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Abstract

Humans can categorize objects in complex natural scenes within 100–150 ms. This amazing ability of rapid categorization has
motivated many computational models. Most of these models require extensive training to obtain a decision boundary in a
very high dimensional (e.g., ,6,000 in a leading model) feature space and often categorize objects in natural scenes by
categorizing the context that co-occurs with objects when objects do not occupy large portions of the scenes. It is thus unclear
how humans achieve rapid scene categorization. To address this issue, we developed a hierarchical probabilistic model for
rapid object categorization in natural scenes. In this model, a natural object category is represented by a coarse hierarchical
probability distribution (PD), which includes PDs of object geometry and spatial configuration of object parts. Object parts are
encoded by PDs of a set of natural object structures, each of which is a concatenation of local object features. Rapid
categorization is performed as statistical inference. Since the model uses a very small number (,100) of structures for even
complex object categories such as animals and cars, it requires little training and is robust in the presence of large variations
within object categories and in their occurrences in natural scenes. Remarkably, we found that the model categorized animals
in natural scenes and cars in street scenes with a near human-level performance. We also found that the model located animals
and cars in natural scenes, thus overcoming a flaw in many other models which is to categorize objects in natural context by
categorizing contextual features. These results suggest that coarse PDs of object categories based on natural object structures
and statistical operations on these PDs may underlie the human ability to rapidly categorize scenes.
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Introduction

Humans can remember extraordinarily rich details in thousands

of scenes viewed for a very brief period [1]. Humans can also grasp

the gist of complex natural scenes very quickly [2,3,4]. This is often

called rapid scene categorization since it requires little or no

attention and top-down feedback plays a limited role. This amazing

ability challenges the traditional view of visual information

processing in several major ways. In the mainstream framework

of vision [5,6,7], visual neurons are conceived to perform bottom-up

image-based processing (e.g., computing zero-crossings, luminance

and texture gradients, stereoscopic and motion correspondence,

and grouping) to build a series of symbolic representations (e.g.,

primal sketch, 2K dimensional (2KD) sketch, and 3D representa-

tion). It is difficult to reconcile this view of visual processing with

human performance on rapid scene categorization [8,9,10]. On one

hand, low-level visual features including edges, junctions, and

various image gradients are insufficient for revealing the content of

complex natural scenes. On the other hand, the computation

needed to build such symbolic representations seems too time-

consuming for rapid scene categorization.

This quandary has led to several alternative ideas. One proposal

is that the visual system processes global scene features

[11,12,13,14,15] first and then uses the results of global processing

to guide local processing [16,17,18]. Models that use global

features such as the energy of spectra at low spatial frequency

perform well on certain tasks of scene categorization [11,15], but

poorly on tasks such as categorizing scenes with animals since

these global features are not useful for identifying and localizing

objects in natural context.

Another proposal is to formulate scene categorization as a statistical

decision process in a high-dimensional space of low-to-intermediate-

level visual features without developing a series of symbolic

representations [19,20,21,22,23,24,25]. There are several problems

with this approach. First, since there is not a mechanism that binds

visual features to form descriptions of object and scene categories,

these models often assign the incorrect category label because the

feature space fails to provide sufficient discrimination power. Second,

extensive training is needed to find an optimal decision boundary in a

high-dimensional feature space. Finally, over-fitting can easily occur

since the number of training samples is very small relative to the very

large number of dimensions of the feature space.

In this paper, we took a different approach to this important

visual task. Natural visual scenes consist of objects of various

physical properties that are arranged in 3D space in a variety of

ways. When projected onto the retina, visual scenes entail highly

structured statistics, occurring over the full range of natural

variations in the world [26,27,28,29]. To deal efficiently with this
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full range of natural variations, the visual system may generate

percepts according to the PDs of visual variables underlying any

stimulus. Thus, we proposed that the visual system performs

statistical inference based on a set of coarse hierarchical

probabilistic models of natural object and scene categories to

achieve rapid scene categorization. To test this hypothesis, we

focused on a special case of rapid scene categorization, i.e.,

categorizing natural scenes with or without animals, and street

scenes with or without cars. Current computer vision algorithms

are not very successful in performing this task since the context,

animals, cars, locations of animals or cars can vary greatly from

one scene to another. We developed PDs of object categories that

reflect object geometry, spatial configuration of object parts, and

natural object structures (i.e., concatenations of a set of local object

features). Remarkably, we found that the model localized and

categorized animals in natural scenes and cars in street scenes with

a near human-level performance.

Results

A hierarchical probabilistic model of images of objects in
natural scenes

Our goal in this paper was to develop a model that locates and

categorizes objects in natural scenes. This task (e.g., detecting

animals in natural scenes) is especially challenging since object

appearance in natural scenes can vary enormously and where the

objects are located in the scenes is unknown. To achieve this goal,

we developed a hierarchical probabilistic model (Figure 1).

In this model, an object is conceived to consist of multiple parts

and each part consist of a set of natural object structures, each of

which is a concatenation of local features in a small region of the

object. Similarly, natural context consists of a set of natural context

structures. An image of any object in natural context is seen as

being rendered from a set of object and context structures. Each of

the processes shown in Figure 1 can be described by a probabilistic

model. We used the following notations:

N Im represents an image,

N Ob is an object,

N Cnx describes context,

N Pt is a set of object parts,

N Gm represents geometric relationship among object parts,

N St is a set of object structures,

N Ct is a set of context structures.

