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Targeted transcriptome analysis using synthetic
long read sequencing uncovers isoform
reprograming in the progression of colon cancer
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The characterization of human gene expression is limited by short read lengths, high error
rates and large input requirements. Here, we used a synthetic long read (SLR) sequencing
approach, LoopSeq, to generate accurate sequencing reads that span full length transcripts
using standard short read data. LoopSeq identified isoforms from control samples with 99.4%
accuracy and a 0.01% per-base error rate, exceeding the accuracy reported for other long-
read technologies. Applied to targeted transcriptome sequencing from colon cancers and
their metastatic counterparts, LoopSeq revealed large scale isoform redistributions from
benign colon mucosa to primary colon cancer and metastatic cancer and identified several
previously unknown fusion isoforms. Strikingly, single nucleotide variants (SNVs) occurred
dominantly in specific isoforms and some SNVs underwent isoform switching in cancer
progression. The ability to use short reads to generate accurate long-read data as the raw unit
of information holds promise as a widely accessible approach in transcriptome sequencing.
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cing and their overlapping alignment in the last 20 years

has made it possible to decipher the genome sequences of
numerous organisms!~3. It has also enhanced the quantification
of gene expression by allowing the sequencing of millions of
transcripts at an affordable price point. For mammalian cells, the
transcription of a gene involves an alternative splicing process
that selectively utilizes specific exons while removing other exons
and introns from the final transcript®. This generates many dif-
ferent transcripts (isoforms) with altered amino acid sequences
from the same gene and dramatically increases the diversity of the
gene products®. However, given the high sequence homology
between the different isoforms from the same gene, the char-
acterization and quantification of isoforms using short-read
sequencing is challenging as the span of the short-reads typically
renders isoform mapping and identification ambiguous. Similarly,
determining the exact exon composition of a single mRNA
molecule is difficult without longer sequencing lengths or the
ability to trace the short-reads to the originating individual
transcripts.

To overcome the read-length limitation of short-read sequen-
cers, various approaches of synthetic long-read (SLR) sequencing
have been developed and applied to various difficult-to-sequence
applications, including transcriptome sequencing®. SLR sequen-
cing methods rely on binning short-reads based on barcoding
information assigned to individual transcripts during library
preparation and SLRs are reconstructed from clusters of short-
reads that share the same barcode. One SLR approach involves
physically partitioning DNA molecules into multi-well plates or
microfluidic droplets, typically in the order of hundreds of
molecules per partition, with the DNA molecules within each
partition assigned the same barcode’-°. While this approach
demonstrates the power of SLR by grouping short-reads from
molecules of the same well/droplet into one de novo assembly, the
process of physically partitioning molecules is labor-intensive and
cannot resolve the sequences of homologous transcripts (such as
isoforms) within the same well/droplet. Here we present the
application of SLRs to isoform sequencing using LoopSeq, a SLR
technology that leverages Illumina short-read sequencing plat-
forms and resolves some of the major drawbacks of previously
developed SLR approaches’~!! to generate accurate long-reads
from mRNA.

We validated the accuracy of LoopSeq by sequencing known
isoforms in control samples, compared it to the results from
sequencing the same control samples from other long-read and
SLR technologies, and demonstrated its utility in discovering
fusion gene isoforms, in quantifying isoform distributions, and in
discovering mutation isoform expression patterns in sets of
clinical samples.

The development of massively parallel short-read sequen-

Results

The strategy of LoopSeq. LoopSeq employs unique molecular
identifiers (UMIs) instead of well/droplet identifiers, which are
randomly and intramolecularly distributed along the length of
barcoded molecules. As shown in Fig. 1A, it first assigns an UMI
to each first-strand cDNA molecule during reverse transcription.
Following this barcoding step, a probe-capture-based target
enrichment step is applied to select for cDNA molecules of
interest. Following capture and PCR amplification of the bar-
coded cDNA, UMIs are randomly transposed to various internal
positions of the molecules, and the sequence immediately adja-
cent to the UMI insertion site is converted into an Illumina short-
read that contains both the UMI and the adjacent sequence. After
short-read sequencing, short-reads tagged with identical sample
indices and UMT’s are binned and used for de novo SLR assembly

which generates a single long-read for each barcoded cDNA
molecule. Specifically, the short-read libraries are sequenced using
PE150 Ilumina chemistry, trimmed using Trimmomatic (see
‘Methods’), then binned by sample index and by UMI. Each
cluster of short-reads that share the same sample index and UMI
is de novo assembled into a long-read using SPADES!? (see
Supplementary script). This enables the reconstruction of single,
long contiguous molecules from short sequencing reads, even in
samples that contain mixtures of highly homologous long-
molecules such as mRNA isoforms or RNA editing variants.
Additionally, it does not require the physical partitioning of RNA
molecules into different wells or microfluidic droplets. It
improves on previous UMI-based SLR approaches'®!! by (a)
reducing the error rates due to more uniform short-read coverage
of each transcript (see ‘LoopSeq ERCC error rates’ section below),
(b) reporting SLR data quality in FASTQ format with per
nucleotide Q scores (see section ‘LoopSeq ERCC error rates’), and
(c) introducing known synthetic terminal 5" and 3" adapters that
both enable the distinction between partially reconstructed SLRs
and fully reconstructed SLRS as well as improve the quality of 3’
and 5’ transcript de novo assembly. A SLR is categorized as a full-
length read if both the 5”and 3’ synthetic adapters are identified at
the termini of the SLR. If a molecule is not full length, the
adapters are used to report whether the SLR is missing either 5" or
3’, or both. Termini detection in SLR transcriptome data is critical
for the ability to differentiate between partially reconstructed
SLRs and true previously unknown transcription start site (TSS)
and transcription termination site (TTS) found in fully recon-
structed SLRs. Additionally, modification of the transcript
sequence with known synthetic sequences at both termini tri-
vializes (1) the identification of the true terminal sequences
by looking for the sequences immediately adjacent to the
adapters and (2) determining whether the SLR is full length
since full-length SLRs should have the adapters present at the
termini.

