, most common mutations in TP53 and NF1

Myxoid pleomorphic liposarcoma

Inactivation of RB1 and a complex chromosomal profile
with gains and losses of chromosomes with

deletions/mutations of TP53, and deletions of KMT2D
or NF1
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2. Lipoblastoma and Lipoblastomatosis

Lipoblastoma is a benign neoplasm composed of embryonal white fat, occurring
predominantly in infancy and early childhood, and rarely in adulthood. The vast majority
of cases (75% to 90%) are seen before the age of three years, with a slightly higher incidence
in males [1–11]. These lesions may present as a superficial, circumscribed and localized
nodule (lipoblastoma). Or it may encompass a deeper lesion in the soft tissues, with diffuse
growth and infiltrative borders (lipoblastomatosis). The distinction between circumscribed
and infiltrative forms is not clinically relevant, since both types recur [10]. The trunk
and extremities are most often involved [2–4,10,12]. Lipoblastoma may also arise in the
abdomen, mesentery, retroperitoneum, pelvis, inguinoscrotal or labial region, perineum,
mediastinum and head/neck region [2,11,13,14]. Lung, liver, heart, colon and parotid gland
lipoblastomas have also been described [2,13–20]. Colonic and mesenteric cases have been
associated with intussusception and volvulus [21,22].

Lipoblastoma can compress adjacent structures and interfere with function, particu-
larly in large abdominal tumors, mediastinal tumors, or cervical tumors [4,23–25]. Truncal
tumors may infiltrate into the thoracic cavity, or into the spine with neuroforaminal or
intraspinal invasion [2,26–29].

T1-weighted magnetic-resonance images reveal a nodular mass with intensity similar
to (or lower than) that of lipoma or subcutaneous fat [2,30,31]. These lesions are typically
2–5 cm in diameter, although they can exceed 10 cm [2–4,7,32]. Macroscopically, lipoblas-
toma is a soft, lobulated, yellow, white, or tan mass. It may display myxoid nodules, cystic
spaces or adipose nodules separated by fine white fibrous septae on the cut surface [10,33].

Microscopically, lipoblastoma consists of lobulated sheets of adipocytes with a spec-
trum of maturation, ranging from primitive stellate or spindled mesenchymal cells (myxoid
areas), to multivacuolated or small, signet-ring lipoblasts, to mature adipocytes separated
by fibrovascular septae (see Figure 1) [3,4,7,32–34]. Mast cells are common. Hyperchro-
masia and mild cytonuclear atypia can be observed, mitoses however are very rare and
atypical mitoses are absent [3,10,33,35]. Other features, such as chondroid metaplasia,
extramedullary hematopoiesis, chronic inflammation and sparsely multinucleated or floret
cells may be observed [4,7,36].
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Figure 1. Histopathology of a lipoblastoma: (a) Overview showing lobulated sheets of adipocytes, 
separated by a fibrovascular septum (hematoxylin and eosin (H&E) staining); (b,c) Close up show-
ing an image of the adipocytes with a spectrum of maturation, ranging from spindled mesenchymal 
cells to lipoblasts to mature adipocytes (H&E staining). 

The adipocytes show immunoreactivity for S100, CD56 and CD34 [4,27,37]. Primitive 
mesenchymal cells can show immunohistochemical staining for desmin [3]. Approxi-
mately 80% of lipoblastoma cases show aberrant PLAG1 immunohistochemical expres-
sion. Lopez-Nunez et al. however found a concordant molecular PLAG1 rearrangement 
ranging from 52–60%, thus illustrating the limits of immunohistochemical staining for 
PLAG1 [38]. On the other hand, Warren et al. concluded that PLAG1 immunohistochem-
ical staining is rapid and inexpensive, in contrast to molecular genetic analysis, and in 
their opinion, it can thus be considered a first-line diagnostic method. Furthermore, War-
ren et al. found that even with molecular methodologies, PLAG1 fusions are commonly 
cryptic and that commercially available targeted RNA sequencing panels may not cover 
newly emerged fusion partners, whereas PLAG1 staining would likely be positive regard-
less of the PLAG1 fusion partner [37]. Lipoblastoma typically lacks expression of p16 im-
munohistochemistry. This should however be used with caution, as some lipoblastomas 
show expression for p16 and some liposarcomas lack p16 expression, presenting a possi-
ble diagnostic pitfall [39]. 