According to the generative model (Figure 1), we have a

probabilistic model of images of objects in natural scenes (Eq. (1)).

P(ImjOb,Cnx)!P(ImjCt,St,Pt,Gm,Ob,Cnx)P(GmjOb) ð1Þ

where P(ImjOb,Cnx) is the probability of an image of a given

object in a specific context; P(ImjCt,St,Pt,Gm,Ob,Cnx) is the

probability of an image as being rendered from a set of object and

context structures; and P(GmjOb) is the probability of the

geometry of a given object.

Using Bayes formula, we can then achieve detecting and

categorizing objects in natural context via Eq. (2)

P(Ob,CnxjIm)!P(ImjOb,Cnx)P(Ob)P(Cnx) ð2Þ

where P(Ob,CnxjIm) is the posterior probability of an object in

an observed image and P(Ob) and P(Cnx) are prior PDs of

objects and context.

This model differs from other models of scene categorization

[11,14,15,20,21,22,23,24] in three major ways. First, our model

uses explicit structural descriptions of natural objects. In

particular, object structures in our model are concatenated to

encode objects. Other models usually use a large set of features

and do not specify how features are combined to form objects.

Second, our model uses hierarchical PDs of natural objects and

statistical inference for scene categorization. Other models

[20,21,22,23,24] use extensive training to obtain a decision

boundary in a high-dimensional feature space for categorization.

Finally, our model localizes and categorizes objects in natural

contexts. Other models [21,22] don’t localize objects in natural

contexts and thus often erroneously categorize objects by

categorizing the context that co-occurs with objects.

To apply this model to the two tasks of rapid scene

categorization, i.e., categorizing natural scenes having animals

and street scenes having cars, we performed the following five

computational steps:

1. Obtaining a set of training samples by manually segmenting

animals and cars from the scene datasets;

2. Developing PDs of object geometry in natural scenes;

3. Compiling a set of object structures and developing a PD for

each structure;

4. Selecting a set of object structures and developing a joint PD of

the selected object structures for categorization;

5. Performing statistical inference to localize and categorize

objects in natural scenes.

In the following sections, we describe the results obtained by

these steps.

Coarse PDs of object geometry in natural scenes
To model human performance on scene categorization, we

developed coarse models of object geometry in natural context.

We modeled any animal in natural scenes by two ellipses, one for

the head and one for the body (Figure 2A). For this purpose, we

segmented animals from a set of training scenes by hand.

Although current computer vision algorithms can do a decent job

on this task (e.g., [30]), we chose to do it manually simply because

we need accurate segmentation for compiling object structures

(see the following sections). After segmentation, we fitted the

histogram of the parameters of the two ellipses to a multi-

dimensional Gaussian PD. The distribution of the sizes of animal

heads in the dataset of animal scenes had a peak at (35 pixels, 24

pixels) (left panel in Figure 2B). The distribution of the

orientations of animal heads had a peak at 87u and a standard

deviation of 35u (right panel in Figure 2B). The distribution of the

sizes of animal bodies had a peak at (37 pixels, 31 pixels) (left

panel in Figure 2C). The distribution of the orientations of animal

bodies had a peak at 178u and a standard deviation of 38u (right

panel in Figure 2C).

Similarly, we modeled any car in street scenes by an ellipse and

fitted the histogram of the parameters of the ellipses obtained from

cars segmented manually from a set of street scenes to a multi-

dimensional Gaussian PD. The distribution of the sizes had a peak

at (78 pixels, 50 pixels) (left panel in Figure 2D). The distribution

of the orientations of cars in the dataset of street scenes had a peak

at 1u and a standard deviation of 18u (right panel in Figure 2D).

Thus, both animals in natural scenes and cars in street scenes

have characteristic statistics in their geometry. We will incorporate

these statistics for rapid categorization of natural scenes having

animals and street scenes with cars.

Probabilistic Model for Scene Categorization
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Statistics of natural object structures
We proposed that natural object structures (i.e., concatenations

of local features in small regions of images of natural objects) are

the units for encoding natural objects and categories for rapid

scene categorization. In this proposal, each structure is character-

ized by a small number of dominant independent components

(ICs), obtained by independent component analysis (ICA) [31,32],

and natural variations of each structure by a PD. There are several

advantages for using natural object structures: 1) they are more

robust than simple features, 2) they take less time to compute than

symbolic representations, and 3) they presumably have more

descriptive power than simple features including the widely used

SIFT features [33]. As it will become clear later on, natural object

structures represent spatial concatenations of local features and

their PDs (i.e., joint PDs of a set of local features) are more

powerful than simple features.