ERCC transcript completeness. To demonstrate that LoopSeq
SLRs cover the full-length of cDNA molecules, we prepared and
sequenced 7481 synthetic RNA control ERCC cDNA molecules
alongside 27,426 mRNA molecules from Hela total RNA. After
SLR reconstruction for each uniquely tagged cDNA molecule, the
TSS and the TTS of each ERCC transcript identified as full-length
were compared to the reference sequences. Histograms of the TSS
and TTS differences are shown in Fig. 1B, C. For TSS, 82.6% of
the full-length contigs correctly identified the start site of the
cDNA, and 12.6% of the full-length contigs report a TSS that is
downstream of the annotated TSS, based on the designation of a
full-length contig, that is the reconstructed sequence reaches the
expected adapter sequence at both the 5" and the 3’ ends of the
c¢DNA molecule. If a cDNA molecule is prematurely terminated
during reverse transcription, either due to degraded RNA or non-
specific terminal transferase activity of the reverse transcriptase,
the reconstructed molecule would include the 5’ adapter
sequence, correctly identifying that the full-length ¢cDNA mole-
cule is reconstructed, while having a TSS that is downstream of
the annotated TSS. The LoopSeq method uses a template-
switching oligo to capture the TSS, which in practice has the
ability to attach to pre-terminated molecules, giving them the
false appearance of being full length. Nearly all non-canonical
TSSs identified were shifted greater than 100 bp downstream,
consistent with premature termination. For the TTS, 68.7% of the
full-length contigs correctly identified the termination site of the
cDNA, while 15.6% of the full-length contigs had a TTS that was
within 5 nucleotides from the annotated TTS. To capture the TTS
starting from the mRNA poly-A tail, a poly-T oligo is used to
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Fig. 1 Schematics and validation of LoopSeq long-read transcriptome sequencing. A Overview of the library preparation for isoform sequencing using
LoopSeq, including an optional target enrichment step to focus the sequencing depth on genes or isoforms of interest. B The transcription start site (TSS)
of reconstructed ERCC contigs as compared to the reference annotation. € The transcription termination site (TTS) of reconstructed ERCC contigs as

compared to the reference annotation. D Comparison of ERCC transcript counts between the observed abundance as determined by reconstructed contigs
and the expected abundance given the input into the library preparation. E Comparison of ERCC transcript counts between the observed and the expected
abundance, excluding references <700 bp. F Overview of the chimera contig detection. Demonstration of: G the positional bias of LoopSeq errors along an
ERCC reference and H the positional bias of Illumina short-read errors along the same ERCC reference. The ratio of substitution (left axis), deletion (left
axis), and insertion errors (right axis) against the position on ERCC-0002 reference are shown. The plotted values are the ratio of each error at a given
reference position normalized by the overall error rate of a given error type. The Illumina short-reads used for error analysis are obtained from previously

published data®4.

initiate the RT reaction. However, mis-priming can happen when
the 3’ end of a poly-T oligo overlaps past the correct poly-A start
site due to permissive A/T pairing, offsetting frame alignment,
and thus skipping around the last few bases where RT is initiated.
Random skipping is consistent with the observed shifts in 15.6%
of TTSs that form a normal distribution around the correct,
known TTS.

ERCC transcript quantification. To evaluate the accuracy of in
transcript quantification using LoopSeq, we prepared and
sequenced a separate library of 66,308 synthetic RNA control
ERCC cDNA molecules, and the observed abundances of ERCC
molecules were compared with the expected abundance. As
shown in Fig. 1D, the agreement between the observed abundance
and the expected expression abundance in the LoopSeq data is
comparable to previous reports of the ERCC sample sequenced
with previously published SLR and long-read technologies®.
Similar to what has been reported previously with other long-read
technologies such as PacBio sequencing and other SLR methods®,
there are length-related biases in expression quantification. As
shown in Fig. 1E, only considering transcripts that are expected to
be at least 700 bp in length increases the agreement between the
observed and the expected abundance. Taking into account that
roughly 68K long-reads were generated for the ERCC sample, it is
expected that the ERCC transcripts that dropped out (orange data
points on Fig. 1D, E) were the ones at the very low end of the
expected ERCC abundance.

LoopSeq ERCC SLR mis-assemblies/chimeras. We examined
the rate of chimeric sequence formation with large sections of
long-reads being incorrect. cDNA synthesis and PCR amplifica-
tion are known sources of chimeric sequence formation in mRNA
sequencing. Reverse transcriptase with template-switching activ-
ity has been reported to jump within or between different nucleic
acid templates without terminating DNA synthesis activity,
resulting in chimeric ¢cDNA formation!3. Over-amplification
during PCR also leads to formation of chimeric molecules!.
While care is taken to not over-amplify cDNA molecules during
PCR, chimeric molecules can sometimes be made during cDNA
amplification. LoopSeq employs consensus sequence correction to
remove chimeric sequences that are introduced during PCR, but
it does not completely eliminate it. If a chimeric molecule is to
form, we presume the chimeric junction is likely to occur once in
the middle of the molecules, and one of the ends of the molecules
would not map to the expected reference. To measure the rate of
chimera formation, we examined 6803 reconstructed full-length
ERCC contigs and separately mapped the ends to the reference
database. As illustrated in Fig. 1F, 120 contigs were found to have
ends that do not map to ERCC, which indicates a chimera rate of
1.8%. Most chimeras were formed between molecules (i.e., had a
3’ terminus of molecule A and 5’ terminus of molecule B), not
within molecules, which is a hallmark of PCR chimeras. Com-
putational assembly (SPADES) mis-assemblies would be of short-
reads that belong to the same molecule, not to two different
molecules. This suggests that these mis-assembled contigs are not
the result of an assembly error made by SPADES, but the result of
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Table 1 Comparison of error rates across different sequencing platforms.