In approximately 60% of the cases a simple, pseudodiploid or hyperdiploid karyo-
type can be found, featuring a structural alteration of 8q11–q13, leading to a rearrange-
ment of PLAG1 (see also Table 1) [4,38–43]. The most frequent numerical change is one or 
more extra copies of chromosome 8, with or without concurrent rearrangement of 8q11–
q13 [44,45]. A subset of patients diagnosed with lipoblastoma have developmental delays 
or abnormalities, seizures, or familial lipomas. These are potentially related to larger chro-
mosome 8q alterations that include the PLAG1 gene [4,7,46]. PLAG1 fusion gene partners 
described in lipoblastoma include HAS2 (8q24.13), COL1A2 (7q21.3), RAD51B (14q24.1), 
COL3A1 (2q32.2), RAB2A (8q12.1–q12.2), BOC (3q13.2), DDX6, KLF10, KANSL1L, ZEB2 
and EF1A1 [38,47–55]. HMGA2 alterations are less common [38,42]. 

Lipoblastoma has an excellent prognosis after excision, with no risk of metastasis [1–
4,6,8,10,12,32,56]. There is, however, a recurrence rate of 13–46% due to incomplete exci-
sion [6]. Recurrence has been reported as late as six years after primary excision, high-
lighting the need for long-term follow-up after primary excision [57]. 
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Figure 1. Histopathology of a lipoblastoma: (a) Overview showing lobulated sheets of adipocytes,
separated by a fibrovascular septum (hematoxylin and eosin (H&E) staining); (b,c) Close up showing
an image of the adipocytes with a spectrum of maturation, ranging from spindled mesenchymal cells
to lipoblasts to mature adipocytes (H&E staining).

The adipocytes show immunoreactivity for S100, CD56 and CD34 [4,27,37]. Primitive
mesenchymal cells can show immunohistochemical staining for desmin [3]. Approximately
80% of lipoblastoma cases show aberrant PLAG1 immunohistochemical expression. Lopez-
Nunez et al. however found a concordant molecular PLAG1 rearrangement ranging from
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52–60%, thus illustrating the limits of immunohistochemical staining for PLAG1 [38]. On
the other hand, Warren et al. concluded that PLAG1 immunohistochemical staining is
rapid and inexpensive, in contrast to molecular genetic analysis, and in their opinion, it
can thus be considered a first-line diagnostic method. Furthermore, Warren et al. found
that even with molecular methodologies, PLAG1 fusions are commonly cryptic and that
commercially available targeted RNA sequencing panels may not cover newly emerged
fusion partners, whereas PLAG1 staining would likely be positive regardless of the PLAG1
fusion partner [37]. Lipoblastoma typically lacks expression of p16 immunohistochemistry.
This should however be used with caution, as some lipoblastomas show expression for p16
and some liposarcomas lack p16 expression, presenting a possible diagnostic pitfall [39].

In approximately 60% of the cases a simple, pseudodiploid or hyperdiploid karyotype
can be found, featuring a structural alteration of 8q11–q13, leading to a rearrangement of
PLAG1 (see also Table 1) [4,38–43]. The most frequent numerical change is one or more extra
copies of chromosome 8, with or without concurrent rearrangement of 8q11–q13 [44,45].
A subset of patients diagnosed with lipoblastoma have developmental delays or abnor-
malities, seizures, or familial lipomas. These are potentially related to larger chromo-
some 8q alterations that include the PLAG1 gene [4,7,46]. PLAG1 fusion gene partners
described in lipoblastoma include HAS2 (8q24.13), COL1A2 (7q21.3), RAD51B (14q24.1),
COL3A1 (2q32.2), RAB2A (8q12.1–q12.2), BOC (3q13.2), DDX6, KLF10, KANSL1L, ZEB2 and
EF1A1 [38,47–55]. HMGA2 alterations are less common [38,42].

Lipoblastoma has an excellent prognosis after excision, with no risk of meta-
stasis [1–4,6,8,10,12,32,56]. There is, however, a recurrence rate of 13–46% due to incom-
plete excision [6]. Recurrence has been reported as late as six years after primary excision,
highlighting the need for long-term follow-up after primary excision [57].

3. Lipomatosis

Lipomatosis is a broad term for an overgrowth of mature adipose tissue in a wide
spectrum of clinical contexts. It can occur in hamartomatous arrangements with other
mesenchymal tissue types.