For rapid scene categorization, we treated each structure as a

structural description of patches of object images at two spatial

scales. The coarse structural description was for image patches of

48648 pixels and the fine structural description was for the 363

blocks of the same patches (each block had 16616 pixels) (see

Figure 3 and Materials and Methods). The advantages of using

structural descriptions at multiple spatial scales are: 1) they capture

structural information of objects at multiple spatial scales in a

compact way, and 2) they naturally incorporates scaling

invariance, at least to some extent. To derive these structural

descriptions, we performed the following four computational steps:

1. Obtaining the ICs of image patches of 48648 pixels and the

ICs of image patches of 16616 pixels by performing ICA;

2. Clustering the ICs into four clusters, each of which had one of

four orientations (0u,45u,90u, and 135u);
3. Computing the root total square amplitudes of the ICs in each

of the four clusters for each image patch and block;

4. Describing the structure of each patch and block by the

dominant root total square amplitude of the ICs and assigning

all image patches that shared the same structural description to

the same structure.

Figure 3 shows two structures, one for the zebra and one for the

background. The two structures captured the main patterns in

luminance variation in the scene patches but did not match them

pixel by pixel since the structures shown here were averages of

many image patches.

As shown in Figure 4, structures compiled from natural objects

(i.e., animals and cars) are concatenations of features in small

Figure 1. Hierarchical probabilistic model of object categorization in natural scenes. Object category is modeled as a composition of a set
of geometrically related parts and each part is represented by a PD of a set of natural object structures. Natural context is modeled by a PD of natural
context structures. Object categorization in natural scenes is performed as statistical inference. All the PDs were estimated from natural objects and
context.
doi:10.1371/journal.pone.0020002.g001

Probabilistic Model for Scene Categorization
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patches on objects. These descriptions are not the same as image

patches cropped from objects and range from very simple

concatenations (e.g., one or two oriented bars) to very complex

concatenations (e.g., texture patterns on animals or cars). The

upper panels in Figure 4A and B show examples of the ICs of

image patches (16616 pixels) of animals and cars respectively. The

Figure 2. Coarse models of geometry of animals (medium-body animals) and cars in natural scenes. (A), Any animal in natural scenes
was modeled by two ellipses, one for the head and one for the body. Any car in natural scenes was modeled by one ellipse. (B), Size (left) and
orientation (right) distributions of animal heads in natural scenes. (C), Size (left) and orientation (right) distributions of animal bodies in natural scenes.
(D), Size (left) and orientation (right) distributions of cars in natural scenes.
doi:10.1371/journal.pone.0020002.g002

Probabilistic Model for Scene Categorization
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lower panels in Figure 4A show six frequent structures compiled

from each of the five animals. Each frequent structure was the

average of all patches that shared the same structural descriptions

at two spatial scales. The numbers indicate the locations of the

structures in the animals. These structures represent coarse but

informative descriptions of various parts of the animals, including

heads, bodies, legs, necks, wings, and furs. The lower panels in

Figure 4B shows six frequent structures compiled from each of the

five cars. These structures represent coarse descriptions of various

parts of the cars, including screens, windows, tires, roofs, and

hoods. Note that since they were averages of many samples, the

animal and car structures at the two scales shown here were very

similar to each other. These examples, however, are only for

illustration purpose and were not used to encode objects. The

variations in the features in the scene patches (i.e., ICs) at the two

scales can be described by a set of PDs, which contain more

information than the average structures shown here. These PDs

will be used for object encoding and categorization.

We then examined the statistics of object structures compiled

from a set of animals and cars. We found that simpler structures

occur more frequently and are shared by more objects and most

structures are shared by only a few objects. Figure 5A shows the

normalized frequency of 3,100 structures shared by at least 10% of

the animals in the training set. The most frequent structure in

animals is a patch with a dark spot at the lower left. The 1,000th,

2,000th, and 3,000th structures are a fur patch, a patch of zebra strip,

and a patch of deer head respectively. Figure 5B and C show

examples of structures and the total number of structures shared by

different percentage of the animals in the training set respectively.

There are only 3 structures shared by 90% of the animals while

there are 1,734 structures shared by 10% of the animals.

Figure 5D shows the normalized frequency of 4,481 structures

shared by at least 10% of the cars in the training set. The most

frequent structure in cars is a vertical bar. The 1,000th, 2,000th,

and 4,000th structures are structured patches of front window,

trunk, and front left bump respectively. Figure 5E and F show

examples of structures and the total number of structures shared

by different percentage of the cars in the training set respectively.

There are 48 structures shared by 90% of the cars while there are

2,574 structures shared by 10% of the cars.

Figure 3. Extracting natural object and scene structures. Each structure is a structured patch compiled from images of natural objects and
scenes. To obtain a set of natural object and context structures, we performed ICA on patches of natural scenes and classified the ICs into four
orientations. We then sampled a large number of patches from natural scenes and classified each patch as being oriented in one of the four
orientations according to the root total square amplitude of the ICs at that orientation. We applied this procedure to a collection of 363 small
patches and its corresponding 161 big patch. A structure was thus a pair of 363 structured patches and its corresponding 161 structured patch. The
structures shown here were the average of all patches that shared same dominant orientational structure at two spatial scales.
doi:10.1371/journal.pone.0020002.g003

Probabilistic Model for Scene Categorization
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In the next section, we will examine the information content of

these structures and how to select and combine a set of structures

for rapid scene categorization.