Error type PacBio-CCS RNA ONT-2D RNA lllumina RNA LoopSeq RNA LoopSeq DNA
Match 9.83E-01 8.66E-01 9.95E-01 9.992E-01 9.998E-01
Substitution 1.3E-02 5.50E-02 4.15E-03 3.475E-04 1.476E-04
Insertion 8.7E-04 3.12E-02 3.84E-04 2.060E-04 2.148E-06
Deletion 3.4E-03 4.79E-02 4.80E-04 2.691E-04 2.387E-06
Sum error 1.72E-02 1.34E-01 5.018E-03 8.226E-04 1.521E-04

Error rates of PacBio CCS and Oxford Nanopore ONT-2D are obtained from previously published data®3. Error rate of Illumina short-reads are computed from previously published data®4.

PCR chimeras. Nevertheless, we cannot rule out that some of the
erroneous contigs were generated by the assembler, but were
misclassified by us as PCR related. A comprehensive evaluation of
the de novo assembler used in this work (SPADES) as well as
other alternative assemblers has been published elsewhere!*16,

LoopSeq ERCC error rates. To examine LoopSeq’s error rate, we
compared LoopSeq’s contigs to the expected ERCC sequences. A
variant table of single-nucleotide edits, either from substitution,
insertion, or deletion was constructed by comparing the ERCC
full-length contig sequences to the reference sequence of ERCC-
00002. As shown in Fig. 1G, plotting the frequency of single-
nucleotide variations against the reference shows that while the
positions of substitutions are mostly random, the positions of
insertions and deletions are concentrated at specific locations.
Specifically, 53% of insertion errors were found near position 142,
at a homopolymer region of seven As. Substitution errors were
also concentrated near homopolymer regions, such as positions
142 (seven As), 203 (five As), 672 (four As), and 882 (four Ts). To
examine whether substitution errors originated from LoopSeq
sequencing, we performed the same variant sequence analysis on
a previously published ERCC Illumina short-read dataset. As
shown in Fig. 1H, the published ERCC Illumina dataset and the
LoopSeq dataset share some of the most abundant mismatches to
the published reference ERCC sequences, including positions 142
and 203, the most abundant mismatches in the entire dataset.
This suggests that these highly abundant mismatches may be
errors introduced during synthetic RNA synthesis, since they are
shared by both methods. Besides these several abundant muta-
tions that are shared between the two datasets, there was no
statistically significant correlation between the mismatched
position in the Illumina and LoopSeq datasets for any of the error
categories (Supplementary Data 1). This result is in line with our
expectation that some mutations (a small minority of the errors)
should be shared by both methods due to errors in the starting
RNA material while others should be either random or method-
specific due to the differences in sample preparation
methodologies.

Improvements to the uniformity of short-read coverage
(Supplementary Fig. S1) along the length of barcoded long
transcripts have resulted in a lowering of the error rates in
LoopSeq SLRs compared to previously published SLR methods.
Uniform short-read coverage along barcoded molecules helps
reduce the error rate by avoiding low-coverage regions, which
have less rigorous consensus-based error correction. While this
study quantifies the gains in reducing the error rates compared to
PacBio and ONT, making a similar comparison to other SLR
methods is challenging because previously published SLR
technologies!®11:17:18 did not evaluate error rates with ground
truth RNA samples. Tilgner et al., 20158 (which used TruSeq
SLRs) is the only previously published SLR ERCC data, but it
focused on observed versus expected expression, not error rate
analysis, thereby making it difficult to systematically compare
their error rates to LoopSeq error rates. Specifically, Tilgner et al.

did not report the mismatch rate (the largest source of sequence
error), the standard manner for reporting error rates as reported
for PacBio, ONT, and LoopSeq here. Furthermore, Tilgner et al.
did not address their method’s inability to distinguish between
highly homologous isoforms within the same sample, which is
expected to increase the error rates in real samples that contain
isoforms.

We performed a comparative analysis of error rate between
LoopSeq, PacBio CCS reads, Oxford Nanopore 2D reads, and
IMlumina short-read sequencing. Table 1 summarizes the error
rates across the different sequencing methods. When sequencing
synthetic RNA, LoopSeq exhibits at least two orders of magnitude
lower error rate compared to PacBio CCS reads or Oxford
Nanopore 2D reads, and an order of magnitude lower error rates
compared to Illumina short-read sequencing. As suggested by the
non-random nature of the indel errors observed in the LoopSeq
RNA sequencing data, the errors are not characteristic to the
technology but rather to how the RNA is converted to cDNA
using template switching. When sequencing DNA templates
directly without reverse transcription!?, LoopSeq’s indel errors
are reduced to a negligible rate, roughly 1 in 220,000 bases
assembled.

Finally, we devised a quality score model (Supplementary script
under ‘Q score model’) that assigns a quality score for each bp in
each SLR and writes the SLR data in standard FASTQ format.
The quality score model integrates (1) the number of bp’s from
independent short-reads covering every position in the SLR, (2)
their Q scores from the shprot-read FASTQ files, and (3) the
degree of consensus between them per position in the SLR.