Most lipomatoses are infiltrative, although they can occasionally be lobulated and
circumscribed. Macroscopically, the cut surfaces show yellow fat intermixed with variable
amounts of other mesenchymal tissue, depending on the location. PTEN, PIK3CA and TSC
are part of the PI3K/PTEN/AKT/TSC/mTORC1 pathway, and germline, mosaic or somatic
mutations of these genes are responsible for the different lipomatosis entities described
below (see Table 1). Pharmacologic inhibitors of genes in the PI3K/PTEN/AKT/TSC/mTORC1
pathway may be useful in preventing disease recurrence or progression [58,59]. Other med-
ical therapies including sirolimus and Alpelisib/BYL719 have shown success in decreasing
or stabilizing overgrowth [10,60].

Morbidity and mortality are related to mass effect or infiltration of vital structures and
organs. In congenital infiltrating lipomatosis of the face (CILF), diffuse lipomatosis (DL),
encephalocraniocutaneous lipomatosis (ECCL), PTEN hamartoma of soft tissue (PHOST)
and PIK3CA-related overgrowth spectrum (PROS), continued growth and/or recurrence
after incomplete resection is common and can lead to disrupted growth, malformation
and malfunction, sometimes requiring multiple surgeries in [10,58,60]. Some lipomato-
sis entities (DL, ECCL and PHOST) may be the initial evidence of an associated tumor
predisposition syndrome [10].

Lipomatosis entities can be divided into pediatric and acquired/adult onset types,
each with different entities. Pediatric lipomatosis entities are highlighted below.

3.1. Congenital Infiltrating Lipomatosis of the Face (CILF)

Congenital infiltrating lipomatosis of the face (CILF) presents at birth or in early child-
hood as a unilateral facial swelling with hyperplasia of the underlying bone. Hyperplasia
of teeth, tongue, brain and parotid gland have also been described [58,61,62]. These lesions
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have been associated with PIK3CA mutations, suggesting CILF should be included in PROS
(see below) [63].

3.2. Diffuse Lipomatosis (DL)

Diffuse lipomatosis (DL) presents as a large, rapidly growing mass mostly involving
the trunk or extremities in a segmental fashion. It has been described in association with
the tuberous sclerosis complex [64–66].

3.3. Encephalocraniocutaneous Lipomatosis (ECCL)

Encephalocraniocutaneous lipomatosis (ECCL) is a sporadic neurocutaneous disorder
involving tissue derived from the neural crest with ocular, cutaneous, and central nervous
system abnormalities. These aberrations include ocular choristomas, colobomas, aniridia,
nevus psiloliparus, lipomatosis, alopecia, intracranial and spinal lipomas, midline pilocytic
astrocytoma, dysembryoplastic neuroepithelial tumor, developmental delay, and seizures.
These lesions are usually found in the soft tissues of the scalp, paravertebral soft tissues, or
extremities [67–70]. Mosaic FGFR1 activating mutations have been implicated in cases [67].

3.4. Michelin Tire Baby Syndrome (MTBS)

Michelin tire baby syndrome (MTBS) encompasses a rare familial genodermatosis,
characterized by symmetrical excess skin folds that are present at birth and resolve with
age. It diffusely involves the skin in a symmetric fashion. Other features, such as facial
dysmorphism (upslanting palpebral fissures, hypertelorism, wide and/or depressed nasal
bridge, epicanthic folds, auricular malformations), cleft palate, genital anomalies, devel-
opmental delay, ureterocele, smooth muscle hamartoma and nevus lipomatosis may be
associated [71].

3.5. PTEN Hamartoma of Soft Tissue (PHOST)

PTEN inactivating mutations are central to the development of PTEN hamartoma of
soft tissue (PHOST). Many PHOST patients have Cowden syndrome or Bannayan–Riley–
Ruvalcaba syndrome [72]. Patients typically present with an intramuscular mass, as well as
pain and swelling of the affected limb. The lower extremities are most frequently involved,
followed by the upper extremities, trunk, head and neck [10]. Histologically, these lesions
show a distinctive multinodular combination of mature adipose tissue, fibrous tissue, a
vascular component, lymphoid follicles, bone and hypertrophic nerves with “onion bulb”
features [72].