PDs of object structures
We characterized each structure by a 10-dimensional Gaussian

PD of the root total square amplitudes of the ICs in the four

clusters (one dimension for image patches of 48648 pixels and one

dimension for each of the 363 blocks of the image patches). These

structures convey a variety of amounts of information about object

categories. We selected a set of object structures that were shared

by more than 70% of the animals or cars in the training set and

performed categorization on segmented animals or cars using each

of these structures. Figure 6A shows the performance on

categorizing animals. The thick line is the average posterior

probability and the thin lines indicate the standard deviation. The

insert shows the frequency of the posterior probability based on a

structure. The structures indexed by odd numbers in Figure 6A

are shown in Figure 6B. Figure 6C shows the relative occurring

frequency and differential entropy of the PD of each of these

structures. The indices of object structures are the same in

Figure 6A and C. There was negative correlation (20.39) between

average posterior probability and differential entropy. These

results indicate that object structures shared by more than 70% of

the animals in the training set gave rise to relatively good

categorization performance.

Figure 6D shows the performance on categorizing cars using

individual structures that were shared by more than 70% cars in

the training set. The structures indexed by odd numbers in

Figure 6D are shown in Figure 6E. Figure 6F shows the relative

occurring frequency and differential entropy of the PD of each of

these structures. The indices of object structures are the same in

Figure 6D and F. As with the animal scenes, there was negative

correlation (20.61) between average posterior probability and

differential entropy and object structures that were shared by more

than 70% of the cars in the training set gave rise to relatively good

categorization performance.

Based on these results, we selected 70 structures for categorizing

animal scenes and 134 structures for categorizing street scenes in a

random training-testing run (see Materials and Methods). Thus,

each selected structure indicated that any given scene had animals

or cars at a certain probability (i.e., the posterior probability) and

each scene corresponded to a vector of probability conveyed by

the set of selected structures. We then need to model the joint

distribution of these probabilities. Let X~½x1,:::,xn� denote these

probabilities based on the selected structures (n was 70 for animal

categorization and 134 for car categorization). We performed ICA

on the data of X for a set of training images to obtain a set of ICs

and fitted the histogram of the amplitude of each of these ICs to a

generalized Gaussian PD (,e{lju{u0ja , where u is the amplitude of

the IC, u0 is the mean of the amplitude, l is a positive constant,

and a is an exponent). We then modeled the joint PD of the

selected structures as a product of generalized Gaussian PDs

obtained in this way. Figure 6G and H show examples of the PDs

of the amplitudes of the ICs of Xs. These generalized Gaussian

PDs had exponents ranging from 0.50 to 1.28 and 0.43 to 1.45 for

animal and cars respectively.

We will use these joint PDs of the selected structures to perform

scene categorization. It will become clear in the following sections

that near human-level categorization performance can be

Figure 5. Statistics of object structures. (A), Relative occurring frequency of animal structures. (B), Examples of animal structures. The vertical axis
indicates the percentage of the animals in the dataset by which the structures were shared. (C), The total numbers of structures that were shared by
different percentage of the animals in the dataset. (D)–(F), Same format as (A)–(C) respectively for car structures.
doi:10.1371/journal.pone.0020002.g005

Figure 4. Examples of frequent object structures. The upper panels in (A) and (B) are examples of the ICs of images of animals and cars at a
finer scale respectively. Each frequent structure for the 5 animals and cars was the average of patches that shared the same dominant orientation
structure at two spatial scales. The numbers indicate the locations of the structures in the animals and cars. The coarse structural description was for
image patches of 48648 pixels and the fine structural description was for the 363 blocks of the same patches (each block had 16616 pixels). Most of
the structures at the two spatial scales are similar except some fine details, e.g., the No. 4 and 6 structures of the zebra. The structures at the second
scale (363 blocks) contain more details than the first scale (48648 pixels).
doi:10.1371/journal.pone.0020002.g004

Probabilistic Model for Scene Categorization
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achieved by combining a small number of selected object

structures, each of which only gave rise to low categorization

performance.

Categorizing natural scenes with animals
Detecting animals in natural scenes is a challenging task for

which no successful computer vision algorithms have been

developed. To apply our model to this task, we need to localize

and categorize animals in natural scenes in an integrated way. We

achieved this goal in three steps.

First, we calculated the posterior probability of being an animal

of a patch of 48648 pixels centered at each pixel in a testing scene

using the PDs of structures developed earlier to obtain a map of

posterior probability. Figure 7A shows two testing scenes and

Figure 7B shows the corresponding maps of posterior probability.

Second, we sampled 300 object candidates (i.e., 300 sets of

ellipses) from the coarse geometrical PDs of animals and projected

the ellipses to the testing scene to cover most pixels at which the

posterior probability was greater than 0.6. The upper panel in

Figure 7C shows several pairs of ellipses for an animal scene

(dashed ellipses were for the animal head and solid ellipses were for

the animal body). The lower panel in Figure 7C shows several

ellipses for a street scene.

Third, we computed the posterior probabilities of being an

animal of the 300 object candidates and selected the candidate

that had the highest posterior probability determined by the joint

PD of the 70 selected animal structures. We then categorized the

testing scene as a scene with animals if the posterior probability

was greater than 0.5.

Figure 8A shows examples of animal scenes and distractors in

the dataset. These examples make the challenge of detecting

animals clear: there are a variety of animals and large variations in

the pose, size, texture, and position of the animals in the scenes.