Quantification of gene and isoform expressions in human
colon cancer. To examine the utility of LoopSeq in quantifying
the expressions of genes and isoforms in human cancers, we
prepared and sequenced three pairs of primary colon cancers and
their matched metastases in the lymph nodes. To enrich cancer-
specific gene fusions and isoforms, a panel of 2149 probe-capture
oligos representing 2193 genes were designed (Supplementary
Data 2). These oligos represent the split regions of the most
frequent cancer-related gene fusions found in the TCGA data-
bases. As LoopSeq can identify transcripts at isoform resolution,
we were able to quantify the expression at both gene-level and
isoform-level. Using the fusion-junction probe-capture oligos, we
obtained transcripts of 12,127 cancer-related genes from the
cancer samples (Supplementary Data 3). As shown in Fig. 2A, we
found 2682 genes that were differentially expressed between the
metastasis and primary cancer samples or between the tumor
samples and their corresponding benign colon tissue adjacent to
cancer (Supplementary Data 4). When hierarchical clustering
analyses were performed, differentially expressed genes (DEGs)
showed proper segregation between primary cancer/metastases
and normal colon samples (Fig. 2A and Supplementary Data 4).
However, the separation between primary cancer and metastasis
samples is inadequate, and we were unable to differentiate
between primary cancer and metastasis samples with gene
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Fig. 2 Tissue segregation by cancer progression stage using isoform-level versus gene-level expression data. A Hierarchical clustering of benign colon
samples adjacent to cancer (1N and 3 N), primary colon cancer samples (1-3 T) and metastatic colon cancer samples (1-3 M) based on differentially
expressed genes (left) or isoforms (right). The color reflects the indicated-row Z score. B Venn diagram of overlapping differentially expressed genes and
isoforms in colon cancers, metastases, and benign colon tissues adjacent to cancer. € Hierarchical clustering of colon samples based on differential
expressed genes but not isoforms (top), or differential expressed genes accompanied with concomitant isoform differential expression (middle), or
different isoform expressions without alteration of gene expression (bottom). The color reflects the indicated-row Z score. D Principal component analyses
of benign colon tissues adjacent to cancer, primary colon cancers, and metastatic colon cancers based on differential gene expression without isoform
expression alteration (top), or differential gene expression with concomitant isoform alteration (middle), or differential isoform expression without the
alteration of gene expression (bottom). E Pearson’s correlation of benign colon tissues adjacent to cancer, primary colon cancers, and metastatic colon
cancers based on differential gene expression without isoform expression alteration (top), or differential gene expression with concomitant isoform
alteration (middle), or differential isoform expression without the alteration of gene expression (bottom). The color reflects Pearson’s correlation

coefficient for the pairing samples.

expression patterns alone. When leveraging the isoform mapping
from reconstructed long-reads, we found 5941 differentially
expressed isoforms (DEIs) across 4643 unique genes among these
samples (Supplementary Data 5). Unlike DEGs, DEIs showed
excellent segregation of all three groups of tissues (Fig. 2A and
Supplementary Data 5), demonstrating the power of performing
differential expression analysis using isoform expression data over
gene expression data.

To further elucidate the significance of gene versus isoform
expression patterns, next we examined DEGs with no isoform
expression change and DEIs with no gene expression changes.
The Venn diagram in Fig. 2B illustrates the overlapping between
DEIs and DEGs at gene-level. While only 13.3% (353 of 2682)
DEGs have no change in isoform distribution (Fig. 2B), nearly
half (49.9% or 2316/4643) of DEIs belong to genes with no gene

expression changes (Supplementary Data 6). To investigate the
impact of DEG with no change in isoform distribution on tissue
differentiation, a hierarchical clustering analysis was performed
on the primary colon cancer, the lymph node metastasis, and
their matched benign colon tissues adjacent to cancer using 353
DEGs that have no isoform alterations. The results indicated that
these DEGs are not able to segregate the normal samples from the
cancer samples (Fig. 2C and Supplementary Data 4 and 6). Both
principal component and Pearson’s correlation analyses con-
firmed the inadequacy of tissue segregation based on these genes
(Fig. 2D, E). In contrast, clustering analysis using DEGs with
isoform redistribution produced a far better segregation between
the benign colon and cancer samples (Fig. 2C-E, mid panel and
Supplementary Data 4-6). Interestingly, isoform redistribution
without a change in gene expression produced the best tissue-
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differentiation results: all benign colon, primary cancer, and
metastases samples were segregated into different groups (Fig. 2C,
lower panel and Supplementary Data 5 and 6). These results
indicate that DEI analysis produced robust sample segregation
not obtainable by DEG analysis. These DEIs, which might have
previously been inaccessible and were hidden within comparable
gene expression levels, represent an additional dimension in
differential expression analysis.

Genes involved in cancer metastasis such as CD44!? are among
the DEIs that are not accompanied with a change in gene
expression (Supplementary Fig. S2). There were 26 different
isoforms of CD44 detected in the colon cancer tissues, with the
protein length ranging from 139 to 743 aa. Isoform analysis
indicates that 2 isoforms (XM_005253231.3 and XM_011520484.2)
emerged in the colon cancer and cancer metastasis samples but
were absent in the benign colon tissues. Another gene of interest is
ATPIA1, a Nat/Kt ATPase that is a subunit of Nat/K* pump
essential for maintaining ionic homeostasis for a cell?). ATPIAI
produced 2  additional isoforms (NM_000701.7 and
NM_001160233.1) in the primary colon cancer samples and their
corresponding metastasis, but not in the benign colon tissues
(Supplementary Fig. S3). The distribution of ATP1A1 isoforms was
validated by Tagman qRT-PCR (Supplementary Fig. S4).

Expression pattern analyses of isoform-specific single-nucleo-
tide variants. Mutation is the hallmark of human malignancies.
However, little is known about isoform-specific mutations due to
the difficulty in identifying mutations and isoforms simulta-
neously. Taking the advantage of the read-length and the accu-
racy of LoopSeq SLRs, we examined the single-nucleotide variants
(SNVs) in assembled contigs in the context of isoforms. A total of
4042 SNVs was identified in 6 cancer samples using LoopSeq that
were cross-validated by standard short-read whole-exome
sequencing (WES; Supplementary Data 7). These SNVs were
distributed among 1340 genes and 8712 isoforms. Interestingly,
many SNVs were found in specific isoforms for a given gene. Of
the 1509 SNVs found with at least 2 isoforms and 5 assembled
contigs, 1297 SNVs were not distributed evenly among the iso-
forms of these genes but were predominantly found in specific
isoforms (Supplementary Data 8). While the majority of the SNV
isoform distribution is comparable to the wild-type isoform dis-
tribution, the isoform expression patterns of 113 SNVs were
significantly different from their wild-type counterparts (Sup-
plementary Data 9), suggesting the alterations of splicing patterns
for the variants. To validate the SNV isoform expression patterns
observed in the long-read data, isoforms of two genes were
selected for targeted and isoform-specific short-read sequencing,
made possible by the close proximity of the mutation and the
alternative-splicing junction. For FAM104A, a protein involved in
centriole biogenesis?!, the SNV isoform expression pattern is
comparable to the wild-type counterpart of NM_001098832,
NM_032837, and NM_001289410, and the short-read data were
largely consistent with the LoopSeq data (Supplementary
Data 10A). For PABPCI, a poly-A binding protein?%, the SNV
isoform distribution of NM_002568 and XM_005250861 was
different from the wild-type distribution, and again similar
observation was made with the short-read data (Supplementary
Data 10B).