3.6. PIK3CA-Related Overgrowth Spectrum (PROS)

PIK3CA-related overgrowth spectrum (PROS) presents as asymmetric and dispropor-
tionate overgrowth lesions, with enlargement of the affected region [10]. These lesions
usually present in later childhood or early adulthood, more frequently affecting the lower
extremities than the upper extremities [33,73]. They can present unilaterally and can be
static or progressive [10]. PROS is associated with general adipose dysregulation and
can show a marked absence of adipose tissue in unaffected limbs [10,73,74]. Different
clinical manifestations of this overgrowth occur in various patterns, including fibroadipose
overgrowth (FAO); congenital lipomatous overgrowth/vascular malformations/epidermal
nevi, scoliosis/skeletal and spinal syndrome (CLOVES), macrodactyly, megalencephaly-
capillary malformation syndrome (MCAP) and hemihyperplasia multiple lipomatosis
(HMML). PIK3CA mutations are identified in PROS, with a correlation between specific
mutations (genotype) and their physical manifestations (phenotype) [73,75].

3.7. Nevus Lipomatosis Superficialis (NLS)

Nevus lipomatosis superficialis (NLS) typically presents as one or more soft, non-
tender papules, nodules, or pedunculated, exophytic lesions in later childhood or early
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adulthood [10]. The mature adipose tissue is usually located in the superficial dermis, and
surgical excision is usually adequate, with rare recurrences [33,76].

3.8. Lipomatosis of Nerve (LN)

Lipomatosis of Nerve (LN) usually presents in later childhood or early adulthood, al-
though lesions can present at birth [3]. The lesions most frequently affect the median nerve,
followed by the ulnar and plantar nerve. Histologically, these lesions show characteristic
nerve expansion with perineural thickening/hypertrophy, similar to perineurioma [3,10,63].
As LN is also associated with PIK3CA mutations, it has been suggested they be included in
the PROS group (see above) [3,63].

4. Liposarcoma

Liposarcoma consists of a heterogeneous group of mesenchymal tumors with adipocytic
differentiation, showing a variable biological behavior, ranging from locally aggressive to
metastasizing [10].

The World Health Organization (WHO) recognizes five histologic subtypes: well-
differentiated liposarcoma/atypical lipomatous tumor (WDLPS/ALT), dedifferentiated
liposarcoma (DDLPS), myxoid liposarcoma (MLPS), pleomorphic liposarcoma (PLPS),
and myxoid pleomorphic liposarcoma (MPLPS). MPLPS is the latest entity, recognized by
the WHO since 2020. All liposarcomas clinically present as large (over 5 cm in diameter)
deep-seated, painless soft tissue masses.

Liposarcomas represent less than 2% of all pediatric soft tissue malignancies and
nearly 90% of pediatric liposarcomas occur in the second decade of life. There is a female
predominance and over 70% are myxoid types [10,77–80].

Peng et al. found that the most significant difference between young and adult patients
with liposarcoma is the distribution spectrum of the subtype. The most common subtype
among adult patients is ALT/WDLPS/DDLPS, comprising 50–60% of all liposarcomas,
followed by MLPS (20–30%), PLPS (<5%), and MPLPS (rarely seen). In their study, the
incidence of the MLPS subtype was high among young individuals (69.6%). The incidence
of the ALT/WDLPS/DDLPS subtypes in their study cohort was only 13.0% and PLPS
comprised 4.3% of the cases (the lowest incidence in pediatric patients). Historical series
showed similar findings [78,79,81,82].

In their literature review, Baday et al. found that approximately 70% of patients with
MLPS and WDLPS had surgical excision as the only treatment. Over 50% of patients
with PLPS were treated with surgery, as well as radiotherapy and chemotherapy (most
commonly a doxorubicin-based treatment). They concluded that more data on the efficacy
of different pharmaceuticals in treating liposarcomas is needed; however, the rarity of these
tumors in the pediatric population poses a challenge to obtaining this data [80].

Most patients have an excellent overall prognosis following surgical excision with
negative margins as a single-modality treatment. Stanelle et al. found that central location of
the primary tumor, high tumor grade, and positive surgical margins are strongly correlated
with poor survival in pediatric patients with liposarcoma. They found that the five-year
survival for patients with negative surgical margins was 95%, in comparison to a five-year
survival rate of 50% in patients with positive surgical margins [82].