Figure 8B shows the performance of our model on this task for

four sets of animal scenes, each of which corresponds to a certain

viewing distance from the camera, i.e., head, close-body, medium-

Figure 7. Object localization in natural scenes. (A). Two input scenes. (B). Probability maps, i.e., the probability of a scene patch of 48648 pixels
being an animal or car at each pixel. (C). Object candidates (i.e., the ellipses) sampled from the PDs of coarse object geometry estimated from training
scenes were overlaid on the probability maps so that the object candidates covered most pixels that had high probability. The dashed and sold
ellipses in upper panel were for animal heads and bodies respectively.
doi:10.1371/journal.pone.0020002.g007

Figure 6. PDs of selected object structures. (A), Average posterior probability of being an animal scene based on each selected structure. The
thin lines indicate the standard deviation. The insert shows the PD of the posterior probability of being an animal scene based on the structure. (B),
The structures with odd indices shown in (A). (C), Relative occurring frequency and entropy of the 70 selected structures. (D)–(F), Same format as (A)–
(C) respectively for car structures. (G), Ten examples of fitted generalized Gaussian PDs of the amplitudes of the ICs of joint probability based on the
selected animal structures. (H), Examples (10) of fitted generalized Gaussian PDs of the amplitudes of the ICs of joint probability based on the selected
car structures.
doi:10.1371/journal.pone.0020002.g006

Probabilistic Model for Scene Categorization
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body, and far-body. The categorization rate is 89%, 85%, 81%,

and 60% for the head, close-body, medium-body, and far-body

scenes respectively. Thus, the performance degraded for the

objects at far distances from the camera. This is because animals

occupied fewer image pixels in the medium-body and far-body

scenes.

These results are consistent with human performance. In a

study done by Serre et al [21], human subjects were asked to

detect scenes in which there were animals and identified 92%,

88%, 82%, and 63% of the animal scenes for the head, close-body,

medium-body, and far-body conditions respectively. We also

tested the model using the animal structures at either the coarse or

fine spatial scale. The performance was bad if only the animal

structures at the coarse scale were used. The result given by the

structures at the fine scale was about 5 percent worse than that by

the joint animal structures at the two spatial scales. In the

Figure 8. Categorizing animals in natural scenes. (A), Examples of four sets of animal scenes, i.e., head, close-body, medium-body, and far-
body, and examples of distractors. (B), Performance of categorizing natural scenes with animals. (C), Performance of localizing animals in natural
scenes and categorizing animals segmented from natural scenes for close-body and medium-body. (D), Performance of categorizing scenes having
animals and with animals being replaced by random noise. (E), Animal categorization in scenes where animals were inserted into distractors. In (D)
and (E), red bars show the results of the Serre et al model on medium-body scenes.
doi:10.1371/journal.pone.0020002.g008

Probabilistic Model for Scene Categorization
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following, we will focus on the close-body and medium-body

animal scenes since there is little context in the head animal scenes

and too much context in the far-body scenes.

Our model also located the animals in these scenes. If the model

identified more than 55% of the pixels occupied by animals in any

scene, we called it a case of correct localization. Figure 8C shows the

results. The localization rate was 92% and 89% for the close-body

and medium-body scenes respectively. As a control, we also

examined the performance of our model on categorizing animals

segmented from the scenes. For this purpose, we selected an equal

number of contextual scene patches and segmented animal images.

As shown in Figure 8C, the categorization rate was 90% and 85%

for the close-body and medium-body animal scenes respectively.

Thus, the categorization rate became lower because localization

was not perfect in this case. Note that we did not attempt to precisely

localize animals in the scenes but rather to localize them at a

reasonable precision to achieve rapid scene categorization.

We examined how rapid our model accomplished this task of

scene categorization. Extracting features (i.e., compiling animal

structures) from a 2566256 grayscale scene took 73 s in our model

and 74 s in the Serre et al model [21], a representative of many

models of scene categorization. Categorizing a 2566256 grayscale

scene took 192 ms in our model and 157 ms in the Serre et al

model. We obtained these results using the same hardware (Intel

E8500 3.16 GHz processor with 8G memory) and software

(Matlab, Version 7.8.0.347). Thus, in terms of computational

time, our model is comparable to the Serre et al model, and rapid

scene categorization can be achieved.

One important feature of our model is that, in contrast to many

other models for scene categorization where categorization is not

performed based on explicit models of object categories in natural

scenes, categorization is based on the PD of animals along a set of

structures compiled from animals. Our model would thus

necessarily categorize scenes with animals regardless of any other

features in the scenes. To test this prediction, we did two

manipulations, replacing animals with random noise in scenes with

animals and inserting animals into distractors (scenes without

animals). We used all the medium-body animal and distractor

(non-animal) images in the dataset for these two manipulations,

i.e., 150 animal and 150 distractor (non-animal) scenes. As

expected, when animals in the scenes were replaced by random

noise, our model did not categorize the altered images as animal

scenes (the blue bars in Figure 8D). Similarly, when animals were

inserted into the distractor scenes, our model categorized the

altered images as scenes with animals (not as distrastors without

animals; the blue bars in Figure 8E).

This prediction does not hold for other models in which

categorization is predicted by a decision boundary in a high-

dimensional feature space but not PDs of object categories. For

example, when the animals in the scenes were replaced with random

noise, the Serre et al model [21] categorized them as scenes having

animals (the red bars in Figure 8D). Conversely, when animals were

inserted into the distractor images, the Serre et al model categorized

them as distractors without animals (the red bars in Figure 8E).