To identify SNVs that change their expression in a given
isoform during the progression of colon cancers, we screened for
isoforms that uniformly have high SNV rate (= 0.5) or low SNV
rate (<0.5) across all metastatic colon cancer samples versus
matched primary cancer samples. SNV rate was computed by
normalizing the SNV counts with the total transcript counts of an
isoform. Twenty-three SNV-containing isoforms were identified

that match the search criteria (Supplementary Data 11). The
hierarchical clustering analysis based on the SNV rates of 23
SNV-containing isoforms confirmed that these isoforms pro-
duced a complete separation between cancer and metastatic
samples (Fig. 3A and Supplementary Data 11). Similar results
were obtained by the principal component and Pearson’s
correlation analyses (Fig. 3B, C). In contrast, hierarchical
clustering analysis based on the SNV rates of all 8712 isoforms
failed to yield appreciable separation of metastatic and primary
cancer samples (Supplementary Fig. S5 and Supplementary
Data 7). The ingenuity pathway analysis indicates that many of
the 23 SNV-containing isoforms belong to genes involved in
DNA-repairing signaling and antigen-presentation signaling
(Fig. 3D).

To study the potential pathological SNVs in the development
of colon cancer, we cross-referenced the 4042 validated SNVs
against the database of Catalogue of Somatic Mutations in
Cancers (COSMIC). In all, 401 SNVs were identical to the
mutations in the colon cancer database of COSMIC, suggesting
many SNVs we discovered in our dataset may be involved in the
pathological progress of colon cancer (Supplementary Data 12).
Of these potential pathological SNVs, 190 were present
predominantly in some specific isoforms of the residing genes.
Twelve SNVs displayed different isoform expression patterns in
comparison with their wild-type patterns. Two SNV examples we
investigated are BRAF and KRAS. The V600E variant?? of BRAF
was detected in sample 3T (primary tumor sample) and 3 M
(metastasis tumor sample). The predominant isoform for both
wild-type and the V600E variant was NM_04333 in both samples
(p=10.006 for 3M WT, p =1.6E-7 for 3 M V600E, p = 0.034 for
3T WT, and p=1.7E-21 for 3T V600E). However, additional
isoforms for BRAF (NM_001354609, XM_017012558, and
XR_001744857) emerged in both primary cancer and the
corresponding metastasis, and all contained the V600E variant
(Fig. 4). In contrast, wild-type isoform distribution of KRAS
proto-oncogene?* is distinct between samples 2 T (primary tumor
sample) and 2 M (metastasis tumor sample). Similarly, the G12V
variant also had different isoform distributions. This suggests that
KRAS may have undergone a change in isoform distribution
when the colon cancer evolved from its primary site (2T,
NM_033360) to the lymph node site (2M, NM_004985 and
XM_011520653) (Fig. 4).

Discovery of fusion gene isoforms. Discovery of fusion isoforms
remains difficult due to the requirement that the fusion junction
needs to be sequenced alongside exons that can differentiate one
isoform from another. To search for the known fusion transcripts,
we first performed text-searching to identify the fusion transcripts
reported by TCGA (Supplementary Data 2) in our samples. We
then used SQANTI?, a bioinformatics pipeline for classifying
long-reads by splice-junctions, to detect fusion transcripts in the
SLR data. We applied two additional filtering criteria on the
fusion isoform candidates: (i) the fusion gene partners are of trans
direction or cis direction separated by >40 kb with at least one
gene in between, and (ii) the fusion-junction point is derived
from the exon junctures between the fusion partners (Supple-
mentary Fig. S6). Among the 6 samples of colon cancers, 4 pre-
viously unknown fusion isoforms were found to meet these
criteria. These fusion junctions were additionally confirmed by
Minimap22627 and STARlong?® aligner (Supplementary
Data 13), and validated using Tagman qRT-PCR and Sanger
sequencing (Fig. 5 and Supplementary Figs. S7-S11).
STAMBPLI-FAS fusion isoform was identified in sample 1 M
(metastasis cancer) and 2M (the metastasis cancer):
XM_011539985 from STAMBPLI and XM_011539766.2 from
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Fig. 4 Mutant isoform switching of BRAF V60OE and K-ras G12V in colon
cancers. Top panel: Isoform distribution of V60OE of BRAF in colon cancer.
Bottom panel: Isoform distribution of G12V of KRAS in colon cancer.

FAS (Fig. 5A). However, subsequent analysis using Tagman qPCR
showed that the STAMBPLI-FAS fusion isoform can be found in all
6 cancer samples (Supplementary Fig. S7), implying a wider
distribution of this gene fusion in colon cancers. STAMBPLI is a
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deubiquitinase involving NF-kB activation and the inhibition of
apoptosis2’. FAS, on the other hand, is a cell surface death
receptor’?, The FAS isoform (XM_011539766.2) in the fusion
protein contains the transmembrane domain and death domain in
the cytoplasmic portion of the protein. The fusion isoform is a
chimera of the largely intact metalloprotease domain from
STAMBPLI fused with the extracellular domain of FAS. Since
FAS is a transmembrane protein while STAMBPLI is an endosomal
one, it is unclear where the ultimate subcellular localization of the
chimera protein is or whether the activity of FAS is neutralized by
STAMBPLI. In contrast, both the PTPRK-ECHDCI gene fusion
isoform and the ZNF124-SMYD3 gene fusion isoform introduced a
frame-shift by the fusion event (Fig. 5B, C and Supplementary
Fig. S8). As a result, only the truncated PTPRK and ZNFI24
proteins are produced. The tail gene expressions are eliminated
(Supplementary Fig. S9). GNAS is a component of the guanine
nucleotide binding protein®!, and is frequently mutated in colon
and pancreatic cancers>2. In our analysis, GNAS forms a fusion
gene with VAPB33 (Fig. 5D and Supplementary Fig. S10). The
fusion generated a chimeric protein resulting in a loss of the
regulatory domain in the N-terminus of GNAS while leaving the G-
binding domain intact. The chimera protein may have a previously
unknown function in the cancer cells.
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Discussion