Baday et al. observed that prognosis was particularly determined by the histologic
subtype. Patients diagnosed with MLPS and WDLPS, receiving minimal systemic therapy,
had favorable outcomes: none experienced disease relapse or progression. The two patients
with PLPS however, both died after receiving neoadjuvant chemotherapy with subsequent
excision of the tumor [80].

4.1. Well-Differentiated Liposaroma (WDLPS)/Atypical Lipomatous Tumor (ALT)

The terms “atypical lipomatous tumor” (ALT) and “well-differentiated liposarcoma”
(WDLPS) are synonyms for morphologically and genetically identical lesions. They rep-
resent a locally aggressive mesenchymal neoplasm, composed either entirely or partly of
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an adipocytic proliferation demonstrating at least focal nuclear atypia in both adipocytes
and stromal cells. The choice of terminology between ALT and WDLPS should be based on
the principle of avoiding either inadequate or excessive treatment. There is no potential
for metastasis unless dedifferentiation occurs, therefore justifying the term “atypical lipo-
matous tumor” for lesions arising at anatomical sites where complete surgical resection is
curative, so as to avoid over-treatment. For lesions arising in anatomical sites which have
shown greater potential for disease progression (such as the retroperitoneum, spermatic
cord, and mediastinum) the use of the term “well-differentiated liposarcoma” is more
appropriate [3,83].

The extremities, followed by the head and neck, trunk, mediastinum and retroperi-
toneum are most commonly involved [10,84,85]. Although WDLPS/ALT is the most
frequent liposarcoma in adults, it is exceptionally uncommon in the pediatric popula-
tion [84–86].

WDLPS/ALT is characterized by a supernumerary ring and giant marker chromo-
somes, typically as the sole change, or simultaneous with a few other numerical or struc-
tural abnormalities [87]. Both supernumerary rings and giant markers contain amplified
sequences originating from the 12q14–q15 region, with MDM2 (12q15) being the main
driver gene [83]. Several other genes located in the 12q14–q15 region (including TSPAN31,
CDK4 and FRS2 (12q15)) are frequently co-amplified with MDM2. Amplification of MDM2
and/or CDK4 is almost always present, with the exception of Li-Fraumeni-associated cases,
which show a TP53 mutation (see also Table 1) [85,88–94]. Macroscopically, WDLPS/ALT
shows a large, well-circumscribed, lobulated mass. The consistency varies, ranging from
firm gray areas to gelatinous areas, depending on the proportion of fibrous and myxoid
components [83].

Morphologic features of pediatric WDLPS/ALT are identical to those seen in older
patients, dividing WDLPS into three subtypes: adipocytic (lipoma-like), sclerosing and
inflammatory type [10,88]:

1. Adipocytic (lipoma-like) is the most frequent subtype. It is composed of mature
adipocytes with substantial variation in cell size, as well as cytonuclear atypia in
adipocytes and/or stromal spindle cells. MDM2 and CDK4 immunohistochemical
expression are typical, though in some cases difficult to evaluate, making fluorescence
in situ hybridization (FISH) a valid alternative [10].

2. The sclerosing subtype is most often seen in cases located in the retroperitoneum or
spermatic cord. Scattered, bizarre stromal cells with marked nuclear hyperchromasia
are seen, set in an extensive fibrillary collagenous stroma. The fibrous component may
overshadow lipogenic areas, making it easy to miss in a small (biopsy) sample [10].

3. The inflammatory type is the rarest subtype, occurring most often in the retroperi-
toneum and paratestis [3]. There is a predominant chronic inflammatory infiltrate,
sometimes obscuring the adipocytic nature of the lesion [95,96].

WDLPS/ALT demonstrates an overall indolent course in young patients [81,84]. The
significance of dedifferentiation in pediatric WDLPS is not known, due to the rarity of this
event [10].

The most important prognostic factor is anatomical location. ALTs do not recur after
complete excision. WDLPSs tend to recur repeatedly. In WDLPS uncontrolled local effects
or, less often, systemic spread as a result of dedifferentiation may subsequently lead to
death [83]. MDM2 inhibitors (SAR405838 and Nutlin-3A) have demonstrated preclinical
(in-vitro) activity in liposarcomas [97,98].