These results suggest that the Serre at al model essentially uses

contextual features that co-occur with animals to categorize scenes

when animals do not occupy large portions of the scenes.

Why, then, if the context were the same in the animal scenes

and distractors in the database used to test the model, as one

would certainly assume, would the Serre et al model categorize

distractor scenes with animals inserted as scenes not having

animals? We have found several reasons for this peculiar behavior.

First, the animal and distractor scenes in the dataset were actually

very different. Half of the distractors were artificial scenes (e.g.,

cities, streets, and houses) and the other half were natural scenes

that appeared different from the animal scenes. Second, there is no

control on the statistics of the contextual features in the model.

During training, the model can pick up any feature combination

among the ,6,000 features used (some of the selected features are

from animals but most of them are from the context when animals

do not occupy large portions of the scenes) to perform the animal

vs. no-animal classification. Finally, since the model needs

extensive training to set the weights for the features and to obtain

a decision boundary in the high-dimensional feature space, once

trained on scenes with certain contextual features, it cannot

generalize to scenes with different contextual features. Thus, based

largely on the different contextual information and due to the poor

generalization ability, the Serre et al model, after trained,

categorized animal scenes as scenes having animals, distractor

scenes as scenes not having animals, animal scenes with animals

replaced by random noise as scenes having animals, and distractor

scenes with animals inserted as scenes not having animals.

The results shown in Figure 8 are important for several reasons.

First, only 70 animal structures were used in our model, a very

small fraction of the ,6,000 image features used in the Serre et al

model. The good performance provided by our model suggests

that a small number of structures are sufficient for near human-

level scene categorization as long as each structure represents a

compact concatenation of local features. Second, we used a subset

of the scenes to estimate the PDs but did not obtain a decision

boundary in a high-dimensional feature space during training. In

the Serre et al model, extensive training (i.e., updating a large

number of parameters) was needed to obtain an animal vs. no-

animal boundary in a high-dimensional feature space. Finally, our

model identified the locations of the animals in natural scenes and

categorized them, while the Serre et al model did not make a

distinction between animal features and contextual features.

Categorizing street scenes with cars
We also used our model to detect cars in street scenes. As with

animal scenes, detecting cars in street scenes is challenging since

there are a variety of cars and trucks, large variations in pose, size,

and position of cars in street scenes, and a variety of background

clutter (Figure 9A). For this task, we selected 134 frequent car

structures. The blue bars in Figure 9B–D show the performance of

our model. Our model categorized 85% of the scenes having cars

correctly. We also did two manipulations, replacing cars with

random noise in scenes having cars and inserting cars into

distractors (scenes without cars). We use all the car and non-car

images in the database for these two manipulations, i.e., 600 car and

600 distractor (non-car) images. As with the case of animal

categorization, our model reported that there were no cars in the

first case and that there were cars in the second case (the blue bars in

Figure 9C and D). In contrast, the Serre et al model categorized

them as scenes having cars in the first case and as scenes not having

cars in the second case (the red bars in Figure 9C and D). Therefore,

the Serre et al model does not categorize cars per se, but essentially

uses contextual features that co-occur with cars to categorize street

scenes when cars do not occupy large portions of the scenes.

Our model also found where the cars were located in the scenes.

If the model identified more than 55% of the pixels occupied by

cars in any scene, we called it a case of correct localization. The

localization rate was 90% (Figure 9B). As a control, we also

examined the performance of our model on categorizing cars

segmented from the scenes. For this purposes, we selected an equal

number of contextual scene patches and images of segmented cars.

As shown in Figure 9B, the categorization rate was 90%, a result

that was better than categorizing cars in street scenes. Thus, in this
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case, the categorization rate became lower because localization

was not perfect.

Thus, with a small number of structures compiled from cars and

a coarse hierarchical PD of cars, localizing and categorizing cars in

street scenes can be achieved at a high rate of success. The model

requires minimal training since the needed PDs are very simple

and thus avoids over-fitting and categorizing cars by categorizing

context, as in other models.

Discussion

PDs of object and scene categories for rapid scene
categorization

Our results suggest that, at least for some categorization tasks,

explicit (albeit coarse), PDs of categories of objects and scenes are

useful and rapid scene categorization can be performed via

Bayesian inference based on these PDs. This is a conceptual break

from several popular ideas. One idea is that the visual system may

use a ‘‘short cut’’, i.e., a set of statistics of some global image

features (e.g., energy of spectral at low spatial frequency [11,14]

and histograms of some low-level features [20]) to achieve rapid

scene categorization. Another idea is to use a set of hierarchically

organized artificial neurons to encode a large set of image features

and to achieve scene categorization by drawing a decision

boundary in this high dimensional feature space through extensive

training. One such model [21,22] has been based on many years’

research on computational modeling of object recognition. As

demonstrated in Figures 8 and 9, for tasks similar to categorizing

scenes having animals or scenes having cars, these and other

similar models actually categorize the contextual features that

Figure 9. Categorizing cars in street scenes. (A), Examples of street scenes having cars and examples of distractors. (B), Performance of localizing
cars in street scenes and categorizing cars segmented from street scenes. (C), Performance of categorizing street scenes having cars and with cars
being replaced by random noise. (D), Car categorization in scenes where car were inserted into distractors. In (C) and (D), red bars show the results of
the Serre et al model.
doi:10.1371/journal.pone.0020002.g009
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co-occur with animals or cars in natural scenes when animals or

cars do not occupy large portions of the scenes.