The survival of eukaryotic cells requires rapid adaptability to the
constant changes of their environment. By utilizing different
combinations of exons of a gene, eukaryotic cells generate an
array of different isoforms and proteins from a single gene, which
allow them to cope with the challenge of the environment34, Even
though alternative splicing of mRNA has long been known and is
robust in most genes, little is known about the isoform dis-
tribution in cells. Isoform quantification has been hampered by
the complexity of alternative splicing and the lack of adequate
tools to identify the different isoforms. In previous studies, long-
read sequencing technologies from Pacific Biosciences (PacBio)
or Oxford Nanopore (ONT) were used to sequence full-length
transcripts, either on cDNA synthesized from RNA or directly on
RNA molecules®>. However, the single long-molecule readout
offered by PacBio SMRTseq must be accompanied by short-read
RNAseq for error correction, effectively requiring independent
rounds of sequencing per sample. Without short-reads for cor-
rection, downstream informatics processing is needed, with
varying levels of error reduction3®37. ONT has native RNA
readability, skipping the need for cDNA library construction, but

is hampered by low throughput, high error rate, and incomplete
read lengths38:3%. The relatively high error rates of both long-read
sequencing methods hamper their usefulness in accurate isoform
mapping and quantification. In comparison, LoopSeq combines
the low error rate of Illumina short-reads with long-molecule data
that facilitates transcriptome profiling and isoform discovery.
Short-read densities that cover each contig/UMI allow for error
correction by base-pair consensus. Additionally, UMI tagging
enables accurate assessment of relative transcript abundance. Our
results demonstrate that isoform characterization with LoopSeq
enables obtaining detailed granularity in isoform expression
regulation, isoform-specific mutation expression, and fusion gene
isoform expression that were previously inaccessible.
Comprehensive quantification of isoform-specific mutations
were seldom performed, even though mutations at the genome
levels have been extensively studied in human cancers. Our
analysis showed that most mutations are not evenly distributed
among the isoforms, but rather are dominantly present in some
isoforms. A significant number of mutations undergo a change in
isoform distribution as the cancer evolves. These changes in the
expression of dominant mutation isoform may bear important
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clinical significance, as it may alter signaling pathways and adapt
cancer cells to their new environment. Lastly, drug targeting
design relies on accurate assessment of the physical interaction
between the drug and the structure of the protein target. Subtle
variations in the amino acid sequences among different protein
isoforms can have a profound impact on the interaction between
the drug and its targets. Isoform switching can also impact the
signaling mechanism of cancer-driver proteins, leading to resis-
tance to cancer treatmenti®4l. The ability to accurately char-
acterize and quantify isoforms of target proteins will undoubtedly
provide additional insight in cancer-drug design and shed light
into the mechanism of cancer-drug resistance.

Methods

Samples collection for internal quality control. ERCC synthetic RNA and Hela
total RNA were obtained from ThermoFisher Scientific, Inc., and used as internal
quality control to demonstrate the error rate, chimera rate, and transcript quan-
tification using LoopSeq.

Colon cancer sample collection and RNA extraction. Frozen tissue samples were
collected from 3 colon cancer patients, including benign colon tissue adjacent to
cancer samples, primary colon cancer samples, and lymph node metastasis sam-
ples. The procedure of obtaining the tissues and informed consent exemption were
approved by the institutional review board of University of Pittsburgh. The tissues
were fresh-frozen in liquid nitrogen, and stored in —80 °C. Total RNA was
extracted using TRIzol (Invitrogen, CA) and RNeasy column methods*?~>1. Briefly,
tissues were homogenized in a homogenizer. The homogenized tissues were lysed
with TRIzol/chloroform (5/1 ratio). After a brief centrifugation, the aqueous phase
of the lysate was incubated with isopropyl alcohol (1 mL aqueous phase per 0.5 mL
isopropyl alcohol) for 20 min at room temperature. The RNA was then precipitated
by centrifugation at 12,000g for 30 min. The RNA was then washed with 70%
alcohol and dried in a SpeedVac™,

Target sequence selection for loop sequencing. Fusion transcript candidates
were selected from University of Pittsburgh Medical Center (UPMC) cohort and
TCGA database. For the UPMC cohort, 14 fusion transcripts were detected by our
previous study*”4°. For the TCGA panel, a list of 17,754 fusion transcripts were
downloaded from Tumor Fusion Gene Data Portal (https://www.tumorfusions.org/).
Based on the Cancer Gene Census (https://cancer.sanger.ac.uk/census), 315 onco-
genes and 315 tumor suppressor genes (TSGs) were defined. Eventually, 2135
fusions were selected by satisfying one of the following criteria: (1) fusions can be
detected in more than one sample; (2) two genes involved in one fusion transcript
are either oncogenes or TSGs; (3) only one fusion gene is an oncogene or TSG, and
the fusion event is either in-frame or out-of-frame. To sum up the two cohorts, in
total 2149 fusion transcripts were selected (Supplementary Data 2), which involved
2193 unique genes. The 100 bp sequences surrounding the fusion-junction point
(50 bp upstream to the junction and 50 bp downstream to the junction) were
extracted and used for enrichment. The oligonucleotides were provided by Twist
Bioscience, Inc., CA.