4.2. Dedifferentiated Liposarcoma (DDLPS)

In some cases, WDLPS shows progression to a (usually non-lipogenic) sarcoma of
variable histological grade, hence termed dedifferentiated liposarcoma [83]. Pediatric
DDLPS is even more uncommon than WDLPS. Waters et al. observed a male to female
ratio of one-to-one [88].
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The genetic profile of DDLPS overlaps with WDLPS, both characterized by consistent
amplification of MDM2 and CDK4 (see also Table 1) [89,99].

The macroscopic appearance of pediatric DDLPS is identical to its adult counterpart,
usually consisting of a large multinodular yellow mass, containing discrete, solid, often
tan-gray non-lipomatous (dedifferentiated) areas. The transition between the lipomatous
and dedifferentiated areas may sometimes be gradual [10,83]. The microscopic appearance
of pediatric DDLPS is also identical to those seen in older patients [10,88]. The areas of
transition from WDLPS to DDLPS are usually abrupt. The extent of dedifferentiation is
variable. These areas, however, most frequently resemble undifferentiated pleomorphic
sarcomas or intermediate- to high-grade myxofibrosarcomas [77,83,100,101]. DDLPS char-
acteristically shows the expression of MDM2 and/or CDK4, just as in WDLPS. Peng et al.
found positivity for both CD34 and STAT6 in varying degrees. Although they found that
STAT6 can be expressed in 7.4–14% of WDLPS/DDLPS, it is usually focally positive in
contrast with the diffuse and nuclear pattern in solitary fibrous tumors [77].

The exact prognosis is not known due to the rarity of DDLPS in children and ado-
lescents. However, the patient diagnosed with DDLPS in the study of Baday et al. died,
despite aggressive, multimodal therapy [80].

4.3. Myxoid Liposarcoma (MLPS)

Myxoid liposarcoma (MLPS) is the most common liposarcoma subtype in pediatric
patients. The lesions usually involve the extremities, trunk, head and neck, and abdom-
inal regions [10,77–81]. There is no gender predilection and metastatic disease at initial
presentation is uncommon [3,33].

MLPS has an identical macroscopic appearance to that of the respective tumors in
adults: lesions are typically larger than 10 cm, circumscribed, multinodular and intramus-
cularly located (see also Figure 2). Higher grade tumors show a firmer, fleshy tan surface as
opposed to a smooth, gelatinous and glistening surface in tumors of a lower grade [10,83].
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Histological features of MLPS in children are also identical to those in adult cases. It
presents as a moderately cellular, lobulated tumor with increased peripheral cellularity.
There is a mixture of patternless, round to spindle-shaped non-lipogenic cells with variable
numbers of small lipoblasts. These are set in a myxoid stroma with arborizing “chicken-
wire” vessels. The spindle cells typically lack atypia and significant mitotic activity [83].
High-grade MLPS have a cellular overlap of more than five percent, showing diminished
myxoid matrix, less apparent capillary vasculature, a higher nuclear grade, as well as
increased mitotic activity. A corded/trabecular pattern is often present (see Figure 3) [33,83].
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Figure 3. Histopathological features of myxoid liposarcoma: (a) Characteristic alveolar and edema-
like growth pattern (H&E staining); (b,c) Myxoid stroma with arborizing “chicken-wire” vessels and
lipoblasts (H&E staining); (d) High-grade MLPS with more than 5% cellular overlap, diminished
myxoid matrix, less apparent capillary vasculature, a higher nuclear grade and increased mitotic
activity (H&E staining).

Immunohistochemical stains play little role in the diagnosis of MLPS but can be useful
in the distinction of high-grade tumors from other round cell sarcomas [83]. There is no
immunohistochemical expression of CDK4 or MDM2 [77]. Peng et al. found that 69.2%
(9/13 cases) exhibited varying degrees of S100 protein positivity [77]. Both MLPS and high-
grade MLPS harbor the same genetic abnormality [83]. Most cases are characterized by the
t(12;16)(q13;p11) translocation, generating a FUS-DDIT3 fusion transcript, translated into
a chimeric oncoprotein that alters transcription and differentiation (see also Table 1) [83].
Peng et al. found DDIT3 gene rearrangements in all 13 studied pediatric MLPS cases [77].
DDIT3 rearrangement and the absence of PLAG1 rearrangement help in the differential
diagnosis of MLPS from extensively myxoid lipoblastoma [42,102].