Our model is different from other models in that: 1) coarse

hierarchical PDs of natural object categories are used that include

PDs of object geometry and spatial configuration of object parts; 2)

natural object categories are encoded by a set of object structures,

each of which conveys an amount of information about the encoded

object category; 3) object localization and categorization is

performed in an integrated way. Since, for rapid scene categoriza-

tion, precise segmentation and detailed object descriptions are not

needed, the computation in our model (i.e., compiling object

structures, estimating the needed PDs, and performing Bayesian

inference) is simple and fast. As shown in Figures 8 and 9, near

human-level performance can be readily achieved by our model.

Natural object structures as units for object encoding
Object perception (e.g., recognition and categorization) has

been the focus of neuro-physiological studies and computational

modeling in the last 30 years [34,35]. Neuro-physiological studies

have revealed much information about the processing of object

encoding from V1 to V2, V4, and to the IT cortex [36,37,38], but

computational modeling has not yet incorporated this information

[25,39]. Despite these efforts, we know little about the basic units

and computations for object encoding and recognition.

We demonstrated that a small number of natural object

structures are sufficient for encoding complex object categories

such as animal and car. In this encoding scheme, each object

structure is a concatenation of local image features and conveys an

amount of information about the object and category; general

structures are shared by more objects and specific structures are

shared by only a few objects in the category. Thus, a selected

combination of general and specific structures could encode

information for both object and category and a PD on these object

structures could quantitatively characterize natural variations of

both objects and categories. It is conceivable that visual neurons

encode natural object structures and their PDs and perform

statistical operations on these PDs to achieve object perception.

Indeed, current observations on the neural processing of object

perception (e.g., neuronal tuning for complex features, views, object

categories, scale, position, and pose tolerance, and feature columns

in the IT area) [36,37,38] can be interpreted as encoding of object

structures in a hierarchical way by neurons in the ventral pathway.

In this interpretation, preferred stimuli are object structures and

neuronal responses indicate the probabilities of object structures.

Populations of neurons can thus encode a large of number of object

structures and virtually infinite number of objects.

We should point out that, although the work presented here

suggests a novel concept of visual information processing (i.e., even

for rapid scene categorization, coarse, hierarchical probabilistic

encoding of natural object categories are needed), the work is only

a computational model. How to map the natural object structures

and their PDs and the statistical operations in the model to

neuronal response properties, neural circuitry, and neural

dynamics is essentially unknown. Indeed, in its current form, our

model has no temporal component and no direct physiological

correlates and thus the time required to implement such a model

in vivo is unknown.

Future directions
The model developed here can be extended and refined in

several ways. First, the model can be extended to categorize

multiple categories of natural scenes. There is now a large dataset

of more than 900 categories of natural scenes, including coasts,

rivers, lakes, forest, plains, mountains, landscapes, countries, and

deserts. Tested on this dataset, the performance of the best current

model for natural scene categorization is ,40% [40]. To extend

our model, a large set of natural object and scene structures are

needed and a hierarchical PD is needed for each scene category. It

remains to be seen how far our model can go in comparison to

human performance. Second, parameterized low-dimensional PDs

can be developed to model natural object and scene structures

more precisely. Finally, fast algorithms can be developed to

achieve better object localization in natural scenes.

Materials and Methods

Databases
The dataset of animal scenes and implementation of Serre et al

model were downloaded from the Center for Biological &

Computational Learning at MIT (http://cbcl.mit.edu/software-

datasets/index.html). The dataset contains 600 gray-scale images

of a variety of animals (including mammals, birds, fish, insects, and

reptiles) in natural scenes and a set of distractor scenes including

300 natural scenes and 300 artificial scenes (Figure 8A). The sizes

of the images are 2566256. This dataset have four subsets of

scenes, corresponding to a certain viewing distance from the

camera, i.e., head, close-body, medium-body, and far-body.

The dataset of street scenes include 600 images of sedans, jeeps,

trucks, SUVs, and buses and 600 images of street scenes without

cars (Figure 9A). The sizes of these images are 2566256. These

images were cropped from a set of images of 12806960 pixels with

random offsets.

We used local contrast in these gray-scale images as inputs in

our analysis. We calculated Michelson contrast using a circular

center-surround configuration. The radius of the center was 2

pixels and the radius of the surrounding circle was 4 pixels. For

far- body animal scenes, the radius of the center and surrounding

circle was 1 pixel and 2 pixels respectively.

Training and testing
We split each of the datasets into two halves, one for training

and one for testing. In order to compile a set of object structures

and estimate their PDs, we rendered 50 images from each scene in

the training sets by performing affine transform and adding white

noise. We then selected object structures that occurred frequently

in these rendered scenes and estimated the PDs of object

structures.