LoopSeq sequencing library preparation. LoopSeq sequencing libraries were
prepared from ERCC synthetic RNA, a blend of ERCC synthetic RNA and Hela
total RNA, or total RNA extracted from tissue samples using LoopSeq SLR
Transcriptome Kit according to manufacturer’s protocol and previously described
SLR chemistry!!, except when specified. Specifically, 200 ng of total RNA extracted
from cancer tissues was reverse-transcribed and barcoded using an UMI-
containing barcoding primer that primes on the poly-A tail LoopSeq Tran-
scriptome Kit. The number of barcoded cDNA molecules is determined by the
efficiency of priming on the poly-A tail and the efficiency of template switching on
the 3" terminus of the cDNA. As such, the number of barcoded transcripts that can
be generated is comparable to previously published methods that employ a poly-A-
priming and template-switching strategy for generating cDNA. Subsequently, the
barcoded cDNA was enriched using double-stranded oligonucleotide probes (Twist
Biosciences, CA) targeting 2149 fusion-junction sequences (selected in previous
step) prior to the amplification of full-length cDNA molecules (Barcode Amplifi-
cation in LoopSeq library preparation). Specifically, the barcoding reaction was
purified using 0.6X SPRIselect ratio and then eluted into 20 uL of Hybridization
Mix per manufacturer’s pre-capture concentration protocol. The hybridization
reactions contain 20 uL of Hybridization Mix, 5 pL of Blocker Solution, 9 uL of LG
Adaptor Blocker (Loop Genomics), 4 pL of Twist Custom Enrichment Panel, 2 pL
of Buffer EB (Qiagen), and 30 uL of Hybridization Enhancer. All probe hybridi-
zation and washes were conducted per manufacturer’s protocol. All target
enrichment reagents are from Twist Biosciences except when specified. The cap-
tured barcoded cDNA was amplified following the LoopSeq Transcriptome pro-
tocol starting from Barcode Amplification. Briefly, the captured barcoded cDNA
(2 puL) was mixed 15 pL Amplification Mix R and 3 uL of Amplification Additive,

and amplified in the following condition: 95 °C for 5 min, followed by 14 cycles of
98 °C for 20, 60 °C 20 s and 72 °C 10 min. After the clean-up with SPRIselect
(Beckman Coulter), the amplified barcoded cDNA (15 uL) was mixed 2 pL Dis-
tribution Enzyme and 5 pL Distribution Mix, and underwent 1 cycle of 20 °C for
15 min and 75 °C 5 min for barcode distribution. The barcode activation was
achieved by adding 75.5 uL Activation Mix and 2.5 pL Activation Enzyme to the
barcoded cDNA from the previous step under the following condition: 20 °C for 16
h and 65 °C 10 min. Barcode neutralization was obtained by adding 6 uL Neu-
tralization Enzyme in 37 °C for 15 min. After SPRIselect clean-up, the barcode-
distributed cDNA from the previous step (20 pL) was fragmented by adding 20 uL
Fragmentation Mix and 10 pL Fragmentation Enzyme for 1 cycle of 32 °C for 5 min
and 65 °C 30 min. The fragmented cDNA (50 pL) was then ligated by adding 40 pL
Ligation Mix and 10 pL Ligation Enzyme at 20 °C for 15 min. Following the clean-
up, the DNA (20 pL) was amplified and indexed by adding 25 uL Index Master Mix
and 5 pL Index Primer, and underwent the following condition: 1 cycle of 98 °C for
45's, followed by 11 cycles of 98 °C for 15s, 60 °C 30s, and 72 °C 30 s. The indexed
and fragmented cDNA will be cleaned up with SPRIselect and assessed for the
quantity and quality through Qubit and Bioanalyzer 2000 evaluation before Illu-
mina sequencing.

Probe hybridization analysis. Selected bases’ on-target rate is computed by
aligning the contigs to GRCh37 reference genome using minimap22® and com-
paring the alignment against the probe BED file using Picard. As shown in Sup-
plementary Data 14, the on-target reads of the transcriptome sequencing ranged
from 83% to 92% in long-read level, and 93% to 96% in base level per sample,
indicating a high level of enrichment by the probes. In addition, two known fusion
genes (AGRN-NOC4L and CTNNDI-TMX?2) in the cancer sample (3 T) were
enriched and detected in the dataset, suggesting that the probe design for the fusion
transcript is adequate.

Isoform expression analysis. Transcriptome samples of 8 samples across 3 colon
cancer patients were measured by LoopSeq technology, including 2 benign colon
tissue samples (1 N and 3 N), 3 tumor samples (1 T, 2 T, and 3 T), and 3 metastasis
samples (1 M, 2 M, and 3 M). LoopSeq long-molecules were analyzed by tool
SQANTI for transcriptome isoform identification and quantification?”. Isoforms
were quantified by read count across all the 8 samples. Differential expression
analysis was performed by R tool ‘DEseq2’>? to compare normal samples versus
tumor samples, and tumor samples versus metastasis samples, respectively. Top
DEIs were selected by false discovery rate FDR = 5% and absolute fold change
greater than 2-fold. Then hierarchical clustering®® was applied on these 8 samples
based on the DEIs pooling from the two comparisons. Besides isoform-level ana-
lysis, similar analysis was performed at gene level to detect DEGs and cluster
samples based on these DEGs. To compare isoform-level and gene-level analysis,
these DEIs/DEGs were categorized into three groups: DEG only, DEG/DEI inter-
sect, and DEI only. Hierarchical clustering, principal component analysis (PCA),
and Pearson correlation analysis were performed based on genes/isoforms within
each category.

SNV isoform analysis. Loop-seq long-reads were aligned to the human reference
genome hg38 by Minimap2 aligner?®. For each sample, mutations/SNPs were
called and quantified by SAMtools mpileup function®*3>. These mutations/SNVs
were then annotated by ANNOVAR tool, dbSNP, and Cosmic database to identify
known SNPs and somatic mutations in human cancer>®-38. Those detected SNVs
were further filtered by the following criteria: (1) validated by WES (see next
section) and (2) either stop-gain or non-synonymous mutations/SNVs. For a given
SNV position of interest, reads with reference base (wild-type) and alteration base
were able to be identified and annotated at isoform level by SQANTT!L.