Conventional MLPS in pediatric patients has an excellent prognosis [79]. Peng et al.
observed disease-free survival in all their studied MLPS cases (13 cases in total) [77].
Progression to high-grade MLPS (formerly known as round cell liposarcoma) is extremely
rare in children, and not clearly associated with a worse prognosis (likely owing to the
rarity of these tumors) [10,103].
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4.4. Pleomorphic Liposarcoma (PLPS)

Pleomorphic liposarcoma is a rare subtype of liposarcoma, with a low incidence in the
pediatric population [77,83]. It presents as a rapidly growing mass, with a predilection for
the extremities (primarily the upper limbs), frequently localized in the deep soft tissues.
Some lesions occur at subcutaneous sites and rarely at dermal sites. Other anatomical sites,
including trunk, retroperitoneum, head and neck, abdomen/pelvis, and cervical cord are
less frequently affected [104].

Macroscopically, PLPS occurs as a large, well-circumscribed, non-encapsulated soft
and multinodular lesion with a gelatinous appearance [83,104].

Histologic features are similar to their adult counterparts [77]. It is a high-grade lesion
with pleomorphic features and a variable amount of lipoblastic differentiation [105]. The
presence of pleomorphic lipoblasts (with clear intracytoplasmic vacuoles) is imperative for
the diagnosis (Figure 4) [105]. Three histologic patterns have been noted [105]:

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 10 of 16 
 

 

Histologic features are similar to their adult counterparts [77]. It is a high-grade le-
sion with pleomorphic features and a variable amount of lipoblastic differentiation [105]. 
The presence of pleomorphic lipoblasts (with clear intracytoplasmic vacuoles) is impera-
tive for the diagnosis (Figure 4) [105]. Three histologic patterns have been noted: [105] 
1. Pleomorphic/spindle cell areas with “malignant fibrous histiocytoma-like” appear-

ance with scattered lipoblasts. This is the most common pattern, found in approxi-
mately two-thirds of the cases. 

2. Almost half of cases contain at least focal areas with intermediate- to high-grade 
myxofibrosarcoma-like morphology, with thick curvilinear vessels and cytonuclear 
atypia in myxoid areas, associated with pleomorphic lipoblasts [105,106]. 

3. Approximately one quarter of the cases show an epithelioid morphology with scat-
tered lipoblasts. 

 
Figure 4. Histomorphological features of pleomorphic liposarcoma: (a,b) Overview and detail im-
ages with sporadic, pleomorphic lipoblasts (H&E staining); (c,d) Overview image and magnified 
displaying more pronounced pleomorphic lipoblasts (H&E staining). 

Within small biopsies, the diagnosis can be difficult, especially in cases with limited 
lipogenic differentiation [105]. Immunohistochemical staining for MDM2 and CDK4 is 
typically negative [11,104]. 

Molecular findings are in line with those of the adult PLPS and are associated with a 
complex karyotype with multiple (whole chromosomal) gains and losses, with the most 
frequent mutations being in TP53 and NF1 (see also Table 1) [77,105,107–109]. Peng et al. 
found loss of chromosomes 17 and 22, with deletion of RB1 [77]. 

Although slightly better than in adults, the outcome is poor [77,78]. PLPS shows ag-
gressive behavior with local recurrences and distant metastases to the lung and pleura. 
The overall five-year survival is 60%. Larger size and increased depth of invasion, locali-
zation and high mitotic activity are all related to a worse prognosis [104]. Local excision 
is the preferred treatment. Recurrence is, however, frequent despite aggressive multi-
modal therapy [78,80]. 
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images with sporadic, pleomorphic lipoblasts (H&E staining); (c,d) Overview image and magnified
displaying more pronounced pleomorphic lipoblasts (H&E staining).

1. Pleomorphic/spindle cell areas with “malignant fibrous histiocytoma-like” appear-
ance with scattered lipoblasts. This is the most common pattern, found in approxi-
mately two-thirds of the cases.

2. Almost half of cases contain at least focal areas with intermediate- to high-grade
myxofibrosarcoma-like morphology, with thick curvilinear vessels and cytonuclear
atypia in myxoid areas, associated with pleomorphic lipoblasts [105,106].

3. Approximately one quarter of the cases show an epithelioid morphology with scat-
tered lipoblasts.

Within small biopsies, the diagnosis can be difficult, especially in cases with limited
lipogenic differentiation [105]. Immunohistochemical staining for MDM2 and CDK4 is
typically negative [11,104].