For any input scene, we sampled 300 object candidates from the

PD of object geometry and parts estimated in the training step and

projected them onto a test scene to cover most pixels at which the

posterior probability was greater than 0.6. We then estimated the

posterior PDs of these 300 candidates and selected the candidate

that had the maximal posterior probability. We repeated this

procedure 20 times (i.e., 20 random splits of training and testing

sets) and obtained the average categorization rate.

To compare our model with others, we did two manipulations,

replacing animals with random noise in scenes with animals and

inserting animals into distractors (scenes without animals). We

used all the medium-body animal and distractor (non-animal)

images in the database for these two manipulations, i.e., 150

animal and 150 distractor (non-animal) images for medium-body.

Similarly, we used all the car and non-car images in the database

for these manipulations, i.e., 600 car and 600 distractor (non-car)

images.

PDs of object geometry in natural scenes
We modeled any animal in natural scenes by two ellipses, one

for the head and one for the body (Figure 2A shows the result of
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medium-body animals). The rationale was to model coarse object

geometry for rapid categorization. We segmented animals from

the scenes in the training set manually and fitted the animals to

two ellipses and obtained the parameters of the ellipses. We then

fitted the histogram of the parameters of the ellipses to a multi-

dimensional Gaussian PD (Figure 2B and C). For the head and

far-body scenes, we only fitted each animal in the scenes to one

ellipse.

Similarly, we modeled any car in street scenes by an ellipse and

fitted the histogram of the parameters of the ellipses obtained from

cars segmented manually from street scenes to a multi-dimensional

Gaussian PD (Figure 2D).

Compiling object structures
Each structure entailed structural descriptions at two spatial

scales. At the coarse scale, a structural description was derived for an

image patch of 48648 pixels. At the fine scale, a set of 9 structural

descriptions were obtained for the 363 blocks of the same image

patch (each block had 16616 pixels) (Figure 3). To compile these

structures, we first obtained the independent components (ICs) of

image patches of 48648 pixels and the ICs of image patches of

16616 pixels sampled from animals or cars that were manually

segmented from natural or street scenes in the training sets. We then

classified these ICs into clusters according to the orientation of the

ICs. To limit the total number of structures, we used only four

clusters (i.e., 0u, 45u, 90u, and 135u). Using these clusters, we

assigned a structural label at the coarse scale and a structure label at

the fine scale to each image patch of 48648 pixels sampled from

animals or cars. A structural label at the coarse scale was the

dominant orientation (i.e., the root total square amplitude of the ICs

at that orientation was the greatest among the four orientations). A

structural label at the fine scale was the dominant orientations in the

363 blocks of the same image patch. Finally, we collected all

different structures, i.e., structures that had different structural labels

at the two spatial scales.

PDs of object structures and structure selection
We selected object structures for categorization in two steps. In the

first step, we selected structures that were shared by more than 70%

of the animals or cars in the training set. In the second step, for each

of the selected structures, we developed a 10-dimensional Gaussian

PD of the root total square amplitudes of the ICs in the four clusters

(one dimension for each of the 10 structural labels). Using these PDs,

we performed categorization on segmented animals or cars using

each of the structures. We selected 70 animal structures and 134 car

structures that gave rise to the best categorization performance.

Figure 6B and E shows the selected structures obtained in a training-

testing run (see Training and testing above).

Joint PDs of object structures
Each selected structure indicated that any given scene had

animals or cars at certain probability and each scene corresponded

to a vector of probability. Let X~½x1,:::,xn� denote these

probabilities for each scene (n was 70 for animal categorization

and 134 for car categorization). Thus, for the scenes in the training

sets (see Training and testing above), we obtained a dataset of X .

To model the PD of X , we performed ICA on the dataset of X to

obtain a set of ICs and fitted the histogram of the amplitude of

each of these ICs to a generalized Gaussian PD (,e{lju{u0ja ,

where u is the amplitude of the IC, u0 is the mean of the

amplitude, l is a positive constant, and a is an exponent. a~2 for

Gaussian PDs). The PD of X was thus a product of these

generalized Gaussian PDs. Figure 6G and H show 10 examples of

generalized Gaussian PDs obtained in this way.

Object localization and categorization
For any test scene, we calculated the posterior probability of a

48|48 patch centered at each pixel being an animal or a car

based on the PDs of the selected structures to obtain a map of

posterior probability (Figure 7B). We then sampled 300 objects

candidates (i.e., 300 sets of ellipses) from the geometrical PD

models of animals or cars and projected the object candidates to

the test scene to cover most pixels at which the posterior

probability was greater than 0.6. Since we modeled any animal

in natural scenes by two ellipses (one for the head and one for the

body, Figure 2A), we sampled two ellipses for animals (dashed

ellipse for head, solid ellipse for body in Figure 7C).

For each of the 300 object candidates, we first sampled a large

number of image patches inside it (the total number of images

patches depended on the size of the candidate). We then inserted

these patches to the PDs of the selected object structures (70 for

animals and 134 for cars) to obtain a vector of posterior

probability. Finally, we plugged this vector of probability into

the joint PD of object structures to calculate the posterior

probability of the candidate being an animal or car. After

obtaining the posterior probabilities for the 300 object candidates,

we selected the object candidate that had the highest probability of

being an animal or a car. If the probability was greater than 0.5,

we categorized the selected object candidate as an animal or car;

otherwise, we categorized it as a distractor.
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