Several statistical tests were applied to the SNV isoform data. (1) When defining
the unevenly distributed SNV isoforms per gene, only SNVs involved with more
than one isoforms and covered by at least 5 contigs were analyzed by Chi-squared
test. p-values were adjusted by Benjamini-Hochberg (BH) method and FDR = 5%
were applied to define significant unevenly distributed SNV isoforms. (2) When
detecting differentially expressed SNV isoforms between reference (wild-type) and
altered alleles, Fisher’s exact tests were applied to test the long-molecule read count
of reference/altered alleles across multiple SNV isoforms. BH adjustment and FDR
= 5% were applied. (3) When comparing tumor samples and metastasis samples,
SNV rate was defined as SNV count divided by total count (SNV count + wild-type
count). Based on this, SNV isoforms with SNV rates low in tumor samples and
high in metastasis samples were detected, or vice versa. Hierarchical clustering,
PCA, and Pearson correlation analysis were applied on these selected switching
isoforms. We further applied these top switching isoforms for IPA pathway
analysis (QIAGEN Inc., https://www.giagenbioinformatics.com/products/
ingenuitypathway-analysis). Significant pathways were visualized by network plot
drawn by Cytoscape”.

Single-nucleotide variant calling from WES as validation. WES was performed
on the same three individuals for mutation validation at DNA level. Illumina
TruSeq Exome kit was used to prepare the exome DNA libraries of 2T, 2 M, 1T,
1M, 3T, and 3 M. The genome DNA was sheared to 150 bp using Covaris
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sonicator. The fragmented DNA was end-repaired, polyadenylated, and ligated
with Illumina adapters. The adapter-ligated DNA was amplified by PCR for 8
cycles in the following condition: 98 °C for 20's, 60 °C for 15, and 72 °C for 30s.
The amplified libraries were then pooled and bound with Coding Exome oligos.
The hybrids were then captured by Streptavidin Magnetic Beads provided by
Ilumina, Inc. The beads were then washed. The captured libraries were eluted. The
capture procedure was repeated once. The eluted libraries were amplified for 8
cycles under the same condition as above. The libraries were cleaned up and
assessed for quantity and quality based on Agilent’s Bioanalyzer 2000 and Qubit.
The libraries were sequenced on a Illumina NextSeq Dx550 sequencer.

For raw sequencing reads pre-processing, quality control was applied by tool
FastQC (https://qubeshub.org/resources/fastqc). Low-quality reads and adapter
sequences were trimmed by tool Trimmomatic®’. Surviving reads were then
mapped to human reference genome hg38 by Burrows-Wheeler Aligner®!. Aligned
reads were sorted and marked duplicates by tool Picard (http://broadinstitute.
github.io/picard). Mutation/SNP calling on individual samples were performed by
SAMtools mpileup function®,

Amplicon sequencing validation of mutation isoform expression. Tran-
scriptome sequencing on the same samples as loop-seq were performed for
mutation isoform validation. Amplicon sequencing was specifically targeted on two
candidate genes: FAM104A and PABPCI using primer sets ACAACCCCCTCTG
TTCCCTCT/ATGGTCTGGCTCAAGCTGCCT for FAM104A and AGCAAATGT
TGGGTGAACGGC/TTCTTCGGTGAAGCACAAGTTTC.

For bioinformatics analysis, raw sequencing reads first went through the
pipeline of quality control by FastQC and then low-quality reads and adapter
sequences were filtered out by tool Trimmomatic®. Surviving reads were then
aligned to human reference genome hg38 by HISAT? aligner®2. Mutation calling
was performed by SAMtools mpileup function®*>° and isoform identifications
were supported by the reads exactly splitting across more than one exon and their
counterpart paired-ends spanning.

Tagman qRT-PCR to validate isoform expressions. Two microgram of RNA was
used to synthesize first-strand cDNA with random hexamer primers and Super-
script ™ (Invitrogen, CA). For NM_000701.8//XR_002956654.1 of ATP1A1
detection, 1 pL of each cDNA sample was used for TagMan PCR with 50 heating
cycles at 94 °C for 30's, 61 °C for 30's, and 72 °C for 30 s using the primers and
probes listed in Supplementary Data 15 (Primers and probes design). At least one
negative control and a synthetic positive control were included in each reaction
batch. The PCR products were gel purified, and Sanger sequencing was performed
on the positive samples. The procedure of fusion gene validation also followed the
similar process except using the primers and probes listed in Supplementary
Data 15 (Primers and probes design).

Fusion transcript detection. Fusion transcripts were detected from the LoopSeq
long-molecules by two methods. For the first method, 2149 targeted fusion junc-
tions (Supplementary Data 2) were specifically checked. Text search based on the
15bp ahead of and 15 bp right after the junction point were applied to the long-
read molecules. An R language script for the high-throughput searching on 20K+
fusions was attached in the Supplementary script files. Once fusion candidates were
detected, we extended 15 bp + 15 bp to the full long-read and applied NCBI BLAST
tool to perform the alignment to confirm whether the candidate long-read was a
true positive. For the second method, SQANTI tool?> was applied to detect novel
fusion isoforms. Supporting reads were additionally confirmed by aligner
minimap22%27 and STARlong?s.

Statistics and reproducibility. All the bioinformatics processing was performed
by bash command on the Unix/Linux system. All the downstream statistical
analysis was performed by R programming with available packages. p-value < 0.05
cutoff was used to define significance. For multiple hypothesis testing, adjusted p-
value < 0.05 (FDR = 5%) was used to define significance.

For the experimental design, 8 colon cancer samples across 3 patients were
analyzed, with 2 normal samples, 3 primary cancer samples and 3 metastasis lymph
node samples. Samples across 3 patients will be regarded as replicates in this study
to increase the robustness and reproducibility of the results.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The detail data for Fig. 1 are located in Supplementary Data 1. The detailed data for Fig. 2
are located in Supplementary Data 4-6. The detail data for Figs. 3 and 4 are located in
Supplementary Data 8, 9, 11, and 12. The detail data for Fig. 5 are located in
Supplementary Data 13. Data for LoopSeq quality control, LoopSeq colon cancer
samples, and RNA amplicon sequencing were submitted to the GEO database, which can
be accessed by GSE155921. Raw whole-exome sequencing data for colon cancer samples
were submitted to the SRA database with Bioproject accession number PRINA648918.
All the other relevant data are available from the corresponding authors upon request.

Code availability

All the scripts were summarized in Supplementary Note 1 with detailed parameter setting
for the reproducibility of the results. Scripts were uploaded to Zenodo with https://doi.
org/10.5281/zenodo.4563137.
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