Molecular findings are in line with those of the adult PLPS and are associated with a
complex karyotype with multiple (whole chromosomal) gains and losses, with the most
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frequent mutations being in TP53 and NF1 (see also Table 1) [77,105,107–109]. Peng et al.
found loss of chromosomes 17 and 22, with deletion of RB1 [77].

Although slightly better than in adults, the outcome is poor [77,78]. PLPS shows
aggressive behavior with local recurrences and distant metastases to the lung and pleura.
The overall five-year survival is 60%. Larger size and increased depth of invasion, localiza-
tion and high mitotic activity are all related to a worse prognosis [104]. Local excision is
the preferred treatment. Recurrence is, however, frequent despite aggressive multimodal
therapy [78,80].

4.5. Myxoid Pleomorphic Liposarcoma (MPLPS)

MPLPS is a new entity within pediatric liposarcomas, first described in 2009 by Alla-
gio et al. and genomically seen as a distinct subtype of liposarcoma in the current WHO (5th
edition, 2020) [79,83,93,107]. These lesions are rare, although they have a higher incidence
in the pediatric population in comparison to adults [77]. There is a female predominance,
with a median age at diagnosis of 17.5 years. These lesions have a predilection for axial
locations with a preference for the mediastinum [33,77,79,91]. In MPLPS occurring in a
young patient and at an unusual anatomical location, genetic screening for Li-Fraumeni
syndrome (LFS) is advised, since associations have been described [91,93,94].

MPLPS occurs as a large, non-encapsulated, deep-seated soft tissue lesion with ill-
defined margins [107]. It is typically a multinodular growth with infiltration into the
surrounding soft tissue [107].

Histologically, MPLPS is a high-grade lesion with areas of pleomorphic sarcoma (with
severe cytological atypia, pleomorphic lipoblasts, brisk mitotic activity and occasional
necrosis) combined with low-grade myxoid components (abundant myxoid matrix with
bland, round to oval cells, scattered lipoblasts and a curvilinear, to plexiform capillary
network) (Figure 5) [77,79,107]. Differentiation from PLPS can be challenging on small
biopsies where the MLPS-like pattern is not prominent [77].
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Figure 5. Histopathological features of myxoid pleomorphic liposarcoma: (a) Transition from a
myxoid liposarcoma-like area to a pleomorphic liposarcoma-like area (H&E staining); (b) Detail image
of myxoid liposarcoma-like zone with “chicken-wire” vessels and lipoblasts. There is “at random”
atypia and increased mitotic activity (H&E staining); (c,d) Overview image and detailed image
of pleomorphic liposarcoma-like area with severe cytonuclear atypia and pleomorphic lipoblasts
(H&E staining).
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Immunohistochemically, MPLPS lacks expression of MDM2 and shows a loss of ex-
pression for RB1 [107]. MPLPS does not show a DDIT3-rearrangement, nor does it have an
MDM2 amplification, therefore, differing from MLPS and WDLPS/ALT, respectively [77,91].

The molecular features of MPLPS tend to show overlap with PLPS, with inactivation
of RB1 and a complex chromosomal profile (hyperdiploid/hypotriploid karyotype) with
gains and losses of chromosomes with deletions/mutations of TP53, and deletions of
KMT2D or NF1 (see also Table 1) [33,77,91,105–107,109,110]. However, there are typically
focal copy number changes in MPLPS as opposed to large/whole chromosomal gains and
losses in PLPS [107,109]. Gains are also more frequent in PLPS, whereas losses predomi-
nate in MPLPS [106]. Association with LFS (caused by TP53 germline mutations) is also
known [33,77,91,110].

MPLPS is associated with a poor prognosis, with local recurrences and distant metas-
tases to bone, lung and soft tissue. MPLPS has the highest mortality rate of all pediatric
liposarcomas [77,91,107].

Wide local excision is preferred, with 1.5 cm margins. Adjuvant radiotherapy after
surgical excision is advised in cases of microscopically incomplete resection, or if surgical
margins are marginal [91]. The role of chemotherapy is controversial. It is sometimes used
in combination with radiotherapy for unresectable lesions [91]. The use of doxorubicin has
been reported in the treatment of MPLPS [110].